1932

Abstract

Circulation of cerebrospinal fluid and interstitial fluid around the central nervous system and through the brain transports not only those water-like fluids but also any solutes they carry, including nutrients, drugs, and metabolic wastes. Passing through brain tissue primarily during sleep, this circulation has implications for neurodegenerative disorders including Alzheimer's disease, for tissue damage during stroke and cardiac arrest, and for flow-related disorders such as hydrocephalus and syringomyelia. Recent experimental results reveal several features of this flow, but other aspects are not fully understood, including its driving mechanisms. We review the experimental evidence and theoretical modeling of cerebrospinal fluid flow, including the roles of advection and diffusion in transporting solutes. We discuss both local, detailed fluid-dynamic models of specific components of the system and global hydraulic models of the overall network of flow paths.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-011638
2023-01-19
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-011638.html?itemId=/content/journals/10.1146/annurev-fluid-120720-011638&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott NJ. 2004. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45:4545–52
    [Google Scholar]
  2. Ahn JH, Cho H, Kim JH, Kim SH, Ham JS et al. 2019. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572:62–66
    [Google Scholar]
  3. Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A et al. 2018. Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 136:1139–52
    [Google Scholar]
  4. Aris R. 1956. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235:120067–77
    [Google Scholar]
  5. Asgari M, de Zélicourt D, Kurtcuoglu V. 2015. How astrocyte networks may contribute to cerebral metabolite clearance. Sci. Rep. 5:15024
    [Google Scholar]
  6. Asgari M, de Zélicourt D, Kurtcuoglu V. 2016. Glymphatic solute transport does not require bulk flow. Sci. Rep. 6:38635
    [Google Scholar]
  7. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S et al. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212:7991–99
    [Google Scholar]
  8. Avrahami I, Gharib M. 2008. Computational studies of resonance wave pumping in compliant tubes. J. Fluid Mech. 608:205–22
    [Google Scholar]
  9. Basser PJ. 1992. Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc. Res. 44:2143–65
    [Google Scholar]
  10. Bèchet NB, Shanbhag NC, Lundgaard I. 2021. Glymphatic pathways in the gyrencephalic brain. J. Cerebr. Blood Flow Metab. 41:92264–79
    [Google Scholar]
  11. Bedussi B, Almasian M, de Vos J, VanBavel E, Bakker ENTP. 2018. Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow. J. Cerebr. Blood Flow Metab. 38:4719–26
    [Google Scholar]
  12. Benveniste H, Lee H, Ozturk B, Chen X, Koundal S et al. 2020. Glymphatic cerebrospinal fluid and solute transport quantified by MRI and PET imaging. Neuroscience 474:63–79
    [Google Scholar]
  13. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. 2019. The glymphatic system and waste clearance with brain aging: a review. Gerontology 65:2106–19
    [Google Scholar]
  14. Bilston LE, Fletcher DF, Brodbelt AR, Stoodley MA. 2003. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput. Methods Biomech. 6:4235–41
    [Google Scholar]
  15. Blinder P, Shih AY, Rafie C, Kleinfeld D. 2010. Topological basis for the robust distribution of blood to rodent neocortex. PNAS 107:2812670–75
    [Google Scholar]
  16. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. 2013. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16:7889
    [Google Scholar]
  17. Bloomfield IG, Johnston IH, Bilston LE. 1998. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28:5246–51
    [Google Scholar]
  18. Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V et al. 2022. The glymphatic system: current understanding and modeling. iScience 25:9104987
    [Google Scholar]
  19. Boster KAS, Tithof J, Cook DD, Thomas JH, Kelley DH. 2022. Sensitivity analysis on a network model of glymphatic flow. J. R. Soc. Interface 19:20220257
    [Google Scholar]
  20. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA et al. 2008. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34:2131–44
    [Google Scholar]
  21. Carr JB, Thomas JH, Liu J, Shang JK. 2021. Peristaltic pumping in thin non-axisymmetric annular tubes. J. Fluid Mech. 917:A10
    [Google Scholar]
  22. Chen X, Liu X, Koundal S, Elkin R, Zhu X et al. 2022. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nat. Aging 2:214–223
    [Google Scholar]
  23. Coenen W, Gutiérrez-Montes C, Sincomb S, Criado-Hidalgo E, Wei K et al. 2019. Subject-specific studies of CSF bulk flow patterns in the spinal canal: implications for the dispersion of solute particles in intrathecal drug delivery. Am. J. Neuroradiol. 40:71242–49
    [Google Scholar]
  24. Coenen W, Zhang X, Sánchez AL. 2021. Lubrication analysis of peristaltic motion in non-axisymmetric annular tubes. J. Fluid Mech. 921:R2
    [Google Scholar]
  25. Colbourn R, Hrabe J, Nicholson C, Perkins M, Goodman JH, Hrabetova S. 2021. Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter. J. Physiol. 599:123195–220
    [Google Scholar]
  26. Coloma M, Schaffer JD, Carare RO, Chiarot PR, Huang P. 2016. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J. Math. Biol. 73:2469–90
    [Google Scholar]
  27. Coloma M, Schaffer JD, Huang P, Chiarot PR. 2019. Boundary waves in a microfluidic device as a model for intramural periarterial drainage. Biomicrofluidics 13:2024103–12
    [Google Scholar]
  28. Croci M, Vinje V, Rognes ME. 2019. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields. Fluids Barriers CNS 16:32
    [Google Scholar]
  29. Cserr HF, Cooper D, Milhorat T. 1977. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp. Eye Res. 25:461–73
    [Google Scholar]
  30. Cserr HF, Cooper DN, Suri PK, Patlak CS. 1981. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. Renal Physiol. 240:4F319–28
    [Google Scholar]
  31. Daversin-Catty C, Gjerde IG, Rognes ME. 2021. Geometrically reduced modelling of pulsatile flow in perivascular networks. Front. Phys. 10:882260
    [Google Scholar]
  32. de Guevara AL, Shang JK, Nedergaard M, Kelley DH. 2022. Perivascular pumping in the mouse brain: improved boundary conditions reconcile theory, simulation, and experiment. J. Theor. Biol. 542:111103
    [Google Scholar]
  33. Du T, Mestre H, Kress BT, Liu G, Sweeney AM et al. 2021. Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema. Brain 145:2787–97
    [Google Scholar]
  34. Eide PK, Holm S, Sorteberg W. 2012. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings. BioMed. Eng. OnLine 11:66
    [Google Scholar]
  35. Eide PK, Vinje V, Pripp AH, Mardal KA, Ringstad G. 2021. Sleep deprivation impairs molecular clearance from the human brain. Brain 144:3863–74
    [Google Scholar]
  36. Elbert DL, Patterson BW, Lucey BP, Benzinger TLS, Bateman RJ. 2022. Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Commun. Biol. 5:98
    [Google Scholar]
  37. Faghih MM, Sharp MK. 2018. Is bulk flow plausible in perivascular, paravascular and paravenous channels?. Fluids Barriers CNS 15:17
    [Google Scholar]
  38. Faghih MM, Sharp MK. 2021. Mechanisms of tracer transport in cerebral perivascular spaces. J. Biomech. 118:110278
    [Google Scholar]
  39. Faubel R, Westendorf C, Bodenschatz E, Eichele G. 2016. Cilia-based flow network in the brain ventricles. Science 353:6295176–78
    [Google Scholar]
  40. Freund JB. 2014. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46:67–95
    [Google Scholar]
  41. Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR et al. 2019. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366:628–31
    [Google Scholar]
  42. Gjerde I, Rognes M 2021. A mixed framework for topological model reduction of coupled PDEs. International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2021) E Oñate, M Papadrakakis, B Schrefler. Barcelona: Int. Cent. Numer. Methods Eng. https://www.scipedia.com/public/Gjerde_Rognes_2021a
    [Google Scholar]
  43. Godin AG, Varela JA, Gao Z, Danne N, Dupuis JP et al. 2017. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 12:3238–43
    [Google Scholar]
  44. Hablitz LM, Nedergaard M. 2021a. The glymphatic system. Curr. Biol. 31:20R1371–75
    [Google Scholar]
  45. Hablitz LM, Nedergaard M 2021b. The glymphatic system: a novel component of fundamental neurobiology. J. Neurosci. 41:377698–711
    [Google Scholar]
  46. Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF et al. 2020. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11:4411
    [Google Scholar]
  47. Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B et al. 2019. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5:2eaav5447
    [Google Scholar]
  48. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC et al. 2006. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol. Ther. 14:169–78
    [Google Scholar]
  49. Halnes G, Østby I, Pettersen KH, Omhold SW, Einevoll GT. 2013. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLOS Comput. Biol. 9:e1003386
    [Google Scholar]
  50. Hannocks MJ, Pizzo ME, Huppert J, Deshpande T, Abbott NJ et al. 2018. Molecular characterization of perivascular drainage pathways in the murine brain. J. Cereb. Blood Flow Metab. 38:4669–86
    [Google Scholar]
  51. Heidari Pahlavian S, Yiallourou T, Tubbs RS, Bunck AC, Loth F et al. 2014. The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLOS ONE 9:4e91888
    [Google Scholar]
  52. Hickerson AI, Gharib M. 2006. On the resonance of a pliant tube as a mechanism for valveless pumping. J. Fluid Mech. 555:141–48
    [Google Scholar]
  53. Hladky SB, Barrand MA. 2014. Mechanisms of fluid movement into, through, and out of the brain: evolution of the evidence. Fluids Barriers CNS 11:26
    [Google Scholar]
  54. Hladky SB, Barrand MA. 2018. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier. Fluids Barriers CNS 15:30
    [Google Scholar]
  55. Hladky SB, Barrand MA. 2022. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19:9
    [Google Scholar]
  56. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM et al. 2017. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. PNAS 114:379894–99
    [Google Scholar]
  57. Hrabe J, Hrabetova S. 2019. Time-resolved integrative optical imaging of diffusion during spreading depression. Biophys. J. 117:101783–94
    [Google Scholar]
  58. Ichimura T, Fraser PA, Cserr HF. 1991. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 545:1–2103–13
    [Google Scholar]
  59. Iliff J, Wang M, Liao Y, Plogg B, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147147ra111
    [Google Scholar]
  60. Iliff J, Wang M, Zeppenfeld D, Venkataraman A, Plog B et al. 2013. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33:4618190–99
    [Google Scholar]
  61. Jaffrin MY, Shapiro AH. 1971. Peristaltic pumping. Annu. Rev. Fluid Mech. 3:13–37
    [Google Scholar]
  62. Jessen N, Munk A, Lundgaard I, Nedergaard M. 2015. The glymphatic system: a beginner's guide. Neurochem. Res. 40:122583–99
    [Google Scholar]
  63. Jin BJ, Smith AJ, Verkman AS. 2016. Spatial model of convective solute transport in extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol. 148:6489–501
    [Google Scholar]
  64. Johnston M, Papaiconomou C. 2002. Cerebrospinal fluid transport: a lymphatic perspective. Physiology 17:6227–30
    [Google Scholar]
  65. Kedarasetti R, Drew PJ, Costanzo F. 2021. Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model. Fluids Barriers CNS 19:34
    [Google Scholar]
  66. Kedarasetti RT, Drew PJ, Costanzo F. 2020a. Arterial pulsations drive oscillatory flow of CSF but not directional pumping. Sci. Rep. 10:10102
    [Google Scholar]
  67. Kedarasetti RT, Turner KL, Echagarruga C, Gluckman BJ, Drew PJ, Costanzo F. 2020b. Functional hyperemia drives fluid exchange in the paravascular space. Fluids Barriers CNS 17:52
    [Google Scholar]
  68. Kelley DH. 2021. Brain cerebrospinal fluid flow. Phys. Rev. Fluids 6:070501
    [Google Scholar]
  69. Kinney JP, Spacek J, Bartol TM, Bajaj CL, Harris KM, Sejnowski TJ. 2013. Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J. Comp. Neurol. 521:2448–64
    [Google Scholar]
  70. Koundal S, Elkin R, Nadeem S, Xue Y, Constantinou S et al. 2020. Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep. 10:1990
    [Google Scholar]
  71. Kress B, Iliff J, Xia M, Wang M, Wei H et al. 2014. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:6845–61
    [Google Scholar]
  72. Ku DN. 1997. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434
    [Google Scholar]
  73. Lam MA, Hemley SJ, Najafi E, Vella NGF, Bilston LE, Stoodley MA. 2017. The ultrastructure of spinal cord perivascular spaces: implications for the circulation of cerebrospinal fluid. Sci. Rep. 7:12924
    [Google Scholar]
  74. Lawrence JJ, Coenen W, Sánchez AL, Pawiak G, Martínez-Bazán C et al. 2019. On the dispersion of a drug delivered intrathecally in the spinal canal. J. Fluid Mech. 861:679–720
    [Google Scholar]
  75. Lilius TO, Blomqvist K, Hauglund NL, Liu G, Stæger FF et al. 2019. Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J. Control. Release 304:29–38
    [Google Scholar]
  76. Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. 2008. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J. Biomech. 41:102176–87
    [Google Scholar]
  77. Linninger AA, Tangen K, Hsu CY, Frim D. 2016. Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid Mech. 48:219–57
    [Google Scholar]
  78. Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn R. 2009. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol. 59:6729–59
    [Google Scholar]
  79. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523:7560337–41
    [Google Scholar]
  80. Ma Q, Ineichen BV, Detmar M, Proulx ST. 2017. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8:1434
    [Google Scholar]
  81. Ma Q, Ries M, Decker Y, Müller A, Riner C et al. 2019. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137:151–65
    [Google Scholar]
  82. Magdoom KN, Brown A, Rey J, Mareci TH, King MA, Sarntinoranont M. 2019. MRI of whole rat brain perivascular network reveals role for ventricles in brain waste clearance. Sci. Rep. 9:11480
    [Google Scholar]
  83. Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC et al. 2018. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 560:185–91
    [Google Scholar]
  84. Mestre H, Du T, Sweeney AM, Liu G, Samson AJ et al. 2020a. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367:6483eaax7171
    [Google Scholar]
  85. Mestre H, Hablitz LM, Xavier ALR, Feng W, Zou W et al. 2018a. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070
    [Google Scholar]
  86. Mestre H, Mori Y, Nedergaard M. 2020b. The brain's glymphatic system: current controversies. Trends Neurosci. 43:7458–66
    [Google Scholar]
  87. Mestre H, Tithof J, Du T, Song W, Peng W et al. 2018b. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9:4878
    [Google Scholar]
  88. Min Rivas F, Liu J, Martell BC, Du T, Mestre H et al. 2020. Surface periarterial spaces in the mouse brain are open, not porous. J. R. Soc. Interface 17:20200593
    [Google Scholar]
  89. Moore JE, Bertram CD. 2018. Lymphatic system flows. Annu. Rev. Fluid Mech. 50:459–82
    [Google Scholar]
  90. Nägerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T. 2008. Live-cell imaging of dendritic spines by sted microscopy. PNAS 105:4818982–87
    [Google Scholar]
  91. Nedergaard M. 2013. Garbage truck of the brain. Science 340:61401529–30
    [Google Scholar]
  92. Nedergaard M, Goldman SA. 2020. Glymphatic failure as a final common pathway to dementia. Science 370:651250–56
    [Google Scholar]
  93. Nicholson C. 2001. Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64:815–84
    [Google Scholar]
  94. Nicholson C, Hrabětová S. 2017. Brain extracellular space: the final frontier of neuroscience. Biophys. J. 113:102133–42
    [Google Scholar]
  95. Nicholson C, Phillips J. 1981. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321:225–57
    [Google Scholar]
  96. Nicholson C, Tao L. 1993. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J. 65:62277–90
    [Google Scholar]
  97. Paviolo C, Soria FN, Ferreira JS, Lee A, Groc L et al. 2020. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 174:91–99
    [Google Scholar]
  98. Peng SL, Dumas JA, Park DC, Liu P, Filbey FM et al. 2014. Age-related increase of resting metabolic rate in the human brain. NeuroImage 98:176–83
    [Google Scholar]
  99. Petitclerc L, Hirschler L, Wells JA, Thomas DL, van Walderveen MA et al. 2021. Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans. NeuroImage 245:118755
    [Google Scholar]
  100. Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL et al. 2018. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J. Physiol. 596:3445–75
    [Google Scholar]
  101. Plog BA, Mestre H, Olveda GE, Sweeney AM, Kenney HM et al. 2018. Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight 3:20e120922
    [Google Scholar]
  102. Plog BA, Nedergaard M. 2018. The glymphatic system in central nervous system health and disease: past, present, and future. Ann. Rev. Pathol. 13:379–94
    [Google Scholar]
  103. Raghunandan A, Ladron-de Guevera A, Tithof J, Mestre H, Du T et al. 2021. Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. eLife 10:e65958
    [Google Scholar]
  104. Rasmussen MK, Mestre H, Nedergaard M. 2018. The glymphatic pathway in neurological disorders. Lancet Neurol. 17:111016–24
    [Google Scholar]
  105. Rasmussen MK, Mestre H, Nedergaard M. 2022. Fluid transport in the brain. Physiol. Rev. 102:21025–151
    [Google Scholar]
  106. Ratner V, Gao Y, Lee H, Elkin R, Nedergaard M et al. 2017. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. NeuroImage 152:530–37
    [Google Scholar]
  107. Ray LA, Heys JJ 2019. Fluid flow and mass transport in brain tissue. Fluids 4:4196
    [Google Scholar]
  108. Ray LA, Iliff JJ, Heys JJ. 2019. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 16:6
    [Google Scholar]
  109. Ray LA, Pike M, Simon M, Iliff JJ, Heys JJ. 2021. Quantitative analysis of macroscopic solute transport in the murine brain. Fluids Barriers CNS 18:55
    [Google Scholar]
  110. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. 1985. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326:147–63
    [Google Scholar]
  111. Rey J, Sarntinoranont M. 2018. Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study. Fluids Barriers CNS 15:20
    [Google Scholar]
  112. Ringstad G, Vatnehol SAS, Eide PK. 2017. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 140:102691–705
    [Google Scholar]
  113. Romanò F, Suresh V, Galie PA, Grotberg JB. 2020. Peristaltic flow in the glymphatic system. Sci. Rep. 10:21065
    [Google Scholar]
  114. Salerno L, Cardillo G, Camporeale C. 2020. Aris-Taylor dispersion in the subarachnoid space. Phys. Rev. Fluids 5:4043102
    [Google Scholar]
  115. Sánchez AL, Martínez-Bazán C, Gutiérrez-Montes C, Criado-Hidalgo E, Pawlak G et al. 2018. On the bulk motion of the cerebrospinal fluid in the spinal canal. J. Fluid Mech. 841:203–27
    [Google Scholar]
  116. Schain AJ, Melo-Carrillo A, Strassman AM, Burstein R. 2017. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. J. Neurosci. 37:112904–15
    [Google Scholar]
  117. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO. 2006. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 238:4962–74
    [Google Scholar]
  118. Schreder HE, Liu J, Kelley DH, Thomas JH, Boster KAS. 2022. Hydraulic resistance model for interstitial flow in the brain. J. R. Soc. Interface 19:20210812
    [Google Scholar]
  119. Secomb TW. 2017. Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49:443–61
    [Google Scholar]
  120. Sharp MK, Carare RO, Martin BA. 2019. Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system. Fluids Barriers CNS 16:13
    [Google Scholar]
  121. Sincomb S, Coenen W, Gutiérrez-Montes C, Martínez Bazán C, Haughton V, Sánchez AL 2022. A one-dimensional model for the pulsating flow of cerebrospinal fluid in the spinal canal. J. Fluid Mech. 939:A26
    [Google Scholar]
  122. Sincomb S, Coenen W, Sánchez AL, Lasheras JC. 2020. A model for the oscillatory flow in the cerebral aqueduct. J. Fluid Mech. 899:R1
    [Google Scholar]
  123. Siyahhan B, Knobloch V, de Zélicourt D, Asgari M, Schmid Daners M et al. 2014. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J. R. Soc. Interface 11:9420131189–10
    [Google Scholar]
  124. Smith AJ, Verkman AS. 2018. The “glymphatic” mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation?. FASEB J. 32:2543–51
    [Google Scholar]
  125. Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS 2017. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6:e27679
    [Google Scholar]
  126. Stanton EH, Persson NDA, Gomolka RS, Lilius T, Sigurosson B et al. 2021. Mapping of CSF transport using high spatiotemporal resolution dynamic contrast-enhanced MRI in mice: effect of anesthesia. Magnet. Resonan. Med. 85:63326–42
    [Google Scholar]
  127. Stockman HW. 2007. Effect of anatomical fine structure on the dispersion of solutes in the spinal subarachnoid space. J. Biomech. Eng. 129:666–75
    [Google Scholar]
  128. Syková E, Nicholson C. 2008. Diffusion in brain extracellular space. Physiol. Rev. 88:41277–340
    [Google Scholar]
  129. Szentistványi I, Patlak CS, Ellis RA, Cserr HF. 1984. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246:6 Part 2F835–44
    [Google Scholar]
  130. Tangen KM, Hsu Y, Zhu DC, Linninger AA. 2015. CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J. Biomech. 48:102144–54
    [Google Scholar]
  131. Taylor GI. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. A 219:1137186–203
    [Google Scholar]
  132. Thomas JH. 2019. Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J. R. Soc. Interface 16:20190572
    [Google Scholar]
  133. Thomas JH. 2022. Changes in waste clearance in the brain from wake to sleep suggest a flow of interstitial fluid. Fluids Barriers CNS 19:30
    [Google Scholar]
  134. Tithof J, Boster KAS, Bork PAR, Nedergaard M, Thomas JH, Kelley DH. 2022. A network model of glymphatic flow under different experimentally-motivated parametric scenarios. iScience 25:5104258
    [Google Scholar]
  135. Tithof J, Kelley DH, Mestre H, Nedergaard M, Thomas JH. 2019. Hydraulic resistance of periarterial spaces in the brain. Fluids Barriers CNS 16:19
    [Google Scholar]
  136. Tønnesen J, Inavalli VVG, Nägerl UV. 2018. Super-resolution imaging of the extracellular space in living brain tissue. Cell 172:51108–21.e15
    [Google Scholar]
  137. Troyetsky DE, Tithof J, Thomas JH, Kelley DH. 2021. Dispersion as a waste-clearance mechanism in flow through penetrating perivascular spaces in the brain. Sci. Rep. 11:4595
    [Google Scholar]
  138. Turner KL, Gheres KW, Proctor EA, Drew PJ 2020. Neurovascular coupling and bilateral connectivity during NREM and REM sleep. eLife 9:e62071
    [Google Scholar]
  139. Valnes LM, Mitusch SK, Ringstad G, Eide PK, Funke SW, Mardal KA. 2020. Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex. Sci. Rep. 10:9176
    [Google Scholar]
  140. van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC et al. 2020. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105:3549–61
    [Google Scholar]
  141. Vardakis JC, Chou D, Guo L, Ventikos Y. 2020. Exploring neurodegenerative disorders using a novel integrated model of cerebral transport: initial results. Proc. Inst. Mech. Eng. H 234:111223–34
    [Google Scholar]
  142. Vinje V, Bakker ENTP, Rognes ME. 2021. Brain solute transport is more rapid in periarterial than perivenous spaces. Sci. Rep. 11:16085
    [Google Scholar]
  143. Vinje V, Brucker J, Rognes ME, Mardal KA, Haughton V. 2018. Fluid dynamics in syringomyelia cavities: effects of heart rate, CSF velocity, CSF velocity waveform and craniovertebral decompression. Neuroradiol. J. 31:5482–89
    [Google Scholar]
  144. Vinje V, Eklund A, Mardal KA, Rognes ME, Støverud KH. 2020. Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS 17:29
    [Google Scholar]
  145. Vinje V, Ringstad G, Lindstrøm EK, Valnes LM, Rognes ME et al. 2019. Respiratory influence on cerebrospinal fluid flow—a computational study based on long-term intracranial pressure measurements. Sci. Rep. 9:9732
    [Google Scholar]
  146. Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J. 2021. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 69:715–28
    [Google Scholar]
  147. Wang P, Olbricht WL. 2011. Fluid mechanics in the perivascular space. J. Theor. Biol. 274:152–57
    [Google Scholar]
  148. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H et al. 2020. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16:3137–53
    [Google Scholar]
  149. White FM. 2006. Viscous Fluid Flow New York: McGraw-Hill. , 3rd ed..
    [Google Scholar]
  150. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:6156373–77
    [Google Scholar]
  151. Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S et al. 2017. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J. Magnet. Resonan. Imaging 46:2431–39
    [Google Scholar]
  152. Yokoyama N, Takeishi N, Wada S. 2021. Cerebrospinal fluid flow driven by arterial pulsations in axisymmetric perivascular spaces: analogy with Taylor's swimming sheet. J. Theor. Biol. 523:110709
    [Google Scholar]
  153. Young BA, Adams J, Beary JM, Mardal KA, Schneider R, Kondrashova T. 2021. Variations in the cerebrospinal fluid dynamics of the American alligator (Alligator mississippiensis). Fluids Barriers CNS 18:11
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-011638
Loading
/content/journals/10.1146/annurev-fluid-120720-011638
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error