1932

Abstract

Rotation with thermally induced buoyancy governs many astrophysical and geophysical processes in the atmosphere, ocean, sun, and Earth's liquid-metal outer core. Rotating Rayleigh–Bénard convection (RRBC) is an experimental system that has features of rotation and buoyancy, where a container of height and temperature difference Δ between its bottom and top is rotated about its vertical axis with angular velocity Ω. The strength of buoyancy is reflected in the Rayleigh number (∼3Δ) and that of the Coriolis force in the Ekman and Rossby numbers (∼Ω−1). Rotation suppresses the convective onset, introduces instabilities, changes the velocity boundary layers, modifies the shape of thermal structures from plumes to vortical columns, affects the large-scale circulation, and can decrease or enhance global heat transport depending on buoyant and Coriolis forcing. RRBC is an extremely rich system, with features directly comparable to geophysical and astrophysical phenomena. Here we review RRBC studies, suggest a unifying heat transport scaling approach for the transition between rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss non-Oberbeck–Boussinesq and centrifugal effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-020446
2023-01-19
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-020446.html?itemId=/content/journals/10.1146/annurev-fluid-120720-020446&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre Guzmán AJ, Madonia M, Cheng JS, Ostilla-Mónico R, Clercx HJH, Kunnen RPJ. 2020. Competition between Ekman plumes and vortex condensates in rapidly rotating thermal convection. Phys. Rev. Lett. 125:21214501
    [Google Scholar]
  2. Aguirre Guzmán AJ, Madonia M, Cheng JS, Ostilla-Mónico R, Clercx HJH, Kunnen RPJ. 2021. Force balance in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 928:A16
    [Google Scholar]
  3. Aguirre Guzmán AJ, Madonia M, Cheng JS, Ostilla-Mónico R, Clercx HJH, Kunnen RPJ. 2022. Flow- and temperature-based statistics characterizing the regimes in rapidly rotating turbulent convection in simulations employing no-slip boundary conditions. Phys. Rev. Fluids 7:013501
    [Google Scholar]
  4. Ahlers G, Bodenschatz E, Hartmann R, He X, Lohse D et al. 2022. Aspect ratio dependence of heat transfer in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 128:084501
    [Google Scholar]
  5. Ahlers G, Funfschilling D, Bodenschatz E. 2009a. Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015. New J. Phys. 11:123001
    [Google Scholar]
  6. Ahlers G, Grossmann S, Lohse D. 2009b. Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81:503–37
    [Google Scholar]
  7. Aranson IS, Kramer L. 2002. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74:99–143
    [Google Scholar]
  8. Aurnou JM, Bertin V, Grannan AM, Horn S, Vogt T. 2018. Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns. J. Fluid Mech. 846:846–76
    [Google Scholar]
  9. Aurnou JM, Horn S, Julien K. 2020. Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Phys. Rev. Res. 2:4043115
    [Google Scholar]
  10. Aurnou JM, Olson P. 2001. Strong zonal winds generated by thermal convection in rotating spherical shells. Geophys. Res. Lett. 28:2557–59
    [Google Scholar]
  11. Bassom AP, Zhang K. 1994. Strongly nonlinear convection cells in a rapidly rotating fluid layer. Geophys. Astrophys. Fluid Dyn. 76:223–38
    [Google Scholar]
  12. Batchelor GK. 1967. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. Becker N, Scheel JD, Cross MC, Ahlers G. 2006. Effect of the centrifugal force on domain chaos in Rayleigh–Bénard convection. Phys. Rev. E 73:066309
    [Google Scholar]
  14. Boffetta G, Ecke RE. 2012. Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44:427–51
    [Google Scholar]
  15. Boubnov BM, Golitsyn GS. 1986. Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167:503–31
    [Google Scholar]
  16. Boubnov BM, Golitsyn GS. 1995. Convection in Rotating Fluids Dordrecht, Neth: Springer Sci. Bus. Media
    [Google Scholar]
  17. Bouillaut V, Miquel B, Julien K, Aumaître S, Gallet B. 2021. Experimental observation of the geostrophic turbulence regime of rapidly rotating convection. PNAS 118:e2105015118
    [Google Scholar]
  18. Boussinesq J. 1903. Théorie analytique de la chaleur Paris: Gauthier-Villars
    [Google Scholar]
  19. Buell JC, Catton I. 1983. The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below. J. Heat Transf. 105:255–60
    [Google Scholar]
  20. Busse FH. 2002. Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14:1301
    [Google Scholar]
  21. Canuto VM, Dubovikov MS. 1998. Two scaling regimes for rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 80:2281–84
    [Google Scholar]
  22. Chandrasekhar S. 1953. The instability of a layer of fluid heat below and subject to Coriolis forces. Proc. R. Soc. Lond. A 217:306–27
    [Google Scholar]
  23. Chandrasekhar S. 1961. Hydrodynamic and Hydromagnetic Stability Oxford: Clarendon Press
    [Google Scholar]
  24. Cheng JS, Aurnou JM, Julien K, Kunnen RPJ. 2018. A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112:277–300
    [Google Scholar]
  25. Cheng JS, Madonia M, Aguirre Guzmán AJ, Kunnen RPJ 2020. Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection. Phys. Rev. Fluids 5:11113501
    [Google Scholar]
  26. Cheng JS, Stellmach S, Ribeiro A, Grannan A, King EM, Aurnou JM. 2015. Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Int. 201:1–17
    [Google Scholar]
  27. Chong KL, Shi JQ, Ding SS, Ding GY, Lu HY et al. 2020. Vortices as Brownian particles in turbulent flows. Sci. Adv. 6:aaz1110
    [Google Scholar]
  28. Chong KL, Yang Y, Huang SD, Zhong JQ, Stevens RJAM et al. 2017. Confined Rayleigh–Bénard, rotating Rayleigh–Bénard, and double diffusive convection: a unifying view on turbulent transport enhancement through coherent structure manipulation. Phys. Rev. Lett. 119:6064501
    [Google Scholar]
  29. Cioni S, Ciliberto S, Sommeria J. 1997. Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335:111–40
    [Google Scholar]
  30. Cox SM, Matthews PC. 2000. Instability of rotating convection. J. Fluid Mech. 403:153–72
    [Google Scholar]
  31. Cross MC, Meiron D, Tu Y 1994. Chaotic domains: a numerical investigation. Chaos 4:607–19
    [Google Scholar]
  32. Dawes J. 2001. Rapidly rotating thermal convection at low Prandtl number. J. Fluid Mech. 428:61–80
    [Google Scholar]
  33. de Wit XM, Aguirre Guzmán AJ, Madonia M, Cheng JS, Clercx HJH, Kunnen RPJ 2020. Turbulent rotating convection confined in a slender cylinder: the sidewall circulation. Phys. Rev. Fluids 5:2023502
    [Google Scholar]
  34. de Wit XM, Aguirre Guzmán AJ, Madonia M, Cheng JS, Clercx HJH, Kunnen RPJ 2022. Discontinuous transitions towards vortex condensates in buoyancy-driven rotating turbulence. J. Fluid Mech. 963:A43
    [Google Scholar]
  35. Ding SS, Chong KL, Shi JQ, Ding GY, Lu HY et al. 2021. Inverse centrifugal effect induced by collective motion of vortices in rotating thermal convection. Nat. Commun. 12:5585
    [Google Scholar]
  36. Ding SS, Li HM, Yan WD, Zhong JQ. 2019. Temperature fluctuations relevant to thermal-plume dynamics in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 4:023501
    [Google Scholar]
  37. Ecke RE. 2015. Scaling of heat transport near onset in rapidly rotating convection. Phys. Lett. A 379:2221–23
    [Google Scholar]
  38. Ecke RE, Niemela JJ. 2014. Heat transport in the geostrophic regime of rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 113:114301
    [Google Scholar]
  39. Ecke RE, Zhang X, Shishkina O. 2022. Connecting wall modes and boundary zonal flows in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 7:L011501
    [Google Scholar]
  40. Ecke RE, Zhong F, Knobloch E. 1992. Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19:3177–82
    [Google Scholar]
  41. Favier B, Guervilly C, Knobloch E. 2019. Subcritical turbulent condensate in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 864:R1
    [Google Scholar]
  42. Favier B, Knobloch E. 2020. Robust wall states in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 895:R1
    [Google Scholar]
  43. Favier B, Silvers LJ, Proctor MRE. 2014. Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26:096605
    [Google Scholar]
  44. Fernando HJS, Chen RR, Boyer DL. 1991. Effects of rotation on convective turbulence. J. Fluid Mech. 228:513–47
    [Google Scholar]
  45. Fischer PF. 1997. An overlapping Schwartz method for spectral element solutions of the incompressible Navier-Stokes equations. J. Comput. Phys. 133:84–101
    [Google Scholar]
  46. Funfschilling D, Ahlers G. 2004. Plume motion and large-scale dynamics in a cylindrical Rayleigh–Bénard cell. Phy. Rev. Lett. 92:194502
    [Google Scholar]
  47. Gastine T, Wicht J, Aubert J 2016. Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808:690–732
    [Google Scholar]
  48. Glatzmaier GA. 2014. Introduction to Modeling Convection in Planets and Stars: Magnetic Field, Density Stratification, Rotation Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  49. Goldstein HF, Knobloch E, Mercader I, Net M. 1993. Convection in a rotating cylinder. Part 1 Linear theory for moderate Prandtl numbers. J. Fluid Mech. 248:583–604
    [Google Scholar]
  50. Grannan AM, Cheng JS, Aggarwal A, Hawkins EK, Xu Y et al. 2022. Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection. J. Fluid Mech. 939:R1
    [Google Scholar]
  51. Gray DD, Giorgini A. 1976. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19:545–51
    [Google Scholar]
  52. Greenspan HP. 1968. The Theory of Rotating Fluids Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  53. Grooms I, Julien K, Weiss JB, Knobloch E. 2010. Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104:22224501
    [Google Scholar]
  54. Grooms I, Whitehead J. 2014. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection. Nonlinearity 28:29–41
    [Google Scholar]
  55. Grossmann S, Lohse D. 2000. Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407:27–56
    [Google Scholar]
  56. Grossmann S, Lohse D. 2001. Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86:3316–19
    [Google Scholar]
  57. Guervilly C, Cardin P. 2016. Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model. J. Fluid Mech. 808:61–89
    [Google Scholar]
  58. Guervilly C, Hughes DW. 2017. Jets and large-scale vortices in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 2:11113503
    [Google Scholar]
  59. Guervilly C, Hughes DW, Jones C. 2014. Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758:407–35
    [Google Scholar]
  60. Hart JE. 2000. On the influence of centrifugal buoyancy on rotating convection. J. Fluid Mech. 403:133–51
    [Google Scholar]
  61. Hart JE, Kittelman S, Ohlsen DR. 2002. Mean flow precession and temperature probability density functions in turbulent rotating convection. Phys. Fluids 14:955
    [Google Scholar]
  62. Hart JE, Ohlsen DR. 1999. On the thermal offset in turbulent rotating convection. Phys. Fluids 11:2101–7
    [Google Scholar]
  63. Hartmann R, Verzicco R, Kranenbarg LK, Lohse D, Stevens RJAM. 2022. Multiple heat transport maxima in confined rotating Rayleigh–Bénard convection. J. Fluid Mech. 939:A1
    [Google Scholar]
  64. Heard WB, Veronis G. 1971. Asymptotic treatment of the stability of a rotating layer of fluid with rigid boundaries. Geophys. Fluid Dyn. 2:299–316
    [Google Scholar]
  65. Herrmann J, Busse FH. 1993. Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech. 255:183–94
    [Google Scholar]
  66. Homsy G, Hudson J. 1971. Centrifugal convection and its effect on the asymptotic stability of a bounded rotating fluid heated from below. J. Fluid Mech. 48:605–24
    [Google Scholar]
  67. Horn S, Aurnou JM. 2018. Regimes of Coriolis-centrifugal convection. Phys. Rev. Lett. 120:204502
    [Google Scholar]
  68. Horn S, Aurnou JM. 2019. Rotating convection with centrifugal buoyancy: numerical predictions for laboratory experiments. Phys. Rev. Fluids 4:073501
    [Google Scholar]
  69. Horn S, Aurnou JM. 2021. Tornado-like vortices in the quasi-cyclostrophic regime of Coriolis-centrifugal convection. J. Turbulence 22:297–324
    [Google Scholar]
  70. Horn S, Schmid PJ. 2017. Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection. J. Fluid Mech. 831:182–211
    [Google Scholar]
  71. Horn S, Shishkina O. 2014. Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. Phys. Fluids 26:055111
    [Google Scholar]
  72. Horn S, Shishkina O. 2015. Toroidal and poloidal energy in rotating Rayleigh–Bénard convection. J. Fluid Mech. 762:232–55
    [Google Scholar]
  73. Hu Y, Ecke R, Ahlers G 1995. Time and length scales in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 74:255040–43
    [Google Scholar]
  74. Hu Y, Pesch W, Ahlers G, Ecke R. 1998. Convection under rotation for Prandtl numbers near 1: Küppers–Lortz instability. Phys. Rev. E 58:55821–33
    [Google Scholar]
  75. Hu YB, Huang SD, Xie YC, Xia KQ. 2021. Centrifugal-force-induced flow bifurcations in turbulent thermal convection. Phys. Rev. Lett. 127:244501
    [Google Scholar]
  76. Hu YB, Xie YC, Xia KQ. 2022. On the centrifugal effect in turbulent rotating thermal convection: inset and heat transport. J. Fluid Mech. 938:R1
    [Google Scholar]
  77. Julien K, Aurnou JM, Calkins MA, Knobloch E, Marti P et al. 2016. A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798:50–87
    [Google Scholar]
  78. Julien K, Knobloch E, Plumley M. 2018. Impact of domain anisotropy on the inverse cascade in geostrophic turbulent convection. J. Fluid Mech. 837:R4
    [Google Scholar]
  79. Julien K, Knobloch E, Rubio AM, Vasil GM. 2012a. Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109:254503
    [Google Scholar]
  80. Julien K, Legg S, McWilliams J, Werne J. 1996. Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322:243–73
    [Google Scholar]
  81. Julien K, Rubio AM, Grooms I, Knobloch E. 2012b. Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106:4–5392–428
    [Google Scholar]
  82. Kaplan EJ, Schaeffer N, Vidal J, Cardin P. 2017. Subcritical thermal convection of liquid metals in a rapidly rotating sphere. Phys. Rev. Lett. 119:094501
    [Google Scholar]
  83. King EM, Aurnou JM. 2012. Thermal evidence for Taylor columns in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 85:016313
    [Google Scholar]
  84. King EM, Aurnou JM. 2013. Turbulent convection in liquid metal with and without rotation. PNAS 110:6688–93
    [Google Scholar]
  85. King EM, Stellmach S, Aurnou JM. 2012. Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691:568–82
    [Google Scholar]
  86. King EM, Stellmach S, Buffett B. 2013. Scaling behaviour in Rayleigh–Bénard convection with and without rotation. J. Fluid Mech. 717:449–71
    [Google Scholar]
  87. King EM, Stellmach S, Noir J, Hansen U, Aurnou JM. 2009. Boundary layer control of rotating convection systems. Nature 457:301–4
    [Google Scholar]
  88. Knobloch E. 1998. Rotating convection: recent developments. Int. J Eng. Sci. 36:12–1430
    [Google Scholar]
  89. Kooij GL, Botchev MA, Frederix EM, Geurts BJ, Horn S et al. 2018. Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection. Comput. Fluids 166:1–8
    [Google Scholar]
  90. Kraichnan R. 1962. Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5:1374–89
    [Google Scholar]
  91. Kunnen RPJ. 2021. The geostrophic regime of rapidly rotating turbulent convection. J. Turbulence 22:4–5267–96
    [Google Scholar]
  92. Kunnen RPJ, Clercx HJH, Geurts BJ. 2008. Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84:24001
    [Google Scholar]
  93. Kunnen RPJ, Clercx HJH, van Heijst GF. 2013. The structure of sidewall boundary layers in confined rotating Rayleigh–Bénard convection. J. Fluid Mech. 727:509–32
    [Google Scholar]
  94. Kunnen RPJ, Geurts BJ, Clercx HJH. 2009. Turbulence statistics and energy budget in rotating Rayleigh-Bénard convection. Eur. J. Mech. B/Fluids 28:579–89
    [Google Scholar]
  95. Kunnen RPJ, Geurts BJ, Clercx HJH. 2010a. Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642:445–76
    [Google Scholar]
  96. Kunnen RPJ, Geurts BJ, Clercx HJH. 2010b. Vortex statistics in turbulent rotating convection. Phys. Rev. E 82:036306
    [Google Scholar]
  97. Kunnen RPJ, Ostilla-Mónico R, der Poel EV, Verzicco R, Lohse D. 2016. Transition to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799:413–32
    [Google Scholar]
  98. Kunnen RPJ, Stevens RJAM, Overkamp J, Sun C, van Heijst GF, Clercx HJH. 2011. The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 688:422–42
    [Google Scholar]
  99. Kuo EY, Cross MC. 1993. Traveling-wave wall states in rotating Rayleigh–Bénard convection. Phys. Rev. E 47:R2245–R2248
    [Google Scholar]
  100. Küppers G, Lortz D. 1969. Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35:3609–20
    [Google Scholar]
  101. Liu Y, Ecke RE. 1997. Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79:2257
    [Google Scholar]
  102. Liu Y, Ecke RE. 2009. Heat transport measurements in turbulent Rayleigh–Bénard convection. Phys. Rev. E 80:036314
    [Google Scholar]
  103. Liu Y, Ecke RE. 2011. Local temperature measurements in turbulent Rayleigh–Bénard convection. Phys. Rev. E 84:016311
    [Google Scholar]
  104. Long R, Mound J, Davies C, Tobias S 2020. Scaling behaviour in spherical shell rotating convection with fixed-flux thermal boundary conditions. J. Fluid Mech. 889:A7
    [Google Scholar]
  105. Lopez JM, Marques F. 2009. Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid Mech. 628:269–97
    [Google Scholar]
  106. Lu HY, Ding GY, Shi JQ, Xia KQ, Zhong JQ. 2021. Heat-transport scaling and transition in geostrophic rotating convection with varying aspect ratio. Phys. Rev. Fluids 6:7L071501
    [Google Scholar]
  107. Lucas PGJ, Pfotenhauer JM, Donnelly RJ. 1983. Stability and heat transfer of rotating cryogens. Part 1. Influence of rotation on the onset of convection in liquid 4He. J. Fluid Mech. 129:251–64
    [Google Scholar]
  108. Maffei S, Krouss M, Julien K, Calkins M. 2021. On the inverse cascade and flow speed scaling behaviour in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 913:A18
    [Google Scholar]
  109. Malkus MVR. 1954. The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225:196–212
    [Google Scholar]
  110. Marques F, Mercader I, Batiste O, Lopez JM. 2007. Centrifugal effects in rotating convection: axisymmetric states and three-dimensional instabilities. J. Fluid Mech. 580:303–18
    [Google Scholar]
  111. Nakagawa Y, Frenzen P. 1955. A theoretical and experimental study of cellular convection in rotating fluids. Tellus 7:2–21
    [Google Scholar]
  112. Niemela JJ, Babuin S, Sreenivasan KR. 2010. Turbulent rotating convection at high Rayleigh and Taylor numbers. J. Fluid Mech. 649:509–22
    [Google Scholar]
  113. Niemela JJ, Skrbek L, Sreenivasan KR, Donnelly RJ. 2000. Turbulent convection at very high Rayleigh numbers. Nature 404:837–41
    [Google Scholar]
  114. Nieves D, Rubio AM, Julien K. 2014. Statistical classification of flow morphology in rapidly rotating Rayleigh–Bénard convection. Phys. Fluids 26:086602
    [Google Scholar]
  115. Niiler PP, Bisshopp FE. 1965. On the influence of Coriolis force on onset of thermal convection. J. Fluid Mech. 22:4753–61
    [Google Scholar]
  116. Ning L, Ecke R. 1993. Rotating Rayleigh–Bénard convection: aspect-ratio dependence of the initial bifurcations. Phys. Rev. E 47:53326–33
    [Google Scholar]
  117. Noto D, Tasaka Y, Yanagisawa T, Murai Y. 2019. Horizontal diffusive motion of columnar vortices in rotating Rayleigh–Bénard convection. J. Fluid Mech. 871:401–26
    [Google Scholar]
  118. Oberbeck A. 1879. Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen in Folge von Temperaturdifferenzen. Ann. Phys. 243:6271–92
    [Google Scholar]
  119. Pedlosky J. 1987. Geophysical Fluid Dynamics New York: Springer-Verlag. , 2nd ed..
    [Google Scholar]
  120. Pfotenhauer JM, Niemela JJ, Donnelly RJ. 1987. Stability and heat transfer of rotating cryogens. Part 3. Effects of finite cylindrical geometry and rotation on the onset of convection. J. Fluid Mech. 175:85–96
    [Google Scholar]
  121. Plumley M, Julien K. 2019. Scaling laws in Rayleigh–Bénard convection. Earth Space Sci. 6:91580–92
    [Google Scholar]
  122. Plumley M, Julien K, Marti P, Stellmach S. 2016. The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803:51–71
    [Google Scholar]
  123. Plumley M, Julien K, Marti P, Stellmach S. 2017. Sensitivity of rapidly rotating Rayleigh–Bénard convection to Ekman pumping. Phys. Rev. Fluids 2:094801
    [Google Scholar]
  124. Priestley CHB. 1959. Turbulent Transfer in the Lower Atmosphere Chicago: Univ. Chicago Press
    [Google Scholar]
  125. Proudman J. 1916. On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92:408–24
    [Google Scholar]
  126. Rajaei H, Joshi P, Alards KMJ, Kunnen RPJ, Toschi F, Clercx HJH. 2016. Transitions in turbulent rotating convection: a Lagrangian perspective. Phys. Rev. E 93:4043129
    [Google Scholar]
  127. Rajaei H, Kunnen RPJ, Clercx HJH. 2017. Exploring the geostrophic regime of rapidly rotating convection with experiments. Phys. Fluids 29:045105
    [Google Scholar]
  128. Rossby TH. 1969. A study of Bénard convection with and without rotation. J. Fluid Mech. 36:309–35
    [Google Scholar]
  129. Rubio AM, Julien K, Knobloch E, Weiss JB. 2014. Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112:14144501
    [Google Scholar]
  130. Sakai S. 1997. The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333:85–95
    [Google Scholar]
  131. Scheel JD. 2007. The amplitude equation for rotating Rayleigh–Bénard convection. Phys. Fluids 19:104105
    [Google Scholar]
  132. Scheel JD, Mutyaba PL, Kimmel T. 2010. Patterns in rotating Rayleigh–Bénard convection at high rotation rates. J. Fluid Mech. 659:24–42
    [Google Scholar]
  133. Scheel JD, Paul MR, Cross MC, Fischer P. 2003. Traveling waves in rotating Rayleigh–Bénard convection: analysis of modes and mean flow. Phys. Rev. E 68:6066216
    [Google Scholar]
  134. Schmitz S, Tilgner A. 2009. Heat transport in rotating convection without Ekman layers. Phys. Rev. E 80:1015305
    [Google Scholar]
  135. Schmitz S, Tilgner A. 2010. Transitions in turbulent rotating Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 104:481–89
    [Google Scholar]
  136. Shi JQ, Lu HY, Ding SS, Zhong JQ. 2020. Fine vortex structure and flow transition to the geostrophic regime in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 5:011501(R)
    [Google Scholar]
  137. Shishkina O. 2020. Tenacious wall states in thermal convection in rapidly rotating containers. J. Fluid Mech. 898:F1
    [Google Scholar]
  138. Shishkina O. 2021. Rayleigh–Bénard convection: the container shape matters. Phys. Rev. Fluids 6:090502
    [Google Scholar]
  139. Shishkina O, Horn S, Wagner S. 2013. Falkner-Skan boundary layer approximation in Rayleigh–Bénard convection. J. Fluid Mech. 730:442–63
    [Google Scholar]
  140. Shishkina O, Horn S, Wagner S, Ching ESC 2015. Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114:114302
    [Google Scholar]
  141. Shishkina O, Stevens RJAM, Grossmann S, Lohse D. 2010. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12:075022
    [Google Scholar]
  142. Shishkina O, Wagner S, Horn S. 2014. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection. Phys. Rev. E 89:033014
    [Google Scholar]
  143. Spiegel EA. 1971. Convection in stars I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9:323–52
    [Google Scholar]
  144. Spiegel EA, Veronis G. 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131:442–47
    [Google Scholar]
  145. Sprague M, Julien K, Knobloch E, Werne J. 2006. Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551:141–74
    [Google Scholar]
  146. Stellmach S, Hansen U. 2008. An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers. Geochem. Geophys. Geosyst. 9:5Q05003
    [Google Scholar]
  147. Stellmach S, Lischper M, Julien K, Vasil G, Cheng JS et al. 2014. Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113:25254501
    [Google Scholar]
  148. Stevens RJAM, Clercx HJH, Lohse D. 2010a. Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Phys. Fluids 22:085103
    [Google Scholar]
  149. Stevens RJAM, Clercx HJH, Lohse D. 2010b. Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection. New J. Phys. 12:075005
    [Google Scholar]
  150. Stevens RJAM, Clercx HJH, Lohse D. 2012. Breakdown of the large-scale wind in aspect ratio Γ = 1/2 rotating Rayleigh–Bénard flow. Phys. Rev. E 86:056311
    [Google Scholar]
  151. Stevens RJAM, Clercx HJH, Lohse D. 2013. Heat transport and flow structure in rotating Rayleigh–Bénard convection. Eur. J. Mech. B 40:41–49
    [Google Scholar]
  152. Stevens RJAM, Overkamp J, Lohse D, Clercx HJH. 2011. Effect of aspect-ratio on vortex distribution and heat transfer in rotating Rayleigh–Bénard convection. Phys. Rev. E 84:056313
    [Google Scholar]
  153. Stevens RJAM, Zhong JQ, Clercx HJH, Ahlers G, Lohse D. 2009. Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103:024503
    [Google Scholar]
  154. Stewartson K. 1957. On almost rigid rotation. J. Fluid Mech. 3:17–26
    [Google Scholar]
  155. Taylor GI. 1921. Experiments with rotating fluids. Proc. R. Soc. Lond. A 100:114–21
    [Google Scholar]
  156. Tilgner A. 2022. Bounds for rotating Rayleigh–Bénard convection at large Prandtl number. J. Fluid Mech. 930:A33
    [Google Scholar]
  157. van Saarloos W, Hohenberg PC. 1992. Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations. Physica D 56:303–67
    [Google Scholar]
  158. Veronis G. 1959. Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech. 5:401–35
    [Google Scholar]
  159. Veronis G. 1962. The magnitude of the dissipation terms in the Boussinesq approximation. Astrophys. J. 135:655–56
    [Google Scholar]
  160. Verzicco R, Camussi R. 2003. Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477:19–49
    [Google Scholar]
  161. Vogt T, Horn S, Aurnou JM. 2021. Oscillatory thermal–inertial flows in liquid metal rotating convection. J. Fluid Mech. 911:A5
    [Google Scholar]
  162. Vorobieff P, Ecke RE. 2002. Turbulent rotating convection: an experimental study. J. Fluid Mech. 458:191–218
    [Google Scholar]
  163. Wagner S, Shishkina O, Wagner C. 2012. Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J. Fluid Mech. 697:336–66
    [Google Scholar]
  164. Wang G, Santelli L, Lohse D, Verzicco R, Stevens RJAM. 2021. Diffusion-free scaling in rotating spherical Rayleigh–Bénard convection. Geophys. Res. Lett. 48:20e2021GL095017
    [Google Scholar]
  165. Wedi M, van Gils DP, Weiss S, Bodenschatz E. 2021. Rotating turbulent thermal convection at very large Rayleigh numbers. J. Fluid Mech. 912:A30
    [Google Scholar]
  166. Wei P, Weiss S, Ahlers G. 2015. Multiple transitions in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114:114506
    [Google Scholar]
  167. Weiss S, Ahlers G. 2011a. Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio. J. Fluid Mech. 684:407–26
    [Google Scholar]
  168. Weiss S, Ahlers G. 2011b. The large-scale flow structure in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 688:461–92
    [Google Scholar]
  169. Weiss S, Ahlers G. 2011c. Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio Γ = 0.50 and Prandtl number Pr = 4.38. J. Fluid Mech. 676:5–40
    [Google Scholar]
  170. Weiss S, He X, Ahlers G, Bodenschatz E, Shishkina O. 2018. Bulk temperature and heat transport in turbulent Rayleigh–Bénard convection of fluids with temperature-dependent properties. J. Fluid Mech. 851:374–90
    [Google Scholar]
  171. Weiss S, Stevens RJAM, Zhong JQ, Clercx HJH, Lohse D, Ahlers G. 2010. Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 105:224501
    [Google Scholar]
  172. Weiss S, Wei P, Ahlers G. 2016. Heat-transport enhancement in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. E 93:4043102
    [Google Scholar]
  173. Willoughby HE. 1990. Gradient balance in tropical cyclones. J. Atmos. Sci. 47:265–74
    [Google Scholar]
  174. Xi HD, Lam S, Xia KQ. 2004. From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid. Mech. 503:47–56
    [Google Scholar]
  175. Xi HD, Zhou Q, Xia KQ. 2006. Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73:056312
    [Google Scholar]
  176. Yang Y, Verzicco R, Lohse D, Stevens RJAM. 2020. What rotation rate maximizes heat transport in rotating Rayleigh–Bénard convection with Prandtl number larger than one?. Phys. Rev. Fluids 5:5053501
    [Google Scholar]
  177. Zhang K, Roberts PH. 1997. Thermal inertial waves in a rotating fluid layer: exact and asymptotic solutions. Phys. Fluids 9:1980–87
    [Google Scholar]
  178. Zhang X, Ecke RE, Shishkina O. 2021. Boundary zonal flows in rapidly rotating turbulent thermal convection. J. Fluid Mech. 915:A62
    [Google Scholar]
  179. Zhang X, van Gils DPM, Horn S, Wedi M, Zwirner L et al. 2020. Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124:084505
    [Google Scholar]
  180. Zhong F, Ecke R, Steinberg V. 1991. Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection. Phys. Rev. Lett. 67:182473–76
    [Google Scholar]
  181. Zhong F, Ecke R, Steinberg V. 1993. Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249:135–59
    [Google Scholar]
  182. Zhong JQ, Ahlers G. 2010. Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 665:300–33
    [Google Scholar]
  183. Zhong JQ, Stevens RJAM, Clercx HJH, Verzicco R, Lohse D, Ahlers G. 2009. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102:044502
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-020446
Loading
/content/journals/10.1146/annurev-fluid-120720-020446
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error