1932

Abstract

Bubble plumes are ubiquitous in nature. Instances in the natural world include the release of methane and carbon dioxide from the seabed or the bottom of a lake and from a subsea oil well blowout. This review describes the dynamics of bubble plumes and their various spreading patterns in the surrounding environment. We explore how the motion of the plume is affected by the density stratification in the external environment, as well as by internal processes of dissolution of the bubbles and chemical reaction. We discuss several examples, such as natural disasters, global warming, and fishing techniques used by some whales and dolphins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-011833
2024-01-19
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-120720-011833.html?itemId=/content/journals/10.1146/annurev-fluid-120720-011833&mimeType=html&fmt=ahah

Literature Cited

  1. Asaeda T, Imberger J. 1993. Structure of bubble plumes in linearly stratified environments. J. Fluid Mech. 249:35–57
    [Google Scholar]
  2. Baines WD, Leitch AM. 1989. Destruction of stratification by bubble plume. J. Hydraul. Eng. 118:4559–77
    [Google Scholar]
  3. BBC Studios. 2010. Sinking a ship with bubbles. YouTube video, July 5. https://www.youtube.com/watch?v=MSmAXp_BHcQ
  4. Boufadel MC, Socolofsky S, Katz J, Yang D, Daskiran C, Dewar W. 2020. A review on multiphase underwater jets and plumes: droplets, hydrodynamics, and chemistry. Rev. Geophys. 58:3e2020RG000703
    [Google Scholar]
  5. Brewer PG, Peltzer ET, Friederich G, Rehder G. 2002. Experimental determination of the fate of rising CO2 droplets in seawater. Environ. Sci. Technol. 36:245441–46
    [Google Scholar]
  6. Buffett BA. 2000. Clathrate hydrates. Annu. Rev. Earth Planet. Sci. 28:477–507
    [Google Scholar]
  7. Callaghan A, Deane GB, Stokes MD. 2013. Two regimes of laboratory whitecap foam decay: bubble-plume controlled and surfactant stabilized. J. Phys. Oceanogr. 43:1114–26
    [Google Scholar]
  8. Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV et al. 2010. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:6001201–4
    [Google Scholar]
  9. Carazzo G, Kaminski E, Tait S. 2006. The route to self-similarity in turbulent jets and plumes. J. Fluid Mech. 547:137–48
    [Google Scholar]
  10. Cardoso SSS, Cartwright JHE. 2016. Increased methane emissions from deep osmotic and buoyant convection beneath submarine seeps as climate warms. Nat. Commun. 7:113266
    [Google Scholar]
  11. Cardoso SSS, McHugh ST. 2010. Turbulent plumes with heterogeneous chemical reaction on the surface of small buoyant droplets. J. Fluid Mech. 642:49–77
    [Google Scholar]
  12. Cederwall K, Ditmars JD. 1970. Analysis of air-bubble plumes Rep. KH-R-24 Calif. Inst. Technol. Pasadena, CA:
  13. Chen JC. 1980. Studies on gravitational spreading currents PhD Thesis Calif. Inst. Technol. Pasadena, CA:
  14. Chen MH. 2001. Bubble plumes PhD Thesis Univ. Cambridge, UK:
  15. Chen MH, Cardoso SSS. 2000. The mixing of liquids by a plume of low-Reynolds number bubbles. Chem. Eng. Sci. 55:142585–94
    [Google Scholar]
  16. Chu S, Prosperetti A. 2017. Bubble plumes in a stratified environment: source parameters, scaling, intrusion height, and neutral height. Phys. Rev. Fluids 2:10104503
    [Google Scholar]
  17. Chu S, Prosperetti A. 2019. Multiphase buoyant plumes with soluble drops or bubbles. Phys. Rev. Fluids 4:084306
    [Google Scholar]
  18. Davidson JF, Schüler BOG. 1960. Bubble formation at an orifice in a viscous liquid. Chem. Eng. Res. Des. 75:S105–15
    [Google Scholar]
  19. Deane GB, Stokes MD. 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418:839–44
    [Google Scholar]
  20. Denardo B, Pringle L, DeGrace C, McGuire M. 2001. When do bubbles cause a floating body to sink?. Am. J. Phys. 69:1064–72
    [Google Scholar]
  21. Dickens GR, O'Neil JR, Rea DK, Owen RM. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:6965–71
    [Google Scholar]
  22. Domingos MG, Cardoso SSS. 2013. Turbulent two-phase plumes with bubble-size reduction owing to dissolution or chemical reaction. J. Fluid Mech. 716:120–36
    [Google Scholar]
  23. Evans JT, Taylor GI. 1955. Pneumatic and similar breakwaters. Proc. R. Soc. A 231:1187457–66
    [Google Scholar]
  24. Evans WC, White LD, Tuttle ML, Kling GW, Tanyileke G, Michel RL. 1994. Six years of change at Lake Nyos, Cameroon, yield clues to the past and cautions for the future. Geochem. J. 28:3139–62
    [Google Scholar]
  25. Fairall CW, Banner ML, Peirson WL, Asher W, Morison RP. 2009. Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res. Oceans 114:C10001
    [Google Scholar]
  26. Fertl D, Wilson B. 1997. Bubble use during prey capture by a lone bottlenose dolphin (Tursiops truncatus). Aquat. Mamm. 23:113–14
    [Google Scholar]
  27. Fertl D, Würsig B. 1995. Coordinated feeding by Atlantic spotted dolphins (Stenella frontalis) in the Gulf of Mexico. Aquat. Mamm. 21:3–5
    [Google Scholar]
  28. Flynn MR, Sutherland BR. 2004. Intrusive gravity currents and internal gravity wave generation in stratified fluid. J. Fluid Mech. 514:355–83
    [Google Scholar]
  29. Frossard AA, Long MS, Keene WC, Duplessis P, Kinsey JD et al. 2019. Marine aerosol production via detrainment of bubble plumes generated in natural seawater with a forced-air venturi. J. Geophys. Res. Atmos. 124:2010931–50
    [Google Scholar]
  30. Gutjahr M, Ridgwell A, Sexton PF, Anagnostou E, Pearson PN et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548:7669573–77
    [Google Scholar]
  31. Hain JHW, Carter GR, Kraus SD, Mayo CA, Winn HE. 1982. Feeding behavior of the humpback whale, Megaptera novaeangliae, in the western North Atlantic. Fish. Bull. 80:259–68
    [Google Scholar]
  32. Herzog H, Golomb D, Zemba S. 1991. Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean. Environ. Prog. 10:164–74
    [Google Scholar]
  33. Hueschen MA. 2010. Can bubbles sink ships?. Am. J. Phys. 78:139–41
    [Google Scholar]
  34. Jaupart C, Vergniolle S. 1998. Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60
    [Google Scholar]
  35. Jurasz CM, Jurasz VP. 1979. Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci. Rep. Whales Res. Inst. 31:69–83
    [Google Scholar]
  36. Kantarci N, Borak F, Ulgen KO. 2005. Bubble column reactors. Proc. Biochem. 40:72263–83
    [Google Scholar]
  37. Kimura R. 1988. Cell formation in the convective mixed layer. Fluid Dyn. Res. 3:1–4395–99
    [Google Scholar]
  38. Kling GW, Clark MA, Wagner GN, Compton HR, Humphrey AM et al. 1987. The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236:169–75
    [Google Scholar]
  39. Kopf AJ. 2002. Significance of mud volcanism. Rev. Geophys. 40:22–152
    [Google Scholar]
  40. Kosma KM, Werth AJ, Szabo AR, Straley JM. 2019. Pectoral herding: an innovative tactic for humpback whale foraging. R. Soc. Open Sci. 6:191104
    [Google Scholar]
  41. Kotsovinos NE. 2000. Axisymmetric submerged intrusion in stratified fluid. J. Hydraul. Eng. 126:6446–56
    [Google Scholar]
  42. Leighton TG, Chua GH, White PR. 2012. Do dolphins benefit from nonlinear mathematics when processing their sonar returns?. Proc. R. Soc. A 468:3517–32
    [Google Scholar]
  43. Leitch AM, Baines WD. 1989. Liquid volume flux in a weak bubble plume. J. Fluid Mech. 205:77–98
    [Google Scholar]
  44. Lemckert CJ, Imberger J. 1993. Axisymmetric intrusive gravity currents in linearly stratified fluids. J. Hydraul. Eng. 119:6662–79
    [Google Scholar]
  45. Lewis JS, Schroeder WW. 2003. Mud plume feeding, a unique foraging behavior of the bottlenose dolphin in the Florida Keys. Gulf Mexico Sci. 21:92–97
    [Google Scholar]
  46. Lhuissier H, Villermaux E. 2012. Bursting bubble aerosols. J. Fluid Mech. 696:5–44
    [Google Scholar]
  47. Lima Neto IE, Cardoso SSS, Woods AW 2016. On mixing a density interface by a bubble plume. J. Fluid Mech. 802:R3
    [Google Scholar]
  48. Lima Neto IE, Zhu DZ, Rajaratnam N 2008. Effect of tank size and geometry on the flow induced by circular bubble plumes and water jets. J. Hydraul. Eng. 134:6833–42
    [Google Scholar]
  49. Maxworthy T, Leilich J, Simpson JE, Meiburg EH. 2002. The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 453:371–94
    [Google Scholar]
  50. May DA, Monaghan JJ. 2003. Can a single bubble sink a ship?. Am. J. Phys. 71:842–49
    [Google Scholar]
  51. McDougall TJ. 1978. Bubble plumes in stratified environments. J. Fluid Mech. 85:4655–72
    [Google Scholar]
  52. McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A. 2006. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?. J. Geophys. Res. Oceans 111:C09007
    [Google Scholar]
  53. McHugh ST, Cardoso SSS. 2011. Turbulent entrainment into inert and reacting multiphase plumes. J. Fluid Mech. 682:577–89
    [Google Scholar]
  54. McInerney FA, Wing SL. 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516
    [Google Scholar]
  55. McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA et al. 2012. Review of flow rate estimates of the Deepwater Horizon oil spill. PNAS 109:5020260–67
    [Google Scholar]
  56. Milgram JH. 1983. Mean flow in round bubble plumes. J. Fluid Mech. 133:345–76
    [Google Scholar]
  57. Modini RL, Russell LM, Deane GB, Stokes MD. 2013. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J. Geophys. Res. Atmos. 118:1388–400
    [Google Scholar]
  58. Monahan EC. 2001. Whitecaps and foam. Encycl. Ocean Sci. 6:3213–19
    [Google Scholar]
  59. Morton BR, Taylor GI, Turner JS. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. A 234:1–23
    [Google Scholar]
  60. Nguyen K, Daw CS, Chakka P, Cheng M, Bruns DD et al. 1996. Spatio-temporal dynamics in a train of rising bubbles. Chem. Eng. J. 64:191–97
    [Google Scholar]
  61. Niida Y, Watanabe Y. 2018. Oxygen transfer from bubble-plumes. Phys. Fluids 30:107104
    [Google Scholar]
  62. Nonaka Y, Kikuchi K, Numayama-Tsuruta K, Kage A, Ueno H, Ishikawa T. 2016. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume. Biol. Open 5:154–60
    [Google Scholar]
  63. O'Dowd CD, De Leeuw G. 2007. Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc. A 365:1753–74
    [Google Scholar]
  64. Papanicolaou PN, List EJ. 1988. Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195:341–91
    [Google Scholar]
  65. Porco CC, Dones L, Mitchell C. 2017. Could it be snowing microbes on Enceladus? Assessing conditions in its plume and implications for future missions. Astrobiology 17:876–901
    [Google Scholar]
  66. Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL et al. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. PNAS 109:5020229–34
    [Google Scholar]
  67. Rehder G, Brewer PW, Peltzer ET, Friederich G. 2002. Enhanced lifetime of methane bubble streams within the deep ocean. Geophys. Res. Lett. 29:1521–121–4
    [Google Scholar]
  68. Rocha LAM, Gutiérrez-Ariza C, Pimentel C, Sánchez-Almazo I, Sainz-Díaz CI et al. 2021. Formation and structures of horizontal submarine fluid conduit and venting systems associated with marine seeps. Geochem. Geophys. Geosyst. 22:11e2021GC009724
    [Google Scholar]
  69. Rossi-Santos MR, Wedekin LL. 2006. Evidence of bottom contact behavior by estuarine dolphins (Sotalia guianensis) on the eastern coast of Brazil. Aquat. Mamm. 32:140–44
    [Google Scholar]
  70. Ruppel CD. 2011. Methane hydrates and contemporary climate change. Nat. Educ. Knowl. 3:1029
    [Google Scholar]
  71. Schladow SG. 1992. Bubble plume dynamics in a stratified medium and the implications for water quality amelioration in lakes. Water Resour. Res. 28:2313–21
    [Google Scholar]
  72. Schladow SG. 1993. Lake destratification by bubble-plume systems: design methodology. J. Hydraul. Eng. 119:3350–68
    [Google Scholar]
  73. Schubert CJ, Durisch-Kaiser E, Holzner CP, Klauser L, Wehrli B et al. 2006. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochem. Geophys. Geosys. 7:Q04002
    [Google Scholar]
  74. Shakhova NE, Alekseev VA, Semiletov IP. 2010. Predicted methane emission on the East Siberian shelf. Dokl. Earth Sci. 430:2190–93
    [Google Scholar]
  75. Sigurdardóttir A. 2019. Mixing induced by bubble plumes MPhil Thesis Univ. Cambridge, UK:
  76. Sigurdardóttir A, Barnard J, Bullamore D, McCormick A, Cartwright J, Cardoso S. 2020. Radial spreading of turbulent bubble plumes. Philos. Trans. R. Soc. A 378:217920190513
    [Google Scholar]
  77. Similä T, Ugarte F. 1993. Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Can. J. Zool. 71:1494–99
    [Google Scholar]
  78. Skarke A, Ruppel C, Kodis M, Brothers D, Lobecker E. 2014. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7:657–61
    [Google Scholar]
  79. Socolofsky SA, Adams EE. 2003. Liquid volume fluxes in stratified multiphase plumes. J. Hydraul. Eng. 129:905–14
    [Google Scholar]
  80. Socolofsky SA, Adams EE. 2005. Role of slip velocity in the behavior of stratified multiphase plumes. J. Hydraul. Eng. 131:273–82
    [Google Scholar]
  81. Stokes MD, Deane GB, Prather K, Bertram TH, Ruppel MJ et al. 2013. A marine aerosol reference tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech. 6:1085–94
    [Google Scholar]
  82. Taylor GI. 1955. The action of a surface current used as a breakwater. Proc. R. Soc. A 231:1187466–78
    [Google Scholar]
  83. Tritton DJ, Egdell C. 1993. Chaotic bubbling. Phys. Fluids A 5:503–5
    [Google Scholar]
  84. Turner JS. 1986. Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173:431–71
    [Google Scholar]
  85. Vergniolle S, Bouche E. 2016. Gas-driven lava lake fluctuations at Erta Ale volcano (Ethiopia) revealed by MODIS measurements. Bull. Volcanol. 78:60
    [Google Scholar]
  86. Vergniolle S, Gaudemer Y. 2012. Decadal evolution of a degassing magma reservoir unravelled from fire fountains produced at Etna (Italy) between 1989 and 2001. Bull. Volcanol. 74:725–42
    [Google Scholar]
  87. Veron F. 2015. Ocean spray. Annu. Rev. Fluid Mech. 47:507–38
    [Google Scholar]
  88. Walls PLL, Bird JC, Bourouiba L. 2014. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. Integr. Comp. Biol. 54:1014–25
    [Google Scholar]
  89. Wiley D, Ware C, Bocconcelli A, Cholewiak D, Friedlaender A et al. 2011. Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148:575–602
    [Google Scholar]
  90. Woods A, Phillips JC. 1999. Turbulent bubble plumes and CO2-driven lake eruptions. J. Volcanol. Geotherm. Res. 92:259–70
    [Google Scholar]
  91. Woods AW, Cardoso SSS. 2007. Triggering basaltic volcanic eruptions by bubble-melt separation. Nature 385:518–20
    [Google Scholar]
  92. Wüest A, Brooks NH, Imboden DM. 1992. Bubble plume modeling for lake restoration. Water Resour. Res. 28:123235–50
    [Google Scholar]
  93. Zhang Y, Kling GW. 2006. Dynamics of lake eruptions and possible ocean eruptions. Annu. Rev. Earth Planet. Sci. 34:293–324
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-011833
Loading
/content/journals/10.1146/annurev-fluid-120720-011833
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error