1932

Abstract

Immersed boundary methods (IBMs) are versatile and efficient computational techniques to solve flow problems in complex geometric configurations that retain the simplicity and efficiency of Cartesian structured meshes. Although these methods became known in the 1970s and gained credibility only in the new millennium, they had already been conceived and implemented at the beginning of the 1960s, even if the early computers of those times did not allow researchers to exploit their potential. Nowadays IBMs are established numerical schemes employed for the solution of many complex problems in which fluid mechanics may account for only part of the multiphysics dynamics. Despite the indisputable advantages, these methods also have drawbacks, and each problem should be carefully analyzed before deciding which particular IBM implementation is most suitable and whether additional modeling is necessary. High–Reynolds number flows constitute one of the main limitations of IBMs owing to the resolution of thin wall shear layers, which cannot benefit from anisotropic grid refinement at the boundaries. To alleviate this weakness, researchers have developed IBM-compliant wall models and local grid refinement strategies, although in these cases possible pitfalls must also be considered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-022129
2023-01-19
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-022129.html?itemId=/content/journals/10.1146/annurev-fluid-120720-022129&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlers G, Funfshilling D, Bodenschatz E. 2009. Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015. New J. Phys. 13:049401
    [Google Scholar]
  2. Alkhateeb O, Tsukerman I. 2013. A boundary difference method for electromagnetic scattering problems with perfect conductors and corners. IEEE Trans. Antennas Propag. 61:5117–26
    [Google Scholar]
  3. Andreykiv A, Rixen DJ. 2009. Numerical modelling of electromechanical coupling using fictitious domain and level set methods. Int. J. Numer. Methods Eng. 80:478–506
    [Google Scholar]
  4. Angot P, Bruneau CH, Fabrie P. 1999. A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81:497–520
    [Google Scholar]
  5. Antepara P, Lehmkuhl O, Chiva J, Borrell R. 2013. Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re = 22000. Proc. Eng. 61:246–50
    [Google Scholar]
  6. Aström KJ, Murray RM. 2010. Feedback Systems: An Introduction for Scientists and Engineers Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  7. Balaras E, Benocci C, Piomelli U. 1996. Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34:1111–19
    [Google Scholar]
  8. Bao L, Spandan V, Yang Y, Dyett B, Verzicco R et al. 2018. Flow-induced dissolution of femtoliter surface droplet arrays. Lab Chip 18:71066–74
    [Google Scholar]
  9. Bernardini M, Modesti D, Pirozzoli S. 2016. On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows. Comput. Fluids 130:84–93
    [Google Scholar]
  10. Blais B, Ilinca F. 2018. Development and validation of a stabilized immersed boundary CFD model for freezing and melting with natural convection. Comput. Fluids 172:564–81
    [Google Scholar]
  11. Blake WK. 1975. Statistical description of pressure and velocity fields of the trailing edge of a flat structure Tech. Rep. 4241 David Taylor Naval Ship Res. Dev. Cent. Bethesda, MD:
    [Google Scholar]
  12. Borazjani I, Ge L, Sotiropulos F. 2008. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227:7587–620
    [Google Scholar]
  13. Bose ST, Park GI. 2018. Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50:535–61
    [Google Scholar]
  14. Breugen WP. 2012. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231:4469–98
    [Google Scholar]
  15. Cai SG, Degrigny J, Boussuge JF, Sagaut P. 2021. Coupling of turbulence wall models and immersed boundaries on Cartesian grids. J. Comput. Phys. 429:109995
    [Google Scholar]
  16. Capizzano F. 2011. Turbulent wall model for immersed boundary methods. AIAA J. 49:112367–81
    [Google Scholar]
  17. Capizzano F, Iuliano E. 2014. A Eulerian method for water droplet impingement by means of an immersed boundary technique. J. Fluids Eng. 136:4040906
    [Google Scholar]
  18. Chapman DR. 1979. Computational aerodynamics development and outlook. AIAA J. 17:1279–0129R
    [Google Scholar]
  19. Chaudhuri A, Hadjadj A, Chinnayya A. 2011. On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230:51731–48
    [Google Scholar]
  20. Chen ZL, Hickel S, Devesa A, Berland J, Adams NA. 2014. Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28:1–21
    [Google Scholar]
  21. Choi H, Moin P. 2012. Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Phys. Fluids 24:011702
    [Google Scholar]
  22. Chung MH. 2006. Cartesian cut cell approach for simulating incompressible incompressible flows with rigid bodies of arbitrary shape. Comput. Fluids 35:607–23
    [Google Scholar]
  23. Costa P, Boersma BJ, Westerweel J, Breugem WP. 2015. Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92:053012
    [Google Scholar]
  24. Cristallo A, Verzicco R. 2006. Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flows Turbul. Combust. 77:3–26
    [Google Scholar]
  25. Das S, Panda A, Deen NG, Kuipers JAM. 2018. A sharp-interface immersed boundary method to simulate convective and conjugate heat transfer through highly complex periodic porous structures. Chem. Eng. Sci. 191:1–18
    [Google Scholar]
  26. de Tullio MD, De Palma P, Iaccarino G, Pascazio G, Napolitano M. 2007. An immersed boundary method for compressible flows using local grid refinement. J. Comput. Phys. 181:2098–117
    [Google Scholar]
  27. Dhamankar NS, Blaisdell GA, Lyrintzis AS. 2016. Implementation of a wall-modeled sharp immersed boundary method in a high-order large eddy simulation tool for jet aeroacoustics Paper presented at 54th AIAA Aerospace Sciences Meeting San Diego, CA: AIAA Pap 2016–0257
    [Google Scholar]
  28. Dihn QV, Glowinski R, He J, Kwock V, Pan TW, Periaux J 1992. Lagrange multiplier approach to fictitious domain methods: application to fluid dynamics and electromagnetics. Proceedings of the Fifth International Symposium on Domain Decomposition Methods for PDE DE Keyes, TF Chan, G Meurant, JS Scroggs, RG Voigt 151–94 Philadelphia: SIAM
    [Google Scholar]
  29. Dorodnitsyn A, Meller NA. 1971. Application of the small parameters method to the solution of the Navier–Stokes equations. Proceedings of the Second All-Republic Conference on Hydromechanics, Heat and Mass Transfer Kiev: Kiev State Univ. Press
    [Google Scholar]
  30. Durbin PA, Iaccarino G. 2002. An approach to local refinement of structured grids. J. Comput. Phys. 181:639–53
    [Google Scholar]
  31. Evans M, Harlow FH. 1957. The particle in cell method for hydrodynamic calculations Tech. Rep. 2139, Los Alamos Sci. Lab. Los Alamos, NM:
    [Google Scholar]
  32. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 123:35–60
    [Google Scholar]
  33. Favier J, Revell A, Pinelli A. 2014. A lattice Boltzmann–immersed boundary method to simulate the fluid interaction with moving and slender flexible objects. J. Comput. Phys. 261:145–61
    [Google Scholar]
  34. Gatski T, Bonnet J. 2013. Compressibility, Turbulence and High Speed Flow Oxford: Academic. , 2nd ed..
    [Google Scholar]
  35. Gentry RA, Martin RE, Daly BJ. 1966. An Eulerian differencing method for unsteady compressible flow problems. J. Comput. Phys. 1:87–118
    [Google Scholar]
  36. Gobal K, Grandhi R. 2017. High-fidelity aerodynamic shape optimization using immersed boundary method Paper presented at 35th AIAA Applied Aerodynamics Conference Denver: AIAA Pap 2017–4364
    [Google Scholar]
  37. Goldstein D, Handler R, Sirovich L. 1993. Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105:354–66
    [Google Scholar]
  38. Goldstine H. 1980. The Computer from Pascal to von Neumann Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  39. Goza D, Colonius T. 2017. A strongly-coupled immersed-boundary formulation for thin elastic structures. J. Comput. Phys. 336:401–11
    [Google Scholar]
  40. Griffith BE, Patankar NA. 2020. Immersed methods for fluid–structure interaction. Annu. Rev. Fluid Mech. 52:421–48
    [Google Scholar]
  41. Harlow FH. 1957. Hydrodynamic problems involving large fluid distortions. J. Assoc. Comput. Mach. 4:137–42
    [Google Scholar]
  42. Huang DZ, Avery P, Farhat C 2020. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing Paper presented at AIAA SciTech 2020 Forum Orlando, FL: AIAA Pap 2020–0313
    [Google Scholar]
  43. Huang JM, Shelley MJ, Stein DB. 2021. A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the immersed boundary smooth extension method. J. Comput. Phys. 432:110162
    [Google Scholar]
  44. Iaccarino G, Ham F. 2005. Automatic mesh generation for LES in complex geometries. Annual Research Briefs 200519–30 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  45. Iaccarino G, Moreau S. 2006. Natural and forced conjugate heat transfer in complex geometries on Cartesian adapted grids. J. Fluids Eng. 128:4838–46
    [Google Scholar]
  46. Iaccarino G, Verzicco R. 2003. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 52:421–48
    [Google Scholar]
  47. Jenkins N, Maute K. 2016. An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems. Struct. Multidisc. Optim. 54:1191–208
    [Google Scholar]
  48. Jindal S, Khalighi B, Iaccarino G. 2005. Numerical investigation of road vehicle aerodynamics using the immersed boundary RANS approach Tech. Pap. 2005-01-0546 SAE Int. Warrendale, PA:
    [Google Scholar]
  49. Kalitzin G, Iaccarino G, Khalighi B. 2003. Towards an immersed boundary solver for RANS simulations Paper presented at 41st Aerospace Sciences Meeting and Exhibit Reno, NV: AIAA Pap. 2003-0770
    [Google Scholar]
  50. Kang S. 2015. An improved near-wall modeling for large-eddy simulation using immersed boundary methods. Int. J. Numer. Methods Fluids 78:76–88
    [Google Scholar]
  51. Kang S, Iaccarino G, Moin P. 2009. Accurate immersed-boundary reconstructions for viscous flow simulations. AIAA J. 47:71750–60
    [Google Scholar]
  52. Kempe T, Frölich J. 2012. An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231:3663–84
    [Google Scholar]
  53. Kempe T, Vowinckel B, Frölich J. 2014. On the relevance of collision modeling for interface-resolving simulations of sediment transport in open channel flow. Int. J. Multiphase Flows 58:214–35
    [Google Scholar]
  54. Khalighi B, Zhang S, Koromilas C, Balkanyi S, Bernal L et al. 2001. Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device Tech. Pap. 2001-01B-207 SAE Int. Warrendale, PA:
    [Google Scholar]
  55. Kim J, Kim D, Choi H. 2001. An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171:132–50
    [Google Scholar]
  56. Kuznetsov YA 2001. Domain decomposition and fictitious domain methods with distributed Lagrange multipliers. Proceedings of the Thirteenth International Conference on Domain Decomposition Methods N Debit, M Garbey, R Hoppe, J Periaux, D Keyes, Y Kuznetsov 67–75 Barcelona: CIMNE
    [Google Scholar]
  57. Lahooti M, Kim D. 2017. Multi-body interaction effect on the energy harvesting performance of a flapping hydrofoil. Renew. Energy 130:460–73
    [Google Scholar]
  58. Lapka P, Furmański P. 2017. Immersed boundary method for radiative heat transfer problems in nongray media with complex internal and external boundaries. J. Heat Transf. 139:2022702
    [Google Scholar]
  59. Larsson J, Kawai S, Bodart J, Bermejo-Moreno I. 2016. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3:100418
    [Google Scholar]
  60. Lačis U, Taira K, Bagheri S. 2016. A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method. J. Comput. Phys. 305:300–18
    [Google Scholar]
  61. Lavoie P, Radenac E, Blanchard G, Laurendeau E, Villedieu P. 2021. Penalization method for Eulerian droplet impingement simulations toward icing applications. AIAA J. 60:2641–53
    [Google Scholar]
  62. Lavoie P, Radenac E, Blanchard G, Laurendeau E, Villedieu P. 2022. Immersed boundary methodology for multistep ice accretion using a level set. J. Aircr. 59:491226
    [Google Scholar]
  63. Leonardi S, Orlandi P, Smalley RJ, Djenidi L, Antonia R 2003. Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491:229–38
    [Google Scholar]
  64. Lu J, Tan MD, Peters EAJF, Kuipers JAM. 2018. Direct numerical simulations of reactive fluid–particle systems using an immersed boundary method. Ind. Eng. Chem. Res. 57:15565–78
    [Google Scholar]
  65. Mittal R, Iaccarino G. 2005. Immersed boundary methods.. Annu. Rev. Fluid Mech. 37:239–61
    [Google Scholar]
  66. Mittal R, Moin P. 1997. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J. 35:81435–37
    [Google Scholar]
  67. Mohammadi B, Pironneau O. 2004. Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36:255–79
    [Google Scholar]
  68. Mohd-Yusof J. 1997. Combined immersed-boundary/spline methods for simulations of flow in complex geometries. Annual Research Briefs 1997317–27 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  69. Möes N, Dolbow JE, Belytschko T. 1999. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46:131–50
    [Google Scholar]
  70. Moin P, Mahesh K 1998. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 50:539–78
    [Google Scholar]
  71. Orlandi P, Leonardi S. 2006. DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7:N73
    [Google Scholar]
  72. O'Rourke J. 1998. Computational Geometry in C Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  73. Peskin CS. 1972. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10:252–71
    [Google Scholar]
  74. Peskin CS. 1982. The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Annu. Rev. Fluid Mech. 14:235–59
    [Google Scholar]
  75. Peskin CS. 2002. The immersed boundary method. Acta Numer. 11:479–517
    [Google Scholar]
  76. Picano F, Breugen WP, Brandt L. 2015. Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764:63–487
    [Google Scholar]
  77. Piomelli U. 2008. Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44:437–46
    [Google Scholar]
  78. Pirozzoli S, Orlandi P, Bernardini M. 2012. The fluid dynamics of rolling wheels at low Reynolds number. J. Fluid Mech. 706:496–533
    [Google Scholar]
  79. Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  80. Rangarajan R, Lew AJ, Buscaglia GC. 2009. A discontinuous-Galerkin-based immersed boundary method with nonhomogeneous boundary conditions and its application to elasticity. Comput. Methods Appl. Mech. Eng. 198:1513–34
    [Google Scholar]
  81. Reichardt H. 1951. Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. Angew. Math. Mech. 31:208–19
    [Google Scholar]
  82. Reynolds WC 1990. The potential and limitations of direct and large eddy simulations. Whither Turbulence? Turbulence at the Crossroads JL Lumley 313–43 Berlin: Springer-Verlag
    [Google Scholar]
  83. Rich M, Blackman SS. 1962. A method for Eulerian fluid dynamics Tech. Rep. 2826, Los Alamos Sci. Lab. Los Alamos, NM:
    [Google Scholar]
  84. Roman F, Armenio V, Frölich J. 2009. A simple wall layer model for large eddy simulation with immersed boundary method. Phys. Fluids 21:101701
    [Google Scholar]
  85. Saadat A, Guido CJ, Iaccarino G, Shaqfeh ESG. 2018. Immersed-finite-element method for deformable particle suspensions in viscous and viscoelastic media. Phys. Rev. E 98:063316
    [Google Scholar]
  86. Saiki EM, Biringen S. 1996. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comput. Phys. 123:450–65
    [Google Scholar]
  87. Saulev VK. 1963. [On the solution of some boundary value problems on high performance computers by fictitious domain method]. Siber. Math. J. 4:912–25 (In Russian)
    [Google Scholar]
  88. Schillinger D, Harari I, Hsu M-C, Kamensky D, Stoter SKF et al. 2016. The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput. Methods Appl. Mech. Eng. 309:625–52
    [Google Scholar]
  89. Seo JH, Mittal R. 2011. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230:7347–63
    [Google Scholar]
  90. Sepahi F, Pande N, Chong KL, Mul G, Verzicco R et al. 2022. The effect of buoyancy driven convection on the growth and dissolution of bubbles on electrodes. Electrochim. Acta 403:139616
    [Google Scholar]
  91. Sethian JA, Wiegmann A. 2000. Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163:2489–528
    [Google Scholar]
  92. Shokin YI 2009. Computational fluid mechanics in Russia. 100 Volumes of ‘Notes on Numerical Fluid Mechanics’ EH Hirshel, E Krause 117–31 Berlin: Springer
    [Google Scholar]
  93. Spandan V, Meschini V, Ostilla-Monico R, Lohse D, Querzoli G et al. 2017. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. J. Comput. Phys. 348:567–90
    [Google Scholar]
  94. Spandan V, Verzicco R, Lohse D. 2018. Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles. J. Fluid Mech. 849:R3
    [Google Scholar]
  95. Specklin M, Delauré Y. 2018. A sharp immersed boundary method based on penalization and its application to moving boundaries and turbulent rotating flows. Eur. J. Mech. B 70:130–47
    [Google Scholar]
  96. Stevens RJAM, Lohse D, Verzicco R. 2014. Sidewall effects in Rayleigh–Bénard convection. J. Fluid Mech. 741:1–27
    [Google Scholar]
  97. Tafti DK, He L, Nagendra K. 2014. Large eddy simulation for predicting turbulent heat transfer in gas turbines. Philos. Trans. R. Soc. A 372:20130322
    [Google Scholar]
  98. Taira K, Colonius T. 2007. The immersed boundary method: a projection approach. J. Comput. Phys. 225:2118–37
    [Google Scholar]
  99. Tessicini F, Iaccarino G, Fatica M, Wang M, Verzicco R. 2002. Wall modeling for large-eddy simulation using an immersed boundary method. Annual Research Briefs 2002181–87 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  100. Uhlmann M. 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 2:448–76
    [Google Scholar]
  101. Vannella M, Balaras E. 2009. A moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228:6617–28
    [Google Scholar]
  102. Verzicco R. 2002. Side wall finite conductivity effects in confined turbulent thermal convection. J. Fluid Mech. 473:201–10
    [Google Scholar]
  103. Verzicco R. 2004. Effects of non perfect thermal sources in turbulent thermal convection. Phys. Fluids 16:61965–79
    [Google Scholar]
  104. Verzicco R. 2022. Electro-fluid-mechanics of the heart. J. Fluid Mech. 941:P1
    [Google Scholar]
  105. Verzicco R, Iaccarino G, Fatica M, Moin P, Khalighi B. 2002. Large eddy simulation of a road vehicle with drag-reduction devices. AIAA J. 40:122447–55
    [Google Scholar]
  106. Verzicco R, Mohd-Yusof J, Orlandi P, Haworth D. 2000. Large eddy simulation in complex geometric configurations using boundary body forces. AIAA J. 38:3427–33
    [Google Scholar]
  107. Verzicco R, Querzoli G. 2021. On the collision of a rigid sphere with a deformable membrane in a viscous fluid. J. Fluid Mech. 914:A19
    [Google Scholar]
  108. Viecelli JA. 1969. A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. J. Comput. Phys. 4:543–51
    [Google Scholar]
  109. Viecelli JA. 1971. A computing method for incompressible flows bounded by moving walls. J. Comput. Phys. 8:119–43
    [Google Scholar]
  110. Viola F, Meschini V, Verzicco R. 2020. Fluid–structure-electrophysiology interaction (FSEI) in the left-heart: a multi-way coupled computational model. Eur. J. Mech. B 79:212–32
    [Google Scholar]
  111. Wang M, Moin P. 2000. Computation of trailing-edge flow and noise using large-eddy simulation. AIAA J. 38:2001–9
    [Google Scholar]
  112. Welch JE, Harlow FH, Shannon JP, Daly BJ. 1966. The MAC method: a computing technique for solving viscous, incompressible, transient fluid flow problems involving free surfaces Tech. Rep. 3425, Los Alamos Sci. Lab. Los Alamos, NM:
    [Google Scholar]
  113. White F. 2006. Viscous Flow Boston: McGraw-Hill. , 3rd ed..
    [Google Scholar]
  114. Wilcox DC. 1993. Turbulence Modeling for CFD La Cañada, CA: DCW Indust.
    [Google Scholar]
  115. Yanenko NN. 1967. [Fractional Step Methods for Multidimensional Problems of Mathematical Physics] Novosibirsk, Russ: Nauka Press (In Russian)
    [Google Scholar]
  116. Yang J, Balaras E. 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215:12–40
    [Google Scholar]
  117. Yang XIA, Sadique J, Mittal R, Meneveau C. 2015. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys. Fluids 27:025112
    [Google Scholar]
  118. Ye T, Mittal R, Udaykumar HS, Shyy W. 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156:209–40
    [Google Scholar]
  119. Zenit R, Hunt ML. 1999. Mechanics of immersed particle collisions. J. Fluids Eng. 121:179–84
    [Google Scholar]
  120. Zheng L, Hedrick TL, Mittal R. 2013. A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721:118–54
    [Google Scholar]
  121. Zhu X, Verzicco R, Zhang X, Lohse D. 2018. Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening. Soft Matter 14:112006–14
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-022129
Loading
/content/journals/10.1146/annurev-fluid-120720-022129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error