1932

Abstract

Interactions between fluid flow and elastic structures are important in many naturally occurring and engineered systems. This review collects and organizes recent theoretical and experimental developments in understanding fluid-structure interactions at low Reynolds numbers. Particular attention is given to the motion of objects moving in close proximity to deformable soft materials and the ensuing interplay between fluid flow and elastic deformation. We discuss how this interplay can be understood in terms of forces and torques, and harnessed in applications such as microrheometry, tribology, and soft robotics. We then discuss the interaction of soft and wet objects close to contact, where intermolecular forces and surface roughness effects become important and are sources of complexity and opportunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-024426
2024-01-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-120720-024426.html?itemId=/content/journals/10.1146/annurev-fluid-120720-024426&mimeType=html&fmt=ahah

Literature Cited

  1. Abkarian M, Lartigue C, Viallat A. 2002. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:068103
    [Google Scholar]
  2. Alvarado J, Comtet J, de Langre E, Hosoi AE. 2017. Nonlinear flow response of soft hair beds. Nat. Phys. 13:1014–19
    [Google Scholar]
  3. Archard G, Gair F, Hirst W. 1961. The elasto-hydrodynamic lubrication of rollers. Proc. R. Soc. A 262:51–72
    [Google Scholar]
  4. Bächer C, Schrack L, Gekle S. 2017. Clustering of microscopic particles in constricted blood flow. Phys. Rev. Fluids 2:013102
    [Google Scholar]
  5. Balmforth NJ, Cawthorn CJ, Craster RV. 2010. Contact in a viscous fluid. Part 2. A compressible fluid and an elastic solid. J. Fluid Mech. 646:339–61
    [Google Scholar]
  6. Barakat JM, Shaqfeh ESG. 2018a. The steady motion of a closely fitting vesicle in a tube. J. Fluid Mech. 835:721–61
    [Google Scholar]
  7. Barakat JM, Shaqfeh ESG. 2018b. Stokes flow of vesicles in a circular tube. J. Fluid Mech. 851:606–35
    [Google Scholar]
  8. Barnocky G, Davis RH. 1988. Elastohydrodynamic collision and rebound of spheres: experimental verification. Phys. Fluids 31:1324–29
    [Google Scholar]
  9. Barthès-Biesel D. 2016. Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48:25–52
    [Google Scholar]
  10. Beaucourt J, Biben T, Misbah C. 2004. Optimal lift force on vesicles near a compressible substrate. Europhys. Lett. 67:676–82
    [Google Scholar]
  11. Berdan C, Leal LG. 1982. Motion of a sphere in the presence of a deformable interface: I. Perturbation of the interface from flat: the effects on drag and torque. J. Colloid Interface Sci. 87:62–80
    [Google Scholar]
  12. Bertin V, Amarouchene Y, Raphael E, Salez T. 2022. Soft-lubrication interactions between a rigid sphere and an elastic wall. J. Fluid Mech. 933:A23
    [Google Scholar]
  13. Bertin V, Zhang Z, Boisgard R, Grauby-Heywang C, Raphaël E et al. 2021. Contactless rheology of finite-size air-water interfaces. Phys. Rev. Res. 3:L032007
    [Google Scholar]
  14. Bickel T. 2006. Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20:379–85
    [Google Scholar]
  15. Bickel T. 2007. Hindered mobility of a particle near a soft interface. Phys. Rev. E 75:041403
    [Google Scholar]
  16. Bisset EJ. 1989. The line contact problem of elastohydrodynamic lubrication – I. Asymptotic structure for low speeds. Proc. R. Soc. A 424:393–407
    [Google Scholar]
  17. Boatwright T, Dennin M, Shlomovitz R, Evans AA, Levine AJ. 2014. Probing interfacial dynamics and mechanics using submerged particle microrheology. II. Experiment. Phys. Fluids 26:071904
    [Google Scholar]
  18. Bonnecaze RT, Cloitre M 2010. Micromechanics of soft particle glasses. High Solid Dispersions M Cloitre 117–61. Berlin: Springer
    [Google Scholar]
  19. Bonnecaze RT, Khabaz F, Mohan L, Cloitre M. 2020. Excess entropy scaling for soft particle glasses. J. Rheol. 64:423–31
    [Google Scholar]
  20. Brenner H. 1961. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16:242–51
    [Google Scholar]
  21. Bretherton FP. 1961. The motion of long bubbles in tubes. J. Fluid Mech. 10:166–88
    [Google Scholar]
  22. Brochard F, Lennon J. 1975. Frequency spectrum of the flicker phenomenon in erythrocytes. J. Phys. 36:1035–47
    [Google Scholar]
  23. Bureau L, Coupier G, Salez T. 2023. Lift at low Reynolds number. Eur. Phys. J 4611143
  24. Carlson A. 2018. Fluctuation assisted spreading of a fluid filled elastic blister. J. Fluid Mech. 846:1076–87
    [Google Scholar]
  25. Carlson A, Mahadevan L. 2016. Similarity and singularity in adhesive elastohydrodynamic touchdown. Phys. Fluids 28:011702
    [Google Scholar]
  26. Chan PH, Leal L. 1979. The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92:131–70
    [Google Scholar]
  27. Chandler TGJ, Vella D. 2020. Validity of Winkler's mattress model for thin elastomeric layers: beyond Poisson's ratio. Proc. R. Soc. A 476:20200551
    [Google Scholar]
  28. Choo JW, Olver AV, Spikes HA, Dumont ML, Ioannides E. 2008. Interaction of asperities on opposing surfaces in thin film, mixed elastohydrodynamic lubrication. J. Tribol. 130:021505
    [Google Scholar]
  29. Christov IC. 2022. Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits. J. Phys. Condens. Matter 34:063001
    [Google Scholar]
  30. Coyle DJ. 1988. Forward roll coating with deformable rolls: a simple one-dimensional elastohydrodynamic model. Chem. Eng. Sci. 43:2673–84
    [Google Scholar]
  31. Crook AW. 1961. Elastohydrodynamic lubrication of rollers. Nature 190:1182–83
    [Google Scholar]
  32. Crowdy D, Lee S, Samson O, Lauga E, Hosoi AE. 2011. A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681:24–47
    [Google Scholar]
  33. Daddi-Moussa-Ider A, Gekle S. 2016. Hydrodynamic interaction between particles near elastic interfaces. J. Chem. Phys. 145:014905
    [Google Scholar]
  34. Daddi-Moussa-Ider A, Guckenberger A, Gekle S. 2016. Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles. Phys. Rev. E 93:012612
    [Google Scholar]
  35. Daddi-Moussa-Ider A, Lisicki M, Gekle S. 2017. Mobility of an axisymmetric particle near an elastic interface. J. Fluid Mech. 811:210–33
    [Google Scholar]
  36. Daddi-Moussa-Ider A, Rallabandi B, Gekle S, Stone HA. 2018. Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane. Phys. Rev. Fluids 3:084101
    [Google Scholar]
  37. Dalal S, Farutin A, Misbah C. 2020. Amoeboid swimming in a compliant channel. Soft Matter 16:1599–613
    [Google Scholar]
  38. Davies HS, Débarre D, El Amri N, Verdier C, Richter RP, Bureau L. 2018. Elastohydrodynamic lift at a soft wall. Phys. Rev. Lett. 120:198001
    [Google Scholar]
  39. Davis RH, Serayssol JM, Hinch EJ. 1986. The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163:479–97
    [Google Scholar]
  40. de Vicente J, Stokes J, Spikes H. 2005. The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20:273–86
    [Google Scholar]
  41. Dias MA, Powers TR. 2013. Swimming near deformable membranes at low Reynolds number. Phys. Fluids 25:101901
    [Google Scholar]
  42. Dillard DA, Mukherjee B, Karnal P, Batra RC, Frechette J. 2018. A review of Winkler's foundation and its profound influence on adhesion and soft matter applications. Soft Matter 14:3669–83
    [Google Scholar]
  43. Dong H, Moyle N, Wu H, Khripin CY, Hui CY, Jagota A. 2023. Transition from elastohydrodynamic to mixed regimes in lubricated friction of soft solid surfaces. Adv. Mater. 35:172211044
    [Google Scholar]
  44. Dowson D, Higginson GR. 1959. A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1:6–15
    [Google Scholar]
  45. du Roure O, Lindner A, Nazockdast EN, Shelley MJ. 2019. Dynamics of flexible fibers in viscous flows and fluids. Annu. Rev. Fluid Mech. 51:539–72
    [Google Scholar]
  46. Duprat C. 2022. Moisture in textiles. Annu. Rev. Fluid Mech. 54:443–67
    [Google Scholar]
  47. Essink MH, Pandey A, Karpitschka S, Venner CH, Snoeijer JH. 2021. Regimes of soft lubrication. J. Fluid Mech. 915:A49
    [Google Scholar]
  48. Ewoldt RH, Saengow C. 2022. Designing complex fluids. Annu. Rev. Fluid Mech. 54:413–41
    [Google Scholar]
  49. Fitz-Gerald JM. 1969. Mechanics of red-cell motion through very narrow capillaries. Proc. R. Soc. B 174:193–227
    [Google Scholar]
  50. Fradin C, Abu-Arish A, Granek R, Elbaum M. 2003. Fluorescence correlation spectroscopy close to a fluctuating membrane. Biophys. J. 84:2005–20
    [Google Scholar]
  51. Freund JB. 2014. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46:67–95
    [Google Scholar]
  52. Greenwood JA. 2020. Elastohydrodynamic lubrication. Lubricants 8:51
    [Google Scholar]
  53. Grosjean G, Hubert M, Collard Y, Pillitteri S, Vandewalle N. 2018. Surface swimmers, harnessing the interface to self-propel. Eur. Phys. J. E 41:137
    [Google Scholar]
  54. Guan D, Barraud C, Charlaix E, Tong P. 2017a. Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy. Langmuir 33:1385–90
    [Google Scholar]
  55. Guan D, Charlaix E, Qi RZ, Tong P. 2017b. Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dual-frequency modulation. Phys. Rev. Appl. 8:044010
    [Google Scholar]
  56. Helfrich W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28:693–703
    [Google Scholar]
  57. Hinch EJ. 1972. Note on the symmetries of certain material tensors for a particle in Stokes flow. J. Fluid Mech. 54:423–25
    [Google Scholar]
  58. Hosoi AE. 2019. Corrsin lecture on hairy hydrodynamics. Phys. Rev. Fluids 4:110508
    [Google Scholar]
  59. Hu S, Meng F, Doi M 2023. Effect of fluid viscoelasticity, shear stress, and interface tension on the lift force in lubricated contacts. J. Chem. Phys 159:164106
    [Google Scholar]
  60. Hui CY, Wu H, Jagota A, Khripin C. 2021. Friction force during lubricated steady sliding of a rigid cylinder on a viscoelastic substrate. Tribol. Lett. 69:30
    [Google Scholar]
  61. Israelachvili JN. 2011. Intermolecular and Surface Forces Burlington, MA: Academic
  62. Jamali S, Brady JF. 2019. Alternative frictional model for discontinuous shear thickening of dense suspensions: hydrodynamics. Phys. Rev. Lett. 123:138002
    [Google Scholar]
  63. Jamali S, Del Gado E, Morris JF. 2020. Rheology discussions: the physics of dense suspensions. J. Rheol. 64:1501–24
    [Google Scholar]
  64. Johnson KL. 1987. Contact Mechanics Cambridge, UK: Cambridge Univ. Press
  65. Kaneta M, Cameron A. 1980. Effects of asperities in elastohydrodynamic lubrication. J. Lubricat. Technol. 102:374–78
    [Google Scholar]
  66. Karan P, Chakraborty J, Chakraborty S. 2020. Influence of non-hydrodynamic forces on the elastic response of an ultra-thin soft coating under fluid-mediated dynamic loading. Phys. Fluids 32:022002
    [Google Scholar]
  67. Karan P, Chakraborty J, Chakraborty S. 2021. Generalization of elastohydrodynamic interactions between a rigid sphere and a nearby soft wall. J. Fluid Mech. 923:A32
    [Google Scholar]
  68. Kargar-Estahbanati A, Rallabandi B. 2021. Lift forces on three-dimensional elastic and viscoelastic lubricated contacts. Phys. Rev. Fluids 6:034003
    [Google Scholar]
  69. Kargar-Estahbanati A, Rallabandi B. 2022. Rotation–translation coupling of soft objects in lubricated contact. Soft Matter 18:4887–96
    [Google Scholar]
  70. Kim S, Karrila SJ. 2013. Microhydrodynamics: Principles and Selected Applications. Mineola, NY: Dover
  71. Kimura Y, Mori T, Yamamoto A, Mizuno D. 2005. Hierarchical transport of nanoparticles in a lyotropic lamellar phase. J. Phys. Condens. Matter 17:S2937
    [Google Scholar]
  72. Kopecz-Muller C, Bertin V, Raphael E, McGraw JD, Salez T. 2023. Mechanical response of a thick poroelastic gel in contactless colloidal-probe rheology. Proc. R. Soc. A 479:227120220832
    [Google Scholar]
  73. Kumar A, Graham MD. 2012. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109:108102
    [Google Scholar]
  74. Landau LD, Lifshitz EM. 1986. Theory of Elasticity, Vol. 7 New York: Elsevier
  75. Ledesma-Aguilar R, Yeomans JM. 2013. Enhanced motility of a microswimmer in rigid and elastic confinement. Phys. Rev. Lett. 111:138101
    [Google Scholar]
  76. Leroy S, Charlaix E. 2011. Hydrodynamic interactions for the measurement of thin film elastic properties. J. Fluid Mech. 674:389–407
    [Google Scholar]
  77. Leroy S, Steinberger A, Cottin-Bizonne C, Restagno F, Léger L, Charlaix É. 2012. Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe for soft thin films. Phys. Rev. Lett. 108:264501
    [Google Scholar]
  78. Li J, Chou TW. 1997. Elastic field of a thin-film/substrate system under an axisymmetric loading. Int. J. Solids Struct. 34:4463–78
    [Google Scholar]
  79. Lighthill MJ. 1968. Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J. Fluid Mech. 34:113–43
    [Google Scholar]
  80. Lister JR, Peng GG, Neufeld JA. 2013. Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111:154501
    [Google Scholar]
  81. Liu HC, Guo F, Guo L, Wong PL. 2015. A dichromatic interference intensity modulation approach to measurement of lubricating film thickness. Tribol. Lett. 58:15
    [Google Scholar]
  82. Liu Z, Dong H, Jagota A, Hui CY. 2022. Lubricated soft normal elastic contact of a sphere: a new numerical method and experiment. Soft Matter 18:1219–27
    [Google Scholar]
  83. Maali A, Boisgard R, Chraibi H, Zhang Z, Kellay H, Würger A. 2017. Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces. Phys. Rev. Lett. 118:084501
    [Google Scholar]
  84. Manikantan H, Squires TM. 2020. Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892:P1
    [Google Scholar]
  85. Marx N, Guegan J, Spikes HA. 2016. Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 99:267–77
    [Google Scholar]
  86. Masoud H, Stone HA. 2019. The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879:P1
    [Google Scholar]
  87. Michaut C. 2011. Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. 116:B5B05205
    [Google Scholar]
  88. Nambiar S, Wettlaufer JS. 2022. Hydrodynamics of slender swimmers near deformable interfaces. Phys. Rev. Fluids 7:054001
    [Google Scholar]
  89. Nasto A, Brun PT, Hosoi AE. 2018. Viscous entrainment on hairy surfaces. Phys. Rev. Fluids 3:024002
    [Google Scholar]
  90. Nunes JK, Li J, Griffiths IM, Rallabandi B, Man J, Stone HA. 2021. Electrostatic wrapping of a microfiber around a curved particle. Soft Matter 17:3609–18
    [Google Scholar]
  91. O'Sullivan TC, King RB. 1988. Sliding contact stress field due to a spherical indenter on a layered elastic half-space. J. Tribol. 110:235–40
    [Google Scholar]
  92. Pandey A, Karpitschka S, Venner CH, Snoeijer JH. 2016. Lubrication of soft viscoelastic solids. J. Fluid Mech. 799:433–47
    [Google Scholar]
  93. Pedersen C, Niven JF, Salez T, Dalnoki-Veress K, Carlson A. 2019. Asymptotic regimes in elastohydrodynamic and stochastic leveling on a viscous film. Phys. Rev. Fluids 4:124003
    [Google Scholar]
  94. Pedersen C, Salez T, Carlson A. 2021. Universal self-similar attractor in the bending-driven levelling of thin viscous films. Proc. R. Soc. A 477:20210354
    [Google Scholar]
  95. Peng Y, Serfass CM, Hill CN, Hsiao LC. 2021a. Bending of soft micropatterns in elastohydrodynamic lubrication tribology. Exp. Mech. 61:969–79
    [Google Scholar]
  96. Peng Y, Serfass CM, Kawazoe A, Shao Y, Gutierrez K et al. 2021b. Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nat. Mater. 20:1707–11
    [Google Scholar]
  97. Persson BNJ, Scaraggi M. 2009. On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. J. Phys. Condens. Matter 21:185002
    [Google Scholar]
  98. Poulain S, Carlson A. 2022. Droplet settling on solids coated with a soft layer. J. Fluid Mech. 934:A25
    [Google Scholar]
  99. Poulain S, Carlson A, Mandre S, Mahadevan L. 2022. Elastohydrodynamics of contact in adherent sheets. J. Fluid Mech. 947:A16
    [Google Scholar]
  100. Rallabandi B, Eggers J, Herrada MA, Stone HA. 2021. Motion of a tightly fitting axisymmetric object through a lubricated elastic tube. J. Fluid Mech. 926:A27
    [Google Scholar]
  101. Rallabandi B, Oppenheimer N, Zion MBZ, Stone HA. 2018. Membrane-induced hydroelastic migration of a particle surfing its own wave. Nat. Phys. 14:1211–15
    [Google Scholar]
  102. Rallabandi B, Saintyves B, Jules T, Salez T, Schönecker C et al. 2017. Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids 2:074102
    [Google Scholar]
  103. Ramaswamy S, Prost J, Lubensky TC. 1994. Non-linear effects of membrane fluctuations in the dilute lamellar phase. Europhys. Lett. 27:285–90
    [Google Scholar]
  104. Reynolds O. 1886. IV. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. 177:157–234
    [Google Scholar]
  105. Saintyves B, Jules T, Salez T, Mahadevan L 2016. Self-sustained lift and low friction via soft lubrication. PNAS 113:5847–49
    [Google Scholar]
  106. Saintyves B, Rallabandi B, Jules T, Ault J, Salez T et al. 2020. Rotation of a submerged finite cylinder moving down a soft incline. Soft Matter 16:4000–7
    [Google Scholar]
  107. Salez T, Mahadevan L. 2015. Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. J. Fluid Mech. 779:181–96
    [Google Scholar]
  108. Savin T, Bandi MM, Mahadevan L. 2016. Pressure-driven occlusive flow of a confined red blood cell. Soft Matter 12:562–73
    [Google Scholar]
  109. Scaraggi M, Persson BNJ. 2012. Time-dependent fluid squeeze-out between soft elastic solids with randomly rough surfaces. Tribol. Lett. 47:409–16
    [Google Scholar]
  110. Secomb TW, Skalak R, Özkaya N, Gross JF. 1986. Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163:405–23
    [Google Scholar]
  111. Sekimoto K, Leibler L. 1993. A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. Europhys. Lett. 23:113–17
    [Google Scholar]
  112. Seth JR, Mohan L, Locatelli-Champagne C, Cloitre M, Bonnecaze RT. 2011. A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10:838–43
    [Google Scholar]
  113. Shlomovitz R, Evans AA, Boatwright T, Dennin M, Levine AJ. 2013. Measurement of monolayer viscosity using noncontact microrheology. Phys. Rev. Lett. 110:137802
    [Google Scholar]
  114. Singh K, Sadeghi F, Russell T, Lorenz SJ, Peterson W et al. 2021. Fluid–structure interaction modeling of elastohydrodynamically lubricated line contacts. J. Tribol. 143:091602
    [Google Scholar]
  115. Skalak R, Tozeren A, Zarda RP, Chien S. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245–64
    [Google Scholar]
  116. Skotheim JM, Mahadevan L. 2004. Soft lubrication. Phys. Rev. Lett. 92:245509
    [Google Scholar]
  117. Skotheim JM, Mahadevan L. 2005. Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17:092101
    [Google Scholar]
  118. Smart JR, Leighton DT. 1991. Measurement of the drift of a droplet due to the presence of a plane. Phys. Fluids A Fluid Dyn. 3:21–28
    [Google Scholar]
  119. Snoeijer JH. 2016. Analogies between elastic and capillary interfaces. Phys. Rev. Fluids 1:060506
    [Google Scholar]
  120. Snoeijer JH, Eggers J, Venner CH. 2013. Similarity theory of lubricated Hertzian contacts. Phys. Fluids 25:101705
    [Google Scholar]
  121. Spikes HA. 1999. Thin films in elastohydrodynamic lubrication: the contribution of experiment. Proc. Inst. Mech. Eng. J 213:335–52
    [Google Scholar]
  122. Stone H, Abkarian M, Bonnecaze R. 2004. The normal force in sliding lubrication of deformable spheres and substrates Abstract for the 57th Annual Meeting of the Division of Fluid Dynamics of the American Physical Society Seattle, WA: Nov. 21–23
  123. Style RW, Jagota A, Hui CY, Dufresne ER. 2017. Elastocapillarity: surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 8:99–118
    [Google Scholar]
  124. Sun M, Kumar N, Dhinojwala A, King H. 2021. Attractive forces slow contact formation between deformable bodies underwater. PNAS 118:e2104975118
    [Google Scholar]
  125. Takagi D, Balmforth NJ. 2011. Peristaltic pumping of rigid objects in an elastic tube. J. Fluid Mech. 672:219–44
    [Google Scholar]
  126. Tan MR, Wang Y, Frechette J. 2019. Criterion for particle rebound during wet collisions on elastic coatings. Phys. Rev. Fluids 4:084305
    [Google Scholar]
  127. Tani M, Cambau T, Bico J, Reyssat E. 2017. Motion of a rigid sphere through an elastic tube with a lubrication film Abstract for the March Meeting of the American Physical Society New Orleans, LA: Mar. 13–17
  128. Tözeren H, Skalak R. 1978. The steady flow of closely fitting incompressible elastic spheres in a tube. J. Fluid Mech. 87:1–16
    [Google Scholar]
  129. Trouilloud R, Yu TS, Hosoi AE, Lauga E. 2008. Soft swimming: exploiting deformable interfaces for low Reynolds number locomotion. Phys. Rev. Lett. 101:048102
    [Google Scholar]
  130. Urzay J. 2010. Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low Reynolds numbers. J. Fluid Mech. 653:391–429
    [Google Scholar]
  131. Urzay J, Llewellyn Smith SG, Glover BJ 2007. The elastohydrodynamic force on a sphere near a soft wall. Phys. Fluids 19:103106
    [Google Scholar]
  132. Vialar P, Merzeau P, Giasson S, Drummond C. 2019. Compliant surfaces under shear: elastohydrodynamic lift force. Langmuir 35:15605–13
    [Google Scholar]
  133. Vurgaft A, Elbaz SB, Gat AD. 2019. Forced motion of a cylinder within a liquid-filled elastic tube—a model of minimally invasive medical procedures. J. Fluid Mech. 881:1048–72
    [Google Scholar]
  134. Wang J, Zhu D. 2019. Interfacial Mechanics: Theories and Methods for Contact and Lubrication Boca Raton, FL: CRC
  135. Wang Y, Dhong C, Frechette J. 2015. Out-of-contact elastohydrodynamic deformation due to lubrication forces. Phys. Rev. Lett. 115:248302
    [Google Scholar]
  136. Wang Y, Tan MR, Frechette J. 2017. Elastic deformation of soft coatings due to lubrication forces. Soft Matter 13:6718–29
    [Google Scholar]
  137. Weekley SJ, Waters SL, Jensen OE. 2006. Transient elastohydrodynamic drag on a particle moving near a deformable wall. Q. J. Mech. Appl. Math. 59:277–300
    [Google Scholar]
  138. Wexler JS, Trinh PH, Berthet H, Quennouz N, du Roure O et al. 2013. Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720:517–44
    [Google Scholar]
  139. Wiertlewski M, Fenton Friesen R, Colgate JE 2016. Partial squeeze film levitation modulates fingertip friction. PNAS 113:9210–15
    [Google Scholar]
  140. Wu H, Hui CY, Jagota A. 2023. Solving transient problems in soft elasto-hydrodynamic lubrication. J. Mech. Phys. Solids 170:105104
    [Google Scholar]
  141. Wu H, Moyle N, Jagota A, Hui CY. 2020. Lubricated steady sliding of a rigid sphere on a soft elastic substrate: hydrodynamic friction in the Hertz limit. Soft Matter 16:2760–73
    [Google Scholar]
  142. Yang SM, Leal L. 1990. Motions of a fluid drop near a deformable interface. Int. J. Multiphase Flow 16:597–616
    [Google Scholar]
  143. Yin X, Kumar S. 2005. Lubrication flow between a cavity and a flexible wall. Phys. Fluids 17:063101
    [Google Scholar]
  144. Zakhari MEA, Bonnecaze RT. 2021. Slip of soft permeable particles near a wall. Soft Matter 17:4538–49
    [Google Scholar]
  145. Zhang Z, Arshad M, Bertin V, Almohamad S, Raphael E et al. 2022. Contactless rheology of soft gels over a broad frequency range. Phys. Rev. Appl. 17:064045
    [Google Scholar]
  146. Zhang Z, Bertin V, Arshad M, Raphael E, Salez T, Maali A. 2020. Direct measurement of the elastohydrodynamic lift force at the nanoscale. Phys. Rev. Lett. 124:054502
    [Google Scholar]
  147. Zhao H, Spann AP, Shaqfeh ESG. 2011. The dynamics of a vesicle in a wall-bound shear flow. Phys. Fluids 23:121901
    [Google Scholar]
  148. Zhu D, Wang QJ. 2011. Elastohydrodynamic lubrication: a gateway to interfacial mechanicsreview and prospect. J. Tribol. 133:041001
    [Google Scholar]
  149. Zilman AG, Granek R. 1996. Undulations and dynamic structure factor of membranes. Phys. Rev. Lett. 77:4788–91
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-024426
Loading
/content/journals/10.1146/annurev-fluid-120720-024426
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error