Full text loading...
Abstract
The prediction of the laminar-turbulent transition of boundary layers is critically important to the development of hypersonic vehicles because the transition has a first-order impact on aerodynamic heating, drag, and vehicle operation. The success of transition prediction relies on a fundamental understanding of the relevant physical mechanisms. In the 20 years since the review by Kleiser & Zang (1991) on the direct numerical simulation (DNS) of the boundary-layer transition, significant progress has been made on DNS in the hypersonic flow regime and in the spatial DNS approach. Many high-order shock-capturing and shock-fitting finite-difference methods have been developed and extensively applied to numerical simulations of the hypersonic boundary-layer transition. DNS has become a powerful research tool and has led to discoveries of new transition mechanisms. This article reviews the recent progress of DNS on hypersonic boundary-layer receptivity, instability, and transition. The current status and future directions are also presented.