1932

Abstract

Microscopic active droplets are able to swim autonomously in viscous flows. This puzzling feature stems from solute exchanges with the surrounding fluid via surface reactions or their spontaneous solubilization and from the interfacial flows resulting from these solutes’ gradients. Contrary to asymmetric active colloids, these isotropic droplets swim spontaneously by exploiting the nonlinear coupling of solute transport with self-generated Marangoni flows; such coupling is also responsible for secondary transitions to more complex individual and collective dynamics. Thanks to their simple design and their sensitivity to physico-chemical signals, these droplets are fascinating to physicists, chemists, biologists, and fluid dynamicists alike in analyzing viscous self-propulsion and collective dynamics in active-matter systems, developing synthetic cellular models, or performing targeted biomedical or engineering applications. I review here the most recent and significant developments of this rapidly growing field, focusing on the mathematical and physical modeling of these intriguing droplets, together with their experimental design and characterization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-012204
2023-01-19
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-012204.html?itemId=/content/journals/10.1146/annurev-fluid-120720-012204&mimeType=html&fmt=ahah

Literature Cited

  1. Acrivos A, Taylor TD. 1962. Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids 5:4387
    [Google Scholar]
  2. Anderson JL. 1989. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21:61–99
    [Google Scholar]
  3. Ban T, Tani K, Nakata H, Okano Y. 2014. Self-propelled droplets for extracting rare-earth metal ions. Soft Matter 10:336316–20
    [Google Scholar]
  4. Ban T, Yamada T, Aoyama A, Takagi Y, Okano Y. 2012. Composition-dependent shape changes of self-propelled droplets in a phase-separating system. Soft Matter 8:143908–16
    [Google Scholar]
  5. Ban T, Yamagami T, Nakata H, Okano Y. 2013. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH. Langmuir 29:82554–61
    [Google Scholar]
  6. Banno T, Kuroha R, Toyota T. 2011. pH-sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages. Langmuir 28:21190–95
    [Google Scholar]
  7. Banno T, Miura S, Kuroha R, Toyota T. 2013. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants. Langmuir 29:257689–96
    [Google Scholar]
  8. Berg HC. 1975. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng. 4:119–36
    [Google Scholar]
  9. Berg HC, Anderson RA. 1973. Bacteria swim by rotating their flagellar filaments. Nature 245:5425380–82
    [Google Scholar]
  10. Boniface D, Cottin-Bizonne C, Detcheverry F, Ybert C. 2021. Role of Marangoni forces in the velocity of symmetric interfacial swimmers. Phys. Rev. Fluids 6:104006
    [Google Scholar]
  11. Boniface D, Cottin-Bizonne C, Kervil R, Ybert C, Detcheverry F. 2019. Self-propulsion of symmetric chemically active particles: point-source model and experiments on camphor disks. Phys. Rev. E 99:062605
    [Google Scholar]
  12. Brennen C, Winet H. 1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9:339–98
    [Google Scholar]
  13. Browne K, Walker D, Bishop K, Grzybowski B. 2010. Self-division of macroscopic droplets: partitioning of nanosized cargo into nanoscale micelles. Angew. Chem. Int. Ed. 49:386756–59
    [Google Scholar]
  14. Chen Y, Chong KL, Liu L, Verzicco R, Lohse D. 2021. Instabilities driven by diffusiophoretic flow on catalytic surfaces. J. Fluid Mech. 919:A10
    [Google Scholar]
  15. Cheon SI, Silva LBC, Khair AS, Zarzar LD. 2021. Interfacially-adsorbed particles enhance the self-propulsion of oil droplets in aqueous surfactant. Soft Matter 17:286742–50
    [Google Scholar]
  16. Childress S. 1981. Mechanics of Swimming and Flying Cambridge, UK: Cambridge Univ. Press
  17. de Blois C, Bertin V, Suda S, Ichikawa M, Reyssat M, Dauchot O. 2021. Swimming droplets in 1D geometries: an active Bretherton problem. Soft Matter 17:276646–60
    [Google Scholar]
  18. de Blois C, Reyssat M, Michelin S, Dauchot O. 2019. Flow field around a confined active droplet. Phys. Rev. Fluids 4:054001
    [Google Scholar]
  19. de Corato M, Pagonabarraga I, Abdelmohsen LKEA, Sánchez S, Arroyo M. 2020. Spontaneous polarization and locomotion of an active particle with surface-mobile enzymes. Phys. Rev. Fluids 5:122001
    [Google Scholar]
  20. Desai N, Michelin S. 2021. Instabilities and self-propulsion of active droplets along a wall. Phys. Rev. Fluids 6:114103
    [Google Scholar]
  21. Dey R, Buness CM, Hokmabad BV, Jin C, Maass CC 2022. Oscillatory rheotaxis of artificial swimmers in microchannels. Nat. Commun. 13:2952
    [Google Scholar]
  22. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. 2005. Microscopic artificial swimmers. Nature 437:7060862–65
    [Google Scholar]
  23. Duan W, Wang W, Das S, Yadav V, Mallouk TE, Sen A. 2015. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8:311–33
    [Google Scholar]
  24. Dwivedi P, Shrivastava A, Pillai D, Mangal R 2021a. Rheotaxis of active droplets. Phys. Fluids 33:8082108
    [Google Scholar]
  25. Dwivedi P, Si BR, Pillai D, Mangal R 2021b. Solute induced jittery motion of self-propelled droplets. Phys. Fluids 33:2022103
    [Google Scholar]
  26. Ender H, Froin AK, Rehage H, Kierfeld J. 2021. Surfactant-loaded capsules as Marangoni microswimmers at the air–water interface: symmetry breaking and spontaneous propulsion by surfactant diffusion and advection. Eur. Phys. J. E 44:21
    [Google Scholar]
  27. Farutin A, Misbah C. 2021. Singular bifurcations: a regularization theory. arXiv:2112.12094 [cond-mat.soft]
  28. Herminghaus S, Maass CC, Krüger C, Thutupalli S, Goehring L, Bahr C. 2014. Interfacial mechanisms in active emulsions. Soft Matter 10:367008–22
    [Google Scholar]
  29. Hirono A, Toyota T, Asakura K, Banno T. 2018. Locomotion mode of micrometer-sized oil droplets in solutions of cationic surfactants having ester or ether linkages. Langmuir 34:267821–26
    [Google Scholar]
  30. Hokmabad BV, Baldwin KA, Krüger C, Bahr C, Maass CC. 2019. Topological stabilization and dynamics of self-propelling nematic shells. Phys. Rev. Lett. 123:178003
    [Google Scholar]
  31. Hokmabad BV, Dey R, Jalaal M, Mohanty D, Almukambetova M et al. 2021. Emergence of bimodal motility in active droplets. Phys. Rev. X 11:011043
    [Google Scholar]
  32. Hokmabad BV, Nishide A, Ramesh P, Maass CC. 2022a. Spontaneously rotating clusters of active droplets. Soft Matter 18:2731–41
    [Google Scholar]
  33. Hokmabad BV, Agudo-Canalejo J, Saha S, Golestanian R, Maass CC. 2022b. Chemotactic self-caging in active emulsions. PNAS 119:24e2122269119
    [Google Scholar]
  34. Hu WF, Lin TS, Rafai S, Misbah C. 2019. Chaotic swimming of phoretic particles. Phys. Rev. Lett. 123:238004
    [Google Scholar]
  35. Izri Z, van der Linden MN, Michelin S, Dauchot O. 2014. Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys. Rev. Lett. 113:248302
    [Google Scholar]
  36. Izzet A, Moerman PG, Gross P, Groenewold J, Hollingsworth AD et al. 2020. Tunable persistent random walk in swimming droplets. Phys. Rev. X 10:021035
    [Google Scholar]
  37. Jin C, Chen Y, Maass CC, Majthijssen AJTM. 2021. Collective entrainment and confinement amplify transport by schooling microswimmers. Phys. Rev. Lett. 127:088006
    [Google Scholar]
  38. Jin C, Hokmabad BV, Baldwin KA, Maass CC. 2018. Chemotactic droplet swimmers in complex geometries. J. Phys. Condens. Matter 30:5054003
    [Google Scholar]
  39. Jin C, Krüger C, Maass CC. 2017. Chemotaxis and autochemotaxis of self-propelling droplet swimmers. PNAS 114:205089–94
    [Google Scholar]
  40. Jin C, Vachier J, Bandyopadhyay S, Macharashvili T, Maass CC. 2019. Fine balance of chemotactic and hydrodynamic torques: when microswimmers orbit a pillar just once. Phys. Rev. E 100:040601
    [Google Scholar]
  41. Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y et al. 2014. Self-propelled activated carbon janus micromotors for efficient water purification. Small 11:4499–506
    [Google Scholar]
  42. Jurado-Sánchez B, Wang J 2018. Micromotors for environmental applications: a review. Environ. Sci. Nano 5:71530–44
    [Google Scholar]
  43. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S et al. 2010. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6:232741–47
    [Google Scholar]
  44. Kasuo Y, Kitahata H, Koyano Y, Takinoue M, Asakura K, Banno T. 2019. Start of micrometer-sized oil droplet motion through generation of surfactants. Langmuir 35:4113351–55
    [Google Scholar]
  45. Katuri J, Uspal WE, Simmchen J, Miguel-López A, Sánchez S 2018. Cross-stream migration of active particles. Sci. Adv. 4:1eaao1755
    [Google Scholar]
  46. Kim S, Karrila SJ. 1991. Microhydrodynamics Stoneham, MA: Butterworth-Heinemann
  47. Kitahata H, Yoshinaga N, Nagai KH, Sumino Y. 2011. Spontaneous motion of a droplet coupled with a chemical wave. Phys. Rev. E 84:015101
    [Google Scholar]
  48. Krüger C, Bahr C, Herminghaus S, Maass CC. 2016a. Dimensionality matters in the collective behaviour of active emulsions. Eur. Phys. J. E 39:64
    [Google Scholar]
  49. Krüger C, Klös G, Bahr C, Maass CC. 2016b. Curling liquid crystal microswimmers: a cascade of spontaneous symmetry breaking. Phys. Rev. Lett. 117:048003
    [Google Scholar]
  50. Lancia F, Yamamoto T, Ryabchun A, Yamaguchi T, Sano M, Katsonis N. 2019. Reorientation behavior in the helical motility of light-responsive spiral droplets. Nat. Commun. 10:5238
    [Google Scholar]
  51. Lauga E. 2016. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48:105–30
    [Google Scholar]
  52. Lauga E. 2020. The Fluid Dynamics of Cell Motility Cambridge, UK: Cambridge Univ. Press
  53. Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:9096601
    [Google Scholar]
  54. Li M, Brinkmann M, Pagonabarraga I, Seemann R, Fleury JB. 2018. Spatiotemporal control of cargo delivery performed by programmable self-propelled janus droplets. Commun. Phys. 1:23
    [Google Scholar]
  55. Li M, Hosseinzadeh M, Pagonabarraga I, Seemann R, Brinkmann M, Fleury JB. 2020. Kinetics of active water/ethanol janus droplets. Soft Matter 16:296803–11
    [Google Scholar]
  56. Lighthill J. 1976. Flagellar hydrodynamics. SIAM Rev. 18:2161–230
    [Google Scholar]
  57. Lin TS, Hu WF, Misbah C. 2020. A direct Poisson solver in spherical geometry with an application to diffusiophoretic problems. J. Comp. Phys. 409:109362
    [Google Scholar]
  58. Lippera K, Benzaquen M, Michelin S. 2020a. Bouncing, chasing, or pausing: asymmetric collisions of active droplets. Phys. Rev. Fluids 5:032201
    [Google Scholar]
  59. Lippera K, Benzaquen M, Michelin S. 2021. Alignment and scattering of colliding active droplets. Soft Matter 17:2365–75
    [Google Scholar]
  60. Lippera K, Morozov M, Benzaquen M, Michelin S 2020b. Collisions and rebounds of chemically active droplets. J. Fluid Mech. 886:A17
    [Google Scholar]
  61. Maass CC, Krüger C, Herminghaus S, Bahr C. 2016. Swimming droplets. Annu. Rev. Condens. Matter Phys. 7:171–93
    [Google Scholar]
  62. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:31143–89
    [Google Scholar]
  63. Marcos, Fu HC, Powers TR, Stocker R 2012. Bacterial rheotaxis. PNAS 109:134780–85
    [Google Scholar]
  64. Meredith CH, Moerman PG, Groenewold J, Chiu YJ, Kegel WK et al. 2020. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 12:121136–42
    [Google Scholar]
  65. Michelin S, Lauga E, Bartolo D. 2013. Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25:6061701
    [Google Scholar]
  66. Misbah C, Rizvi MS, Hu WF, Lin TS, Rafai S, Farutin A. 2021. Universal trajectories of motile particles driven by chemical activity. arXiv:2112.13801 [cond-mat.soft]
  67. Moerman PG. 2019. Dynamics of active droplets and free jointed colloidal trimers PhD Thesis, Utrecht Univ. Utrecht, Neth:.
  68. Moerman PG, Moyses HW, van der Wee EB, Grier DG, van Blaaderen A et al. 2017. Solute-mediated interactions between active droplets. Phys. Rev. E 96:032607
    [Google Scholar]
  69. Moran JL, Posner JD. 2017. Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49:511–40
    [Google Scholar]
  70. Morozov M. 2020. Adsorption inhibition by swollen micelles may cause multistability in active droplets. Soft Matter 16:245624–32
    [Google Scholar]
  71. Morozov M, Michelin S. 2018. Self-propulsion near the onset of Marangoni instability of deformable active droplets. J. Fluid Mech. 860:711–38
    [Google Scholar]
  72. Morozov M, Michelin S. 2019a. Nonlinear dynamics of a chemically-active drop: from steady to chaotic self-propulsion. J. Chem. Phys. 150:4044110
    [Google Scholar]
  73. Morozov M, Michelin S. 2019b. Orientational instability and spontaneous rotation of active nematic droplets. Soft Matter 15:397814–22
    [Google Scholar]
  74. Nelson BJ, Kaliakatsos IK, Abbott JJ. 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  75. Pak OS, Lauga E 2015. Theoretical models of low-Reynolds-number locomotion. Fluid–Structure Interactions in Low-Reynolds-Number Flows C Duprat, HA Stone 100–67 London: R. Soc. Chem.
    [Google Scholar]
  76. Palacci J, Sacanna S, Abramian A, Barral J, Hanson K et al. 2015. Artificial rheotaxis. Sci. Adv. 1:4e140021
    [Google Scholar]
  77. Palagi S, Fischer P. 2018. Bioinspired microrobots. Nat. Rev. Mater. 3:6113–24
    [Google Scholar]
  78. Paxton WF, Kistler KC, Olmeda CC, Sen A, Angelo SKS et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:4113424–31
    [Google Scholar]
  79. Peddireddy K, Kumar P, Thutupalli S, Herminghaus S, Bahr C. 2012. Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions. Langmuir 28:3412426–31
    [Google Scholar]
  80. Picella F, Michelin S. 2022. Confined self-propulsion of isotropic active colloids. J. Fluid Mech. 933:A27
    [Google Scholar]
  81. Rednikov AY, Ryazantsev YS, Vélarde MG. 1994a. Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids 6:2451–68
    [Google Scholar]
  82. Rednikov AY, Ryazantsev YS, Velárde MG. 1994b. Drop motion with surfactant transfer in an inhomogeneous medium. Int. J. Heat Mass Transf. 37:361–74
    [Google Scholar]
  83. Rednikov AY, Ryazantsev YS, Vélarde MG. 1994c. On the development of translational subcritical Marangoni instability for a drop with uniform internal heat generation. J. Colloid Interface Sci. 164:1168–80
    [Google Scholar]
  84. Ryabchun A, Babu D, Movilli J, Plamont R, Katsonis N. 2021. Run-and-halt behavior of motile droplets in response to light. ChemRxiv 14417552. https://doi.org/10.26434/chemrxiv.14417552.v1
    [Crossref]
  85. Saha S, Yariv E, Schnitzer O. 2021. Isotropically active colloids under uniform force fields: from forced to spontaneous motion. J. Fluid Mech. 916:A47
    [Google Scholar]
  86. Schmitt M, Stark H. 2013. Swimming active droplet: a theoretical analysis. EPL 101:444008
    [Google Scholar]
  87. Schmitt M, Stark H. 2016. Marangoni flow at droplet interfaces: three-dimensional solution and applications. Phys. Fluids 28:1012106
    [Google Scholar]
  88. Seemann R, Fleury JB, Maass CC. 2016. Self-propelled droplets. Eur. Phys. J. Spec. Top. 225:11–122227–40
    [Google Scholar]
  89. Sondak D, Hawley C, Heng S, Vinsonhaler R, Lauga E, Thiffeault JL. 2016. Can phoretic particles swim in two dimensions?. Phys. Rev. E 94:062606
    [Google Scholar]
  90. Suda S, Suda T, Ohmura T, Ichikawa M. 2021. Straight-to-curvilinear motion transition of a swimming droplet caused by the susceptibility to fluctuations. Phys. Rev. Lett. 127:088005
    [Google Scholar]
  91. Suematsu NJ, Mori Y, Amemiya T, Nakata S. 2016. Oscillation of speed of a self-propelled Belousov–Zhabotinsky droplet. J. Phys. Chem. Lett. 7:173424–28
    [Google Scholar]
  92. Suematsu NJ, Mori Y, Amemiya T, Nakata S. 2021. Spontaneous mode switching of self-propelled droplet motion induced by a clock reaction in the Belousov–Zhabotinsky medium. J. Phys. Chem. Lett. 12:317526–30
    [Google Scholar]
  93. Suematsu NJ, Saikusa K, Nagata T, Izumi S. 2019. Interfacial dynamics in the spontaneous motion of an aqueous droplet. Langmuir 35:3511601–7
    [Google Scholar]
  94. Suga M, Suda S, Ichikawa M, Kimura Y. 2018. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions. Phys. Rev. E 97:062703
    [Google Scholar]
  95. Thutupalli S, Geyer D, Singh R, Adhikari R, Stone HA. 2018. Flow-induced phase separation of active particles is controlled by boundary conditions. PNAS 115:215403–8
    [Google Scholar]
  96. Thutupalli S, Herminghaus S. 2013. Tuning active emulsion dynamics via surfactants and topology. Eur. Phys. J. E 36:91
    [Google Scholar]
  97. Thutupalli S, Seemann R, Herminghaus S. 2011. Swarming behavior of simple model squirmers. New J. Phys. 13:7073021
    [Google Scholar]
  98. Tomlinson C. 1862. II. On the motions of camphor on the surface of water. Proc. R. Soc. Lond. 11:575–77
    [Google Scholar]
  99. Toyota T, Maru N, Hanczyc MM, Ikegami T, Sugawara T. 2009. Self-propelled oil droplets consuming “fuel” surfactant. J. Am. Chem. Soc. 131:145012–13
    [Google Scholar]
  100. Toyota T, Tsuha H, Yamada K, Takakura K, Ikegami T, Sugawara T. 2006. Listeria-like motion of oil droplets. Chem. Lett. 35:7708–9
    [Google Scholar]
  101. Velarde MG, Rednikov AY, Ryazantsev YS. 1996. Drop motions and interfacial instability. J. Phys. Condens. Matter 8:479233–47
    [Google Scholar]
  102. Vilfan M, Potočnik A, Kavčič B, Osterman N, Poberaj I et al. 2009. Self-assembled artificial cilia. PNAS 107:51844–47
    [Google Scholar]
  103. Wang X, Zhang R, Mozaffari A, de Pablo JJ, Abbott NL. 2021. Active motion of multiphase oil droplets: emergent dynamics of squirmers with evolving internal structure. Soft Matter 17:102985–93
    [Google Scholar]
  104. Yabunaka S, Yoshinaga N. 2016. Collision between chemically driven self-propelled drops. J. Fluid Mech. 806:205–33
    [Google Scholar]
  105. Yamamoto T, Sano M. 2017. Chirality-induced helical self-propulsion of cholesteric liquid crystal droplets. Soft Matter 13:183328–33
    [Google Scholar]
  106. Yariv E. 2016. Wall-induced self-diffusiophoresis of active isotropic colloids. Phys. Rev. Fluids 1:032101
    [Google Scholar]
  107. Yariv E. 2017. Two-dimensional phoretic swimmers: the singular weak-advection limits. J. Fluid Mech. 816:R3
    [Google Scholar]
  108. Yariv E, Kaynan U. 2017. Phoretic drag reduction of chemically active homogeneous spheres under force fields and shear flows. Phys. Rev. Fluids 2:012201
    [Google Scholar]
  109. Yi Y, Sanchez L, Gao Y, Yu Y. 2016. Janus particles for biological imaging and sensing. Analyst 141:123526–39
    [Google Scholar]
  110. Yoshinaga N. 2014. Spontaneous motion and deformation of a self-propelled droplet. Phys. Rev. E 89:012913
    [Google Scholar]
  111. Yoshinaga N, Nagai KH, Sumino Y, Kitahata H. 2012. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. Phys. Rev. E 86:016108
    [Google Scholar]
  112. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE et al. 2009. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9:103663–67
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-012204
Loading
/content/journals/10.1146/annurev-fluid-120720-012204
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error