1932

Abstract

Density stratification due to temperature or salinity variations greatly influences the flow around and the sedimentation of objects such as particles, drops, bubbles, and small organisms in the atmosphere, oceans, and lakes. Density stratification hampers the vertical flow and substantially affects the sedimentation of an isolated object, the hydrodynamic interactions between a pair of objects, and the collective behavior of suspensions in various ways, depending on the relative magnitude of stratification, inertia (advection), and viscous (diffusion) effects. This review discusses these effects and their hydrodynamic mechanisms in some commonly observed fluid–particle transport phenomena in oceans and the atmosphere. Physical understanding of these mechanisms can help us better model these phenomena and, hence, predict their geophysical, engineering, ecological, and environmental implications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-011132
2023-01-19
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-011132.html?itemId=/content/journals/10.1146/annurev-fluid-120720-011132&mimeType=html&fmt=ahah

Literature Cited

  1. Abaid N, Adalsteinsson D, Agyapong A, McLaughlin RM. 2004. An internal splash: levitation of falling spheres in stratified fluids. Phys. Fluids 16:51567–80
    [Google Scholar]
  2. Abbassi Y, Ahmadikia H, Baniasadi E. 2020. Prediction of pollution dispersion under urban heat island circulation for different atmospheric stratification. Build. Environ. 168:106374
    [Google Scholar]
  3. Abkarian M, Loiseau E, Massiera G. 2011. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7:104610–14
    [Google Scholar]
  4. Ahmerkamp S, Liu B, Kindler K, Maerz J, Stocker R et al. 2022. Settling of highly porous and impermeable particles in linear stratification: implications for marine aggregates. J. Fluid Mech. 931:A9
    [Google Scholar]
  5. Alavian V, Jirka G, Denton RA, Johnson MC, Stefan HG. 1992. Density currents entering lakes and reservoirs. J. Hydraul. Eng. 118:111464–89
    [Google Scholar]
  6. Alldredge AL, Cowles T, MacIntyre S, Rines JEB, Donaghay PL et al. 2002. Occurrence and mechanisms of formation of dramatic thin layer of marine snow in shallow Pacific fjord. Mar. Ecol. Prog. Ser. 233:1–12
    [Google Scholar]
  7. Alldredge AL, Gotschalk C. 1989. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A 36:2159–71
    [Google Scholar]
  8. Ardekani AM, Doostmohammadi A, Desai N. 2017. Transport of particles, drops, and small organisms in density stratified fluids. Phys. Rev. Fluids 2:10100503
    [Google Scholar]
  9. Ardekani AM, Stocker R. 2010. Stratlets: low Reynolds number point-force solutions in a stratified fluid. Phys. Rev. Lett. 105:8084502
    [Google Scholar]
  10. Auta H, Emenike C, Fauziah S. 2017. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, potential solutions. Environ. Int. 102:165–76
    [Google Scholar]
  11. Baines P. 1996. Topographic effects in stratified flows. Int. J. Multiph. Flow 22:S191
    [Google Scholar]
  12. Balbus SA, Soker N. 1990. Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357:353–66
    [Google Scholar]
  13. Bayareh M, Dabiri S, Ardekani AM. 2016. Interaction between two drops ascending in a linearly stratified fluid. Eur. J. Mech. B 60:127–36
    [Google Scholar]
  14. Bayareh M, Doostmohammadi A, Dabiri S, Ardekani AM. 2013. On the rising motion of a drop in stratified fluids. Phys. Fluids 25:10023029
    [Google Scholar]
  15. Bearon R, Grünbaum D. 2006. Bioconvection in a stratified environment: experiments and theory. Phys. Fluids 18:12127102
    [Google Scholar]
  16. Bees MA. 2020. Advances in bioconvection. Annu. Rev. Fluid Mech. 52:449–76
    [Google Scholar]
  17. Bewley T, Meneghello G. 2016. Efficient coordination of swarms of sensor-laden balloons for persistent, in situ, real-time measurement of hurricane development. Phy. Rev. Fluids 1:6060507
    [Google Scholar]
  18. Bhatija K. 2019. Particles in a linearly stratified fluid MS Thesis, Purdue Univ., West Lafayette IN:
  19. Bigg E. 1964. Atmospheric stratification revealed by twilight scattering. Tellus 16:176–83
    [Google Scholar]
  20. Blake J. 1971. A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46:1199–208
    [Google Scholar]
  21. Blanchette F. 2013. Mixing and convection driven by particles settling in temperature-stratified ambients. Int. J. Heat Mass Transf. 56:1–2732–40
    [Google Scholar]
  22. Blanchette F, Bush JW. 2005. Particle concentration evolution and sedimentation-induced instabilities in a stably stratified environment. Phys. Fluids 17:7073302
    [Google Scholar]
  23. Blanchette F, Shapiro AM. 2012. Drops settling in sharp stratification with and without Marangoni effects. Phys. Fluids 24:4042104
    [Google Scholar]
  24. Bormans M, Condie SA. 1997. Modelling the distribution of Anabaena and Melosira in a stratified river weir pool. Hydrobiologia 364:3–13
    [Google Scholar]
  25. Bowley CJ, Glaser AH, Newcomb RJ, Wexler R. 1962. Satellite observations of wake formation beneath an inversion. J. Atmos. Sci. 19:152–55
    [Google Scholar]
  26. Bush JW, Thurber B, Blanchette F. 2003. Particle clouds in homogeneous and stratified environments. J. Fluid Mech. 489:29–54
    [Google Scholar]
  27. Camassa R, Falcon C, Lin J, McLaughlin RM, Mykins N. 2010. A first-principle predictive theory for a sphere falling through sharply stratified fluid at low Reynolds number. J. Fluid Mech. 664:436–65
    [Google Scholar]
  28. Camassa R, Falcon C, Lin J, McLaughlin RM, Parker R. 2009. Prolonged residence times for particles settling through stratified miscible fluids in the Stokes regime. Phys. Fluids 21:3031702
    [Google Scholar]
  29. Camassa R, Harris D, Hunt R, Kilic Z, McLaughlin R. 2019. A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids. Nat. Commun. 10:5804
    [Google Scholar]
  30. Camassa R, Khatri S, McLaughlin RM, Prairie JC, White BL et al. 2013. Retention and entrainment effects: Experiments and theory for porous spheres settling in sharply stratified fluids. Phys. Fluids 25:8081701
    [Google Scholar]
  31. Candelier F, Mehaddi R, Vauquelin O. 2014. The history force on a small particle in a linearly stratified fluid. J. Fluid Mech. 749:184–200
    [Google Scholar]
  32. Chomaz J, Bonneton P, Butet A, Perrier M, Hopfinger EJ. 1992. Froude number dependence of the flow separation line on a sphere towed in a stratified fluid. Phys. Fluids A 4:2254–58
    [Google Scholar]
  33. Dabiri JO. 2010. Role of vertical migration in biogenic ocean mixing. Geophys. Res. Lett. 37:L11602
    [Google Scholar]
  34. Dabiri S, Doostmohammadi A, Bayareh M, Ardekani A. 2015. Rising motion of a swarm of drops in a linearly stratified fluid. Int. J. Multiph. Flow 69:8–17
    [Google Scholar]
  35. Dandekar R, Ardekani A. 2020. Swimming sheet in a viscosity-stratified fluid. J. Fluid Mech. 895:R2
    [Google Scholar]
  36. Dandekar R, Shaik VA, Ardekani AM. 2019. Swimming sheet in a density-stratified fluid. J. Fluid Mech. 874:210–234
    [Google Scholar]
  37. Dandekar R, Shaik VA, Ardekani AM. 2020. Motion of an arbitrarily shaped particle in a density stratified fluid. J. Fluid Mech. 890:A16
    [Google Scholar]
  38. Datt C, Elfring G. 2019. Active particles in viscosity gradients. Phys. Rev. Lett. 123:15158006
    [Google Scholar]
  39. Deepwell D, Ouillon R, Meiburg E, Sutherland B. 2021. Settling of a particle pair through a sharp, miscible density interface. Phys. Rev. Fluids 6:4044304
    [Google Scholar]
  40. Desai N, Ardekani AM. 2017. Modeling of active swimmer suspensions and their interactions with the environment. Soft Matter 13:366033–50
    [Google Scholar]
  41. Dewar WK, Bingham RJ, Iverson RL, Nowacek DP, St. Laurent LC, Wiebe PH 2006. Does the marine biosphere mix the ocean?. J. Mar. Res. 64:4541–61
    [Google Scholar]
  42. Díaz-Damacillo L, Ruiz-Angulo A, Zenit R. 2016. Drift by air bubbles crossing an interface of a stratified medium at moderate Reynolds number. Int. J. Multiph. Flow 85:258–66
    [Google Scholar]
  43. Doostmohammadi A, Ardekani A. 2013. Interaction between a pair of particles settling in a stratified fluid. Phys. Rev. E 88:2023029
    [Google Scholar]
  44. Doostmohammadi A, Ardekani A. 2014. Reorientation of elongated particles at density interfaces. Phys. Rev. E 90:3033013
    [Google Scholar]
  45. Doostmohammadi A, Ardekani A. 2015. Suspension of solid particles in a density stratified fluid. Phys. Fluids 27:2023302
    [Google Scholar]
  46. Doostmohammadi A, Dabiri S, Ardekani A. 2014. A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified fluid. J. Fluid Mech. 750:5–32
    [Google Scholar]
  47. Doostmohammadi A, Stocker R, Ardekani A. 2012. Low-Reynolds-number swimming at pycnoclines. PNAS 109:103856–61
    [Google Scholar]
  48. Dubey R. 2009. Microencapsulation technology and applications. Def. Sci. J. 59:182–95
    [Google Scholar]
  49. Erga SR, Dybwad M, Frette Ø, Lotsberg J, Aursland K. 2003. New aspects of migratory behavior of phytoplankton in stratified waters: effects of halocline strength and light on Tetraselmis sp. (Prasinophyceae) in an artificial water column. Limnol. Oceanogr. 48:31202–13
    [Google Scholar]
  50. Erga SR, Olseng CD, Aarø LH. 2015. Growth and diel vertical migration patterns of the toxic dinoflagellate Protoceratium reticulatum in a water column with salinity stratification: the role of bioconvection and light. Mar. Ecol. Prog. Ser. 539:47–64
    [Google Scholar]
  51. Fauci L, Dillon R. 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38:371–94
    [Google Scholar]
  52. Fernando H, Lee S, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S. 2001. Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ. Fluid Mech. 1:107–64
    [Google Scholar]
  53. Ganesh M, Kim S, Dabiri S. 2020. Induced mixing in stratified fluids by rising bubbles in a thin gap. Phys. Rev. Fluids 5:4043601
    [Google Scholar]
  54. Gorodtsov VA, Teodorovich EV. 1982. Study of internal waves in the case of rapid horizontal motion of cylinders and spheres. Fluid Dyn. 17:893–89
    [Google Scholar]
  55. Govindarajan R, Sahu K. 2014. Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46:331–53
    [Google Scholar]
  56. Greenslade M. 2000. Drag on a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 418:339–50
    [Google Scholar]
  57. Guasto J, Rusconi R, Stocker R. 2012. Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44:373–400
    [Google Scholar]
  58. Hanazaki H. 1988. A numerical study of three-dimensional stratified flow past a sphere. J. Fluid Mech. 192:393–419
    [Google Scholar]
  59. Hanazaki H, Kashimoto K, Okamura T. 2009a. Jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech. 638:173–97
    [Google Scholar]
  60. Hanazaki H, Konishi K, Okamura T. 2009b. Schmidt-number effects on the flow past a sphere moving vertically in a stratified diffusive fluid. Phys. Fluids 21:2026602
    [Google Scholar]
  61. Hanazaki H, Nakamura S, Yoshikawa H. 2015. Numerical simulation of jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech. 765:424–51
    [Google Scholar]
  62. Harwood J 2002. Mass die-offs. Encyclopedia of Marine Mammals WF Perrin, B Würsig, JGM Thewissen 724–26 San Diego, CA: Academic Press
    [Google Scholar]
  63. Hill D, Vergara A, Parra E. 2008. Destratification by mechanical mixers: mixing efficiency and flow scaling. J. Hydraul. Eng. 134:121772–77
    [Google Scholar]
  64. Honji H. 1987. Near wakes of a sphere in a stratified fluid. Fluid Dyn. Res. 2:275–76
    [Google Scholar]
  65. Houghton I, Koseff J, Monismith S, Dabiri J. 2018. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column. Nature 556:7702497–500
    [Google Scholar]
  66. Iversen MH, Lampitt RS. 2020. Size does not matter after all: no evidence for a size-sinking relationship for marine snow. Prog. Oceanogr. 189:102445
    [Google Scholar]
  67. Jephson T, Carlsson P. 2009. Species- and stratification-dependent diel vertical migration behaviour of three dinoflagellate species in a laboratory study. J. Plankton Res. 31:111353–62
    [Google Scholar]
  68. Karimi A, Ardekani A. 2013. Gyrotactic bioconvection at pycnoclines. J. Fluid Mech. 733:245–67
    [Google Scholar]
  69. Katano T, Yoshida M, Yamaguchi S, Yoshino K, Hamada T et al. 2014. Effect of nutrient concentration and salinity on diel vertical migration of Chattonella marina (Raphidophyceae). Mar. Biol. Res. 10:101007–18
    [Google Scholar]
  70. Katija K. 2012. Biogenic inputs to ocean mixing. J. Exp. Biol. 215:61040–49
    [Google Scholar]
  71. Kellogg WW 1980. Aerosols and climate. Interactions of Energy and Climate W Bach, J Pankrath, J Williams 281–303 Dordrecht, Neth: Springer
    [Google Scholar]
  72. Kessler JD, Valentine DL, Redmond MC, Du M, Chan EC et al. 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:6015312–15
    [Google Scholar]
  73. Kindler K, Khalili A, Stocker R. 2010. Diffusion-limited retention of porous particles at density interfaces. PNAS 107:5122163–68
    [Google Scholar]
  74. Kunze E, Dower J, Beveridge I, Dewey R, Bartlett K 2006. Observations of biologically generated turbulence in a coastal inlet. Science 313:57941768–70
    [Google Scholar]
  75. Lam T, Vincent L, Kanso E. 2018. Passive flight in density-stratified fluids. J. Fluid Mech. 860:200–23
    [Google Scholar]
  76. Lauga E, Powers T. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:9096601
    [Google Scholar]
  77. Li Y, Diddens C, Prosperetti A, Lohse D. 2021. Marangoni instability of a drop in a stably stratified liquid. Phys. Rev. Lett. 126:12124502
    [Google Scholar]
  78. Li Y, Meijer J, Lohse D. 2022. Marangoni instabilities of drops of different viscosities in stratified liquids. J. Fluid Mech. 932:A11
    [Google Scholar]
  79. Liebchen B, Monderkamp P, Ten Hagen B, Löwen H 2018. Viscotaxis: microswimmer navigation in viscosity gradients. Phys. Rev. Lett. 120:20208002
    [Google Scholar]
  80. Lin JT, Pao YH. 1979. Wakes in stratified fluids. Annu. Rev. Fluid Mech. 11:317–38
    [Google Scholar]
  81. Lin Q, Lindberg WR, Boyer DL, Fernando HJS. 1992. Stratified flow past a sphere. J. Fluid Mech. 240:315–54
    [Google Scholar]
  82. Linden P. 1999. The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31:201–38
    [Google Scholar]
  83. Lindsey R, Scott M, Simmon R. 2010. What are phytoplankton? Web Resour., NASA Earth Obs. Greenbelt, MD:
  84. Lofquist K, Purtell L. 1984. Drag on a sphere moving horizontally through a stratified liquid. J. Fluid Mech. 148:271–84
    [Google Scholar]
  85. MacIntyre S, Alldredge AL, Gotschalk CC. 1995. Accumulation of marines now at density discontinuities in the water column. Limnol. Oceanogr. 40:3449–68
    [Google Scholar]
  86. Magnaudet J, Mercier M. 2020. Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech. 52:61–91
    [Google Scholar]
  87. Mandel T, Zhou DZ, Waldrop L, Theillard M, Kleckner D, Khatri S. 2020. Retention of rising droplets in density stratification. Phys. Rev. Fluids 5:12124803
    [Google Scholar]
  88. Martin DW, Blanchette F. 2017. Simulations of surfactant-laden drops rising in a density-stratified medium. Phys. Rev. Fluids 2:2023602
    [Google Scholar]
  89. Mason PJ. 1977. Forces on spheres moving horizontally in a rotating stratified fluid. Geophys. Astrophys. Fluid Dyn. 8:1137–54
    [Google Scholar]
  90. Mehaddi P, Candelier F, Mehlig B. 2018. Inertial drag on a sphere settling in a stratified fluid. J. Fluid Mech. 855:1074–87
    [Google Scholar]
  91. Mercier MJ, Wang S, Péméja J, Ern P, Ardekani AM. 2020. Settling disks in a linearly stratified fluid. J. Fluid Mech. 885:A2
    [Google Scholar]
  92. More R, Balasubramanian S. 2018. Mixing dynamics in double-diffusive convective stratified fluid layers. Curr. Sci. 114:1953–60
    [Google Scholar]
  93. More RV, Ardekani AM. 2020. Motion of an inertial squirmer in stratified fluid. J. Fluid Mech. 905:A9
    [Google Scholar]
  94. More RV, Ardekani AM. 2021. Hydrodynamic interactions between swimming microorganisms in a linearly density stratified fluid. Phys. Rev. E 103:1013109
    [Google Scholar]
  95. More RV, Ardekani MN, Brandt L, Ardekani AM. 2021a. Orientation instability of settling spheroids in a linearly density-stratified fluid. J. Fluid Mech. 929:A7
    [Google Scholar]
  96. More RV, Barrio-Zhang A, Ahmadzadegan A, Dabiri S, Ardekani AM. 2021b. Monitoring heterogeneity in therapeutic samples using Schlieren. Int. J. Pharmaceut. 609:121096
    [Google Scholar]
  97. Mrokowska MM. 2018. Stratification-induced reorientation of disk settling through ambient density transition. Sci. Rep. 8:412
    [Google Scholar]
  98. Mrokowska MM. 2020a. Dynamics of thin disk settling in two-layered fluid with density transition. Acta Geophys. 68:41145–60
    [Google Scholar]
  99. Mrokowska MM. 2020b. Influence of pycnocline on settling behaviour of non-spherical particle and wake evolution. Sci. Rep. 10:20595
    [Google Scholar]
  100. Munk WH. 1966. Abyssal recipes. Deep-Sea Res. 13:707–30
    [Google Scholar]
  101. Nidhan S, Schmidt O, Sarkar S. 2022. Analysis of coherence in turbulent stratified wakes using spectral proper orthogonal decomposition. J. Fluid Mech. 934:A12
    [Google Scholar]
  102. Noss C, Lorke A. 2014. Direct observation of biomixing by vertically migrating zooplankton. Limnol. Oceanogr. 59:3724–32
    [Google Scholar]
  103. Okino S, Akiyama S, Hanazaki H. 2017. Velocity distribution around a sphere descending in a linearly stratified fluid. J. Fluid Mech. 826:759–80
    [Google Scholar]
  104. Ouillon R, Houghton I, Dabiri J, Meiburg E. 2020. Active swimmers interacting with stratified fluids during collective vertical migration. J. Fluid Mech. 902:A23
    [Google Scholar]
  105. Panah M, Blanchette F, Khatri S. 2017. Simulations of a porous particle settling in a density-stratified ambient fluid. Phys. Rev. Fluids 2:11114303
    [Google Scholar]
  106. Parker G, Fukushima Y, Pantin H. 1986. Self-accelerating turbidity currents. J. Fluid Mech. 171:145–81
    [Google Scholar]
  107. Persson A, Smith B, Wikfors G, Alix J 2008. Dinoflagellate gamete formation and environmental cues: observations, theory, and synthesis. Harmful Algae 7:6798–801
    [Google Scholar]
  108. Prairie J, Ziervogel K, Arnosti C, Camassa R, Falcon C et al. 2013. Delayed settling of marine snow at sharp density transitions driven by fluid entrainment and diffusion-limited retention. Mar. Ecol. Prog. Ser. 487:185–200
    [Google Scholar]
  109. Prairie J, Ziervogel K, Camassa R, McLaughlin RM, White BL et al. 2015. Delayed settling of marine snow: effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175:28–38
    [Google Scholar]
  110. Sellner K, Doucette G, Kirkpatrick G. 2003. Harmful algal blooms: causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30:7383–406
    [Google Scholar]
  111. Shaik VA, Ardekani AM. 2020a. Drag, deformation, and drift volume associated with a drop rising in a density stratified fluid. Phys. Rev. Fluids 5:113604
    [Google Scholar]
  112. Shaik VA, Ardekani AM. 2020b. Far-field flow and drift due to particles and organisms in density-stratified fluids. Phys. Rev. E 102:6063106
    [Google Scholar]
  113. Shaik VA, Ardekani AM. 2021. Squirming in a density stratified fluid. Phys. Fluids 33:101903
    [Google Scholar]
  114. Shaik VA, Elfring GJ. 2021. Hydrodynamics of active particles in viscosity gradients. Phys. Rev. Fluids 6:10103103
    [Google Scholar]
  115. Sheppard P. 1956. Airflow over mountains. Q. J. R. Meteorol. Soc. 82:354528–29
    [Google Scholar]
  116. Shishkina OD. 1996. Comparison of the drag coefficients of bodies moving in liquids with various stratification profiles. Fluid Dyn. 31:484–89
    [Google Scholar]
  117. Spedding GR. 2014. Wake signature detection. Annu. Rev. Fluid Mech. 46:273–302
    [Google Scholar]
  118. Srdić-Mitrović A, Mohamed N, Fernando H 1999. Gravitational settling of particles through density interfaces. J. Fluid Mech. 381:175–98
    [Google Scholar]
  119. Stehnach M, Waisbord N, Walkama D, Guasto J. 2021. Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17:926–30
    [Google Scholar]
  120. Stocker R. 2021. Marine microbes see a sea of gradients. Science 338:6107628–33
    [Google Scholar]
  121. Strickler J 1975. Swimming of planktonic Cyclops species (Copepoda, Crustacea): pattern, movements and their control. Swimming and Flying in Nature TYT Wu, CJ Brokaw, C Brennen 599–613 Boston: Springer
    [Google Scholar]
  122. Taylor GI. 1951. Analysis of the swimming of microscopic organisms. Proc. R. Soc. A 209:1099447–61
    [Google Scholar]
  123. Thorpe SA. 2005. The Turbulent Ocean Cambridge, UK: Cambridge Univ. Press
  124. Torres C, Hanazaki H, Ochoa J, Castillo J, Van Woert M. 2000. Flow past a sphere moving vertically in a stratified diffusive fluid. J. Fluid Mech. 417:211–36
    [Google Scholar]
  125. Turco R, Toon O, Ackerman T, Pollack J, Sagan C. 1990. Climate and smoke: an appraisal of nuclear winter. Science 247:4939166–76
    [Google Scholar]
  126. Turner JS. 1979. Buoyancy Effects in Fluids Cambridge, UK: Cambridge Univ. Press
  127. Turner JS, Campbell I. 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23:4255–352
    [Google Scholar]
  128. Turner JT. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol. 27:157–102
    [Google Scholar]
  129. Varanasi AK, Marath NK, Subramanian G. 2022. The rotation of a sedimenting spheroidal particle in a linearly stratified fluid. J. Fluid Mech. 933:A17
    [Google Scholar]
  130. Visser A. 2007. Biomixing of the oceans?. Science 316:5826838–39
    [Google Scholar]
  131. Voisin B. 2007. Lee waves from a sphere in a stratified flow. J. Fluid Mech. 574:273–315
    [Google Scholar]
  132. Vosper SB, Castro IP, Snyder WH, Mobbs SD. 1999. Experimental studies of strongly stratified flow past three-dimensional orography. J. Fluid Mech. 390:223–49
    [Google Scholar]
  133. Wagner GL, Young WR, Lauga E. 2014. Mixing by microorganisms in stratified fluids. J. Mar. Res. 72:247–72
    [Google Scholar]
  134. Wang S, Ardekani AM. 2015. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids. Sci. Rep. 5:17448
    [Google Scholar]
  135. Yen J, Brown J, Webster DR. 2003. Analysis of the flow field of the krill, Euphausia pacifica. Mar. Freshw. Behav. Physiol. 36:4307–19
    [Google Scholar]
  136. Yick K, Torres C, Peacock T, Stocker R. 2009. Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J. Fluid Mech. 632:49–68
    [Google Scholar]
  137. Yih C-S. 2009. Stratified flows. Annu. Rev. Fluid Mech. 1:73–110
    [Google Scholar]
  138. Young N, Goldstein J, Block MJ. 1959. The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6:3350–56
    [Google Scholar]
  139. Yu S. 2013. Settling of porous spheres, as a proxy for marine snow, through density stratification. PhD Thesis, Univ. N.C. Chapel Hill:
  140. Zhang J, Mercier M, Magnaudet J. 2019. Core mechanisms of drag enhancement on bodies settling in a stratified fluid. J. Fluid Mech. 875:622–65
    [Google Scholar]
  141. Zuev A, Kostarev K. 2006. Oscillation of the convective flow around an air bubble in a vertically stratified surfactant solution. J. Exp. Theor. Phys. 103:2317–23
    [Google Scholar]
  142. Zvirin Y, Chadwick R. 1975. Settling of an axially symmetric body in a viscous stratified fluid. Int. J. Multiph. Flow 1:6743–52
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-011132
Loading
/content/journals/10.1146/annurev-fluid-120720-011132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error