1932

Abstract

Advances in measuring and understanding separated, nominally two-dimensional (2D) shock-wave/turbulent-boundary-layer interactions (STBLI) have triggered recent campaigns focused on three-dimensional (3D) STBLI, which display far greater configuration diversity. Nonetheless, unifying properties emerge for semi-infinite interactions, taking the form of conical asymptotic behavior where shock-generator specifics become insignificant. The contrast between 2D and 3D separation is substantial; the skewed vortical structure of 3D STBLI reflects the essentially 2D influence of the boundary layer on the 3D character of the swept shock. As with 2D STBLI, conical interactions engender prominent spectral content below that of the turbulent boundary layer. However, the uniform separation length scale, which is crucial to normalizing the lowest-frequency dynamics in 2D STBLI, is absent. Comparatively, the spectra of 3D STBLI are more representative of the mid-frequency, convective, shear-layer dynamics in 2D, while phenomena associated with 2D separation-shock breathing are muted. Asymptotic behavior breaks down in many regions important to 3D-STBLI dynamics, occurring in a configuration-dependent manner. Aspects of inceptive regions near shock generators and symmetry planes are reviewed. Focused efforts toward 3D modal and nonmodalanalyses, moving-shock/boundary-layer interactions, fluid/structure interactions, and flow control are suggested as directions for future work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-022542
2023-01-19
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-022542.html?itemId=/content/journals/10.1146/annurev-fluid-120720-022542&mimeType=html&fmt=ahah

Literature Cited

  1. Adler MC, Gaitonde DV. 2018. Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840:291–341
    [Google Scholar]
  2. Adler MC, Gaitonde DV. 2019. Flow similarity in strong swept-shock/turbulent-boundary-layer interactions. AIAA J. 57:41579–93
    [Google Scholar]
  3. Adler MC, Gaitonde DV. 2020. Dynamics of strong swept-shock/turbulent-boundary-layer interactions. J. Fluid Mech. 896:A29
    [Google Scholar]
  4. Adler MC, Gaitonde DV. 2022. Influence of separation structure on the dynamics of shock/turbulent-boundary-layer interactions. Theor. Comput. Fluid Dyn. 36:303–26
    [Google Scholar]
  5. Agostini L, Larchevêque L, Dupont P, Debiève JF, Dussauge JP. 2012. Zones of influence and shock motion in a shock/boundary-layer interaction. AIAA J. 50:61377–87
    [Google Scholar]
  6. Andreopoulos J, Muck KC. 1987. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows. J. Fluid Mech. 180:405–28
    [Google Scholar]
  7. Andreopoulos Y, Agui JH, Briassulis G. 2000. Shock wave–turbulence interactions. Annu. Rev. Fluid Mech. 32:309–45
    [Google Scholar]
  8. Arora N, Ali MY, Zhang Y, Alvi FS. 2018. Flowfield measurements in a Mach 2 fin-generated shock/boundary-layer interaction. AIAA J. 56:103963–74
    [Google Scholar]
  9. Arora N, Mears L, Alvi FS. 2019. Unsteady characteristics of a swept-shock/boundary-layer interaction at Mach 2. AIAA J. 57:104548–59
    [Google Scholar]
  10. Aubard G, Gloerfelt X, Robinet JC. 2013. Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51:102395–409
    [Google Scholar]
  11. Bae HJ, Dawson STM, McKeon BJ. 2020. Resolvent-based study of compressibility effects on supersonic turbulent boundary layers. J. Fluid Mech. 883:A29
    [Google Scholar]
  12. Baldwin A, Mears LJ, Arora N, Kumar R, Alvi FS, Naughton JW. 2019. Skin friction measurements using oil film interferometry in a 3-D supersonic flowfield. AIAA J. 57:41373–82
    [Google Scholar]
  13. Baldwin A, Mears LJ, Kumar R, Alvi FS. 2021. Effects of Reynolds number on swept shock-wave/boundary-layer interactions. AIAA J. 59:103883–99
    [Google Scholar]
  14. Beneddine S, Sipp D, Arnault A, Dandois J, Lesshafft L. 2016. Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798:485–504
    [Google Scholar]
  15. Bermejo-Moreno I, Campo L, Larsson J, Bodart J, Helmer D, Eaton JK. 2014. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758:5–62
    [Google Scholar]
  16. Bernardini M, Asproulias I, Larsson J, Pirozzoli S, Grasso F. 2016. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions. Phys. Rev. Fluids 1:8084403
    [Google Scholar]
  17. Boyer NR, McNamara J, Gaitonde D, Barnes CJ, Visbal MR. 2021. Features of panel flutter response to shock boundary layer interactions. J. Fluids Struct. 101:103207
    [Google Scholar]
  18. Brouwer KR, Gogulapati A, McNamara JJ. 2017. Interplay of surface deformation and shock-induced separation in shock/boundary-layer interactions. AIAA J. 55:124258–73
    [Google Scholar]
  19. Brown GL, Roshko A. 1974. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64:4775–816
    [Google Scholar]
  20. Bruce P, Colliss S. 2015. Review of research into shock control bumps. Shock Waves 25:5451–71
    [Google Scholar]
  21. Chapman D, Kuehn D, Larson H. 1957. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition NACA-TR-1356, Ames Aeronaut. Lab. Moffett Field, Calif:.
    [Google Scholar]
  22. Clemens NT, Narayanaswamy V. 2014. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46:469–92
    [Google Scholar]
  23. Crowell AR, McNamara JJ. 2012. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticity. AIAA J. 50:174–84
    [Google Scholar]
  24. Dallmann U. 1988. Three-dimensional vortex structures and vorticity topology. Fluid Dyn. Res. Jpn. Soc. Fluid Mech. 3:1–4183–89
    [Google Scholar]
  25. Daub D, Willems S, Gülhan A. 2015. Experiments on the interaction of a fast-moving shock with an elastic panel. AIAA J. 54:2670–78
    [Google Scholar]
  26. Délery JM. 2001. Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation. Annu. Rev. Fluid Mech. 33:129–54
    [Google Scholar]
  27. Deshpande AS, Poggie J. 2021. Large-scale unsteadiness in a compression ramp flow confined by sidewalls. Phys. Rev. Fluids 6:2024610
    [Google Scholar]
  28. Di Renzo M, Oberoi N, Larsson J, Pirozzoli S. 2022. Crossflow effects on shock wave/turbulent boundary layer interactions. Theor. Comput. Fluid Dyn. 36:327–44
    [Google Scholar]
  29. Doehrmann AC, Threadgill JAS, Little JC. 2018. Effect of sweep on the mean and unsteady structures of impinging shock/boundary layer interactions Presented at AIAA Aerosp. Sci. Meet. Kissimmee, Fla., AIAA: Pap. 2018-2074, Jan. 8–12
    [Google Scholar]
  30. Dolling DS. 2001. Fifty years of shock-wave/boundary-layer interaction research: what next?. AIAA J. 39:81517–31
    [Google Scholar]
  31. Dowell EH. 1975. Aeroelasticity of Plates and Shells Leyden, Neth: Noordhoff Int.
    [Google Scholar]
  32. Dowell EH, Hall KC. 2001. Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 33:445–90
    [Google Scholar]
  33. Dugundji J, Calligeros JM. 1962. Similarity laws for aerothermoelastic testing. J. Aerosp. Sci. 29:8935–50
    [Google Scholar]
  34. Dupont P, Haddad C, Debiève J. 2006. Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559:255–77
    [Google Scholar]
  35. Dupont P, Piponniau S, Dussauge JP. 2019. Compressible mixing layer in shock-induced separation. J. Fluid Mech. 863:620–43
    [Google Scholar]
  36. Dwivedi A, Hildebrand N, Nichols JW, Candler GV, Jovanović MR. 2020. Transient growth analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92. Phys. Rev. Fluids 5:6063904
    [Google Scholar]
  37. Eagle WE, Driscoll JF. 2014. Shock wave–boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points. J. Fluid Mech. 756:328–53
    [Google Scholar]
  38. Erengil M, Dolling D. 1993. Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions. AIAA J. 31:2302–11
    [Google Scholar]
  39. Estruch-Samper D, Chandola G. 2018. Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness. J. Fluid Mech. 848:154–92
    [Google Scholar]
  40. Fu L, Karp M, Bose ST, Moin P, Urzay J. 2021. Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. 909:A8
    [Google Scholar]
  41. Gaitonde DV. 2015. Progress in shockwave/boundary layer interactions. Prog. Aerosp. Sci. 72:80–99
    [Google Scholar]
  42. Ganapathisubramani B, Clemens N, Dolling D. 2007. Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585:369–94
    [Google Scholar]
  43. Garrison T, Settles G, Horstman C. 1996. Measurements of the triple shock wave/turbulent boundary-layer interaction. AIAA J. 34:157–64
    [Google Scholar]
  44. Gibson BT, Dolling DS. 1992. Exploratory study of wall pressure fluctuations in a Mach 5, sharp fin–induced turbulent interaction. AIAA J. 30:92188–95
    [Google Scholar]
  45. Gomez-Vega N, Gramola M, Bruce PJK. 2020. Oblique shock control with steady flexible panels. AIAA J. 58:52109–21
    [Google Scholar]
  46. Green J. 1970. Interactions between shock waves and turbulent boundary layers. Prog. Aerosp. Sci. 11:235–340
    [Google Scholar]
  47. Gross A, Little J, Fasel HF. 2022. Numerical investigation of unswept and swept turbulent shock-wave boundary layer interactions. Aerosp. Sci. Technol. 123:107455
    [Google Scholar]
  48. Grossman IJ, Bruce PJK. 2018. Confinement effects on regular–irregular transition in shock-wave–boundary-layer interactions. J. Fluid Mech. 853:171–204
    [Google Scholar]
  49. Guiho F, Alizard F, Robinet JC. 2016. Instabilities in oblique shock wave/laminar boundary-layer interactions. J. Fluid Mech. 789:1–35
    [Google Scholar]
  50. Harloff GJ, Smith GE. 1996. Supersonic-inlet boundary-layer bleed flow. AIAA J. 34:4778–85
    [Google Scholar]
  51. Helm CM, Martín MP, Williams OJ. 2021. Characterization of the shear layer in separated shock/turbulent boundary layer interactions. J. Fluid Mech. 912:A7
    [Google Scholar]
  52. Karban U, Bugeat B, Martini E, Towne A, Cavalieri AVG et al. 2020. Ambiguity in mean-flow-based linear analysis. J. Fluid Mech. 900:R5
    [Google Scholar]
  53. Kim K, Lee Y, Alvi F, Settles G, Horstman C. 1991. Skin-friction measurements and computational comparison of swept shock/boundary-layer interactions. AIAA J. 29:101643–50
    [Google Scholar]
  54. Knight DD, Horstman C, Bogdonoff S, Shapey B. 1987. Structure of supersonic turbulent flow past a sharp fin. AIAA J. 25:101331–37
    [Google Scholar]
  55. Korkegi RH. 1975. Comparison of shock-induced two- and three-dimensional incipient turbulent separation. AIAA J. 13:4534–35
    [Google Scholar]
  56. Larsson J, Kumar V, Oberoi N, Di Renzo M, Pirozzoli S. 2022. Large-eddy simulations of idealized shock/boundary-layer interactions with crossflow. AIAA J 60:5276770
    [Google Scholar]
  57. Lash LE, Gragston M, Kreth PA, McDaniel Z, Coder JG, Schmisseur JD. 2021. Upstream influence in shock wave/transitional boundary layer interactions at Mach 1.8. AIAA J. 59:124842–57
    [Google Scholar]
  58. Lindörfer SA, Combs CS, Kreth PA, Bond RB, Schmisseur JD. 2020. Scaling of cylinder-generated shock-wave/turbulent boundary-layer interactions. Shock Waves 30:4395–407
    [Google Scholar]
  59. Lozano-Durán A, Giometto MG, Park GI, Moin P. 2020. Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech. 883:A20
    [Google Scholar]
  60. Lusher DJ, Sandham ND. 2020. The effect of flow confinement on laminar shock-wave/boundary-layer interactions. J. Fluid Mech. 897:A18
    [Google Scholar]
  61. McNamara JJ, Friedmann PP. 2011. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future. AIAA J. 49:61089–122
    [Google Scholar]
  62. Mears LJ, Baldwin A, Ali MY, Kumar R, Alvi FS. 2020. Spatially resolved mean and unsteady surface pressure in swept SBLI using PSP. Exp. Fluids 61:492
    [Google Scholar]
  63. Mears LJ, Sellappan P, Alvi FS. 2021. Three-dimensional flowfield in a fin-generated shock wave/boundary-layer interaction using tomographic PIV. AIAA J. 59:124869–80
    [Google Scholar]
  64. Meijer MC, Dala L. 2016. Generalized formulation and review of piston theory for airfoils. AIAA J. 54:117–27
    [Google Scholar]
  65. Morgan B, Duraisamy K, Nguyen N, Kawai S, Lele S. 2013. Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729:231–84
    [Google Scholar]
  66. Neet MC, Austin JM. 2020. Effects of surface compliance on shock boundary layer interaction in the Caltech Mach 4 Ludwieg tube Presented at AIAA Scitech Forum Orlando, Fla., AIAA: Pap. 2020-0816, Jan. 6–10
    [Google Scholar]
  67. Nichols JW, Larsson J, Bernardini M, Pirozzoli S. 2017. Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31:133–50
    [Google Scholar]
  68. Padmanabhan S, Castro Maldonado J, Threadgill JA, Little JC 2020. Root influence on the unsteady characteristics of swept impinging oblique SBLIs Presented at AIAA Scitech Forum Orlando, Fla., AIAA: Pap. 2020-0580, Jan. 6–10
    [Google Scholar]
  69. Padmanabhan S, Maldonado JC, Threadgill JAS, Little JC. 2021. Experimental study of swept impinging oblique shock/boundary-layer interactions. AIAA J. 59:1140–49
    [Google Scholar]
  70. Panaras AG. 1996. Review of the physics of swept-shock/boundary layer interactions. Prog. Aerosp. Sci. 32:173–244
    [Google Scholar]
  71. Pasquariello V, Grilli M, Hickel S, Adams NA. 2014. Large-eddy simulation of passive shock-wave/boundary-layer interaction control. Int. J. Heat Fluid Flow 49:116–27
    [Google Scholar]
  72. Pasquariello V, Hickel S, Adams N, Hammerl G, Wall W et al. 2015. Coupled simulation of shock-wave/turbulent boundary-layer interaction over a flexible panel Paper presented at the 6th European Conference for Aerospace Sciences, Krakow, Pol. June 29–July 3
    [Google Scholar]
  73. Pasquariello V, Hickel S, Adams NA. 2017. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number. J. Fluid Mech. 823:617–57
    [Google Scholar]
  74. Perry A, Chong M. 1987. A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19:125–55
    [Google Scholar]
  75. Pham HT, Gianikos ZN, Narayanaswamy V. 2018. Compression ramp induced shock-wave/turbulent boundary-layer interactions on a compliant material. AIAA J. 56:72925–29
    [Google Scholar]
  76. Pickles JD, Narayanaswamy V. 2020. Control of fin shock induced flow separation using vortex generators. AIAA J. 58:114794–806
    [Google Scholar]
  77. Piponniau S, Dussauge JP, Debiève JF, Dupont P. 2009. A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629:87–108
    [Google Scholar]
  78. Pirozzoli S, Grasso F. 2006. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18:6065113
    [Google Scholar]
  79. Pirozzoli S, Larsson J, Nichols J, Bernardini M, Morgan B, Lele S. 2010. Analysis of unsteady effects in shock/boundary layer interactions. Annu. Res. Briefs 2010:153–64
    [Google Scholar]
  80. Poggie J, Bisek NJ, Kimmel RL, Stanfield SA. 2014. Spectral characteristics of separation shock unsteadiness. AIAA J. 53:1200–14
    [Google Scholar]
  81. Porter KM, Poggie J. 2019. Selective upstream influence on the unsteadiness of a separated turbulent compression ramp flow. Phys. Fluids 31:1016104
    [Google Scholar]
  82. Priebe S, Martín MP. 2012. Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction. J. Fluid Mech. 699:1–49
    [Google Scholar]
  83. Priebe S, Tu JH, Rowley CW, Martín MP. 2016. Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807:441–77
    [Google Scholar]
  84. Riley ZB, Perez RA, Bartram GW, Spottswood SM, Smarslok BP, Beberniss TJ. 2019. Aerothermoelastic experimental design for the AEDC/VKF Tunnel C: challenges associated with measuring the response of flexible panels in high-temperature, high-speed wind tunnels. J. Sound Vib. 441:96–105
    [Google Scholar]
  85. Sandham ND. 2016. Effects of compressibility and shock-wave interactions on turbulent shear flows. Flow Turbul. Combust. 97:11–25
    [Google Scholar]
  86. Sandham ND, Schülein E, Wagner A, Willems S, Steelant J. 2014. Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752:349–82
    [Google Scholar]
  87. Sansica A, Sandham N, Hu Z. 2014. Forced response of a laminar shock-induced separation bubble. Phys. Fluids 26:9093601
    [Google Scholar]
  88. Saric WS, Reed HL, White EB. 2003. Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35:413–40
    [Google Scholar]
  89. Sasaki K, Barros DC, Cavalieri AVG, Larchevêque L. 2021. Causality in the shock wave/turbulent boundary layer interaction. Phys. Rev. Fluids 6:6064609
    [Google Scholar]
  90. Schmid PJ, Henningson DS. 2012. Stability and Transition in Shear Flows (Applied Mathematical Sciences, Vol. 142) New York: Springer
    [Google Scholar]
  91. Schmisseur JD, Dolling DS. 1994. Fluctuating wall pressures near separation in highly swept turbulent interactions. AIAA J. 32:61151–57
    [Google Scholar]
  92. Schmisseur JD, Gaitonde DV. 2001. Numerical investigation of strong crossing shock-wave/turbulent boundary-layer interactions. AIAA J. 39:91742–49
    [Google Scholar]
  93. Schreyer AM, Sahoo D, Williams OJH, Smits AJ. 2021. Influence of a microramp array on a hypersonic shock-wave/turbulent boundary-layer interaction. AIAA J. 59:61924–39
    [Google Scholar]
  94. Schülein E, Schnepf C, Weiss S. 2022. Concave bump for impinging-shock control in supersonic flows. AIAA J. 60:52749–66
    [Google Scholar]
  95. Seckin S, Mears LJ, Song M, Zigunov F, Sellappan P, Alvi FS. 2022. Surface properties of double-fin generated shock-wave/boundary-layer interactions Presented at AIAA Scitech Forum San Diego, Calif./virtual, AIAA: Pap. 2022-0701, Jan. 3–7
    [Google Scholar]
  96. Settles GS, Dodson LJ. 1994. Supersonic and hypersonic shock/boundary-layer interaction database. AIAA J. 32:71377–83
    [Google Scholar]
  97. Settles GS, Dolling DS 1986. Swept shock wave/boundary-layer interactions. AIAA Progress in Astronautics and Aeronautics: Tactical Missile Aerodynamics, Vol. 104 M Hemsch, J Nielsen 297–379 New York: AIAA
    [Google Scholar]
  98. Settles GS, Lu FK. 1985. Conical similarity of shock/boundary-layer interactions generated by swept and unswept fins. AIAA J. 23:71021–27
    [Google Scholar]
  99. Settles GS, Teng HY. 1984. Cylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactions. AIAA J. 22:2194–200
    [Google Scholar]
  100. Shinde V, McNamara J, Gaitonde D. 2020. Control of transitional shock wave boundary layer interaction using structurally constrained surface morphing. Aerosp. Sci. Technol. 96:105545
    [Google Scholar]
  101. Shinde V, McNamara J, Gaitonde D, Barnes C, Visbal M. 2019. Transitional shock wave boundary layer interaction over a flexible panel. J. Fluids Struct. 90:263–85
    [Google Scholar]
  102. Souverein LJ, Dupont P, Debiève JF, Van Oudheusden BW, Scarano F 2010. Effect of interaction strength on unsteadiness in shock-wave-induced separations. AIAA J. 48:71480–93
    [Google Scholar]
  103. Spottswood SM, Beberniss TJ, Eason TG, Perez RA, Donbar JM et al. 2019. Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interactions. J. Sound Vib. 443:74–89
    [Google Scholar]
  104. Spottswood SM, Smarslok BP, Perez RA, Beberniss TJ, Hagen BJ et al. 2021. Supersonic aerothermoelastic experiments of aerospace structures. AIAA J. 59:125029–48
    [Google Scholar]
  105. Tan DKM, Tran TT, Bogdonoff SM. 1987. Wall pressure fluctuations in a three-dimensional shock-wave/turbulent boundary interaction. AIAA J. 25:114–21
    [Google Scholar]
  106. Tan SS, Bruce PJ, Gramola M. 2019. Oblique shockwave boundary layer interaction on a flexible surface Presented at AIAA Scitech Forum San Diego, Calif: AIAA Pap. 2019-0097, Jan. 7–11
    [Google Scholar]
  107. Touber E, Sandham N. 2009. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23:79–107
    [Google Scholar]
  108. Unnikrishnan S, Gaitonde DV. 2016. A high-fidelity method to analyze perturbation evolution in turbulent flows. J. Comput. Phys. 310:45–62
    [Google Scholar]
  109. Vanstone L, Clemens NT. 2019. Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2. AIAA J. 57:83395–409
    [Google Scholar]
  110. Vanstone L, Goller T, Mears L, Clemens NT. 2019. Separated flow unsteadiness in a Mach 2 swept compression-ramp interaction using high-speed PSP Presented at AIAA Aviat Forum, Dallas, Tex., AIAA Pap: 2019-3647, June 17–21
    [Google Scholar]
  111. Vanstone L, Musta MN, Seckin S, Clemens NT. 2018. Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. J. Fluid Mech. 841:1–27
    [Google Scholar]
  112. Vasconcelos PB, McQuellin L, Talluru K, Neely A 2022. Hypersonic fluid-structure interactions on a compliant clamped-free-clamped-free panel under the influence of static shock impingement Presented at AIAA Scitech Forum San Diego, Calif./virtual, AIAA: Pap. 2022-0241, Jan. 3–7
    [Google Scholar]
  113. Visbal M. 2014. Viscous and inviscid interactions of an oblique shock with a flexible panel. J. Fluids Struct. 48:27–45
    [Google Scholar]
  114. Webb N, Clifford C, Samimy M. 2013. Control of oblique shock wave/boundary layer interactions using plasma actuators. Exp. Fluids 54:61545
    [Google Scholar]
  115. Whalen TJ, Schöneich AG, Laurence SJ, Sullivan BT, Bodony DJ et al. 2020. Hypersonic fluid–structure interactions in compression corner shock-wave/boundary-layer interaction. AIAA J. 58:94090–105
    [Google Scholar]
  116. Xiang X, Babinsky H. 2019. Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels. J. Fluid Mech. 862:1060–83
    [Google Scholar]
  117. Zheltovodov A. 2006. Some advances in research of shock wave turbulent boundary layer interactions Presented at AIAA Aerosp. Sci. Meet., 44th, Reno, Nev., AIAA Pap 2006-496, Jan. 9–12
    [Google Scholar]
  118. Zuchowski B. 2012. Predictive capability for hypersonic structural response and life prediction. Phase I. Identification of knowledge gaps Tech. Rep. AFRL-RB-WP-TR-2012-0280, Air Force Res. Lab., Wright-Patterson AFB Ohio:
    [Google Scholar]
  119. Zuo FY, Memmolo A, Huang GP, Pirozzoli S. 2019. Direct numerical simulation of conical shock wave–turbulent boundary layer interaction. J. Fluid Mech. 877:167–95
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-022542
Loading
/content/journals/10.1146/annurev-fluid-120720-022542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error