1932

Abstract

A rotating detonation engine (RDE) is a realization of pressure-gain combustion, wherein a traveling detonation wave confined in a chamber provides shock-based compression along with chemical heat release. Due to the high wave speeds, such devices can process high mass flow rates in small volumes, leading to compact and unconventional designs. RDEs involve unsteady and multiscale physics, and their operational characteristics are determined by an equilibrium between large- and small-scale processes. While RDEs can provide a significant theoretical gain in efficiency, achieving this improvement requires an understanding of the multiscale coupling. Specifically, unavoidable nonidealities, such as unsteady mixing, secondary combustion, and multiple competing waves associated with practical designs, need to be understood and managed. The secondary combustion processes arise from fuel/air injection and unsteady and incomplete mixing, and can create spurious losses. In addition, a combination of multiple detonation and secondary waves compete and define the dynamical behavior of mixing, heat release distribution, and the overall mode of operation of the device. This review discusses the current understanding of such nonidealities and describes the tools and techniques used to gain insight into the extreme unsteady environment in such combustors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-032612
2023-01-19
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-032612.html?itemId=/content/journals/10.1146/annurev-fluid-120720-032612&mimeType=html&fmt=ahah

Literature Cited

  1. Anand V, Babu L, Gutmark E. 2021. Observations of DC shift and chugging in a pressurized rotating detonation combustor. Acta Astron. 187:362–69
    [Google Scholar]
  2. Anand V, Gutmark E. 2019. Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73:182–234
    [Google Scholar]
  3. Anand V, St. George A, Driscoll R, Gutmark E 2016. Investigation of rotating detonation combustor operation with H2–air mixtures. Int. J. Hydrog. Energy 41:21281–92
    [Google Scholar]
  4. Anand V, St. George A, Gutmark E. 2017. Amplitude modulated instability in reactants plenum of a rotating detonation combustor. Int. J. Hydrog. Energy 42:1712629–44
    [Google Scholar]
  5. Araki T, Yoshida K, Morii Y, Tsuboi N, Hayashi AK. 2016. Numerical analyses on ethylene/oxygen detonation with multistep chemical reaction mechanisms: grid resolution and chemical reaction model. Combust. Sci. Technol. 188:3346–69
    [Google Scholar]
  6. Athmanathan V, Braun J, Ayers ZM, Fugger CA, Webb AM et al. 2022. On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors. Combust. Flame 240:112013
    [Google Scholar]
  7. Athmanathan V, Rahman KA, Lauriola DK, Braun J, Paniagua G et al. 2021. Femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry in the exhaust of a rotating detonation combustor. Combust. Flame 231:111504
    [Google Scholar]
  8. Bach E, Paschereit C, Stathopoulos P, Bohon MD. 2021. An empirical model for stagnation pressure gain in rotating detonation combustors. Proc. Combust. Inst. 38:33807–14
    [Google Scholar]
  9. Bach E, Stathopoulos P, Paschereit CO, Bohon MD. 2020. Performance analysis of a rotating detonation combustor based on stagnation pressure measurements. Combust. Flame 217:21–36
    [Google Scholar]
  10. Barwey S, Prakash S, Hassanaly M, Raman V. 2021. Data-driven classification and modeling of combustion regimes in detonation waves. Flow Turbul. Combust. 106:41065–89
    [Google Scholar]
  11. Barwey S, Raman V. 2021a. Impact of operator splitting schemes on detonation convergence. Paper presented at 74th Annual Meeting of the American Physical Society Division of Fluid Dynamics, pap. Q03.00001
    [Google Scholar]
  12. Barwey S, Raman V. 2021b. A neural network–inspired matrix formulation of chemical kinetics for acceleration on GPUs. Energies 14:92710
    [Google Scholar]
  13. Batista A, Bigler BR, Ross M, Lietz C, Hargus WA. 2021. Detonation wave collision study during rotating detonation rocket engine counter-propagating modes Paper presented at 2021 AIAA Propulsion and Energy Forum AIAA pap 2021–3659
    [Google Scholar]
  14. Bedick C, Ferguson D, Strakey P. 2019. Characterization of rotating detonation engine injector response using laser-induced fluorescence. J. Propul. Power 35:4827–38
    [Google Scholar]
  15. Bennewitz JW, Bigler BR, Hargus WA, Danczyk SA, Smith RD. 2018. Characterization of detonation wave propagation in a rotating detonation rocket engine using direct high-speed imaging. Paper presented at 2018 Joint Propulsion Conference pap. AIAA-2018-4688
    [Google Scholar]
  16. Bennewitz JW, Bigler BR, Pilgram JJ, Hargus WA Jr. 2019a. Modal transitions in rotating detonation rocket engines. Int. J. Energ. Mater. Chem. Propul. 18:291–109
    [Google Scholar]
  17. Bennewitz JW, Bigler BR, Schumaker SA, Hargus WA. 2019b. Automated image processing method to quantify rotating detonation wave behavior. Rev. Sci. Instrum. 90:065106
    [Google Scholar]
  18. Bennewitz JW, Burr JR, Lietz CF. 2021. Characteristic timescales for rotating detonation rocket engines Paper presented at 2021 AIAA Propulsion and Energy Forum AIAA pap. 2021-3671
    [Google Scholar]
  19. Bigler BR, Burr JR, Bennewitz JW, Danczyk S, Hargus WA. 2020. Performance effects of mode transitions in a rotating detonation rocket engine Paper presented at 2020 AIAA Propulsion and Energy Forum AIAA pap. 2020-3852
    [Google Scholar]
  20. Bluemner R, Bohon M, Paschereit CO, Gutmark EJ. 2018. Dynamics of counter-rotating wave modes in an RDC Paper presented at 2018 Joint Propulsion Conference AIAA pap. 2018-4572
    [Google Scholar]
  21. Bohon M, Bluemner R, Paschereit C, Gutmark E. 2019. High-speed imaging of wave modes in an RDC. Exp. Therm. Fluid Sci. 102:28–37
    [Google Scholar]
  22. Burke R, Rezzag T, Dunn I, Flores W, Ahmed K 2021. The effect of premixed stratification on the wave dynamics of a rotating detonation combustor. Int. J. Hydrog. Energy 46:5427816–26
    [Google Scholar]
  23. Burr JR, Paulson E. 2021. Thermodynamic performance results for rotating detonation rocket engine with distributed heat addition using Cantera Paper presented at 2021 AIAA Propulsion and Energy Forum AIAA pap. 2021-3682
    [Google Scholar]
  24. Burr JR, Yu KH. 2018. Detonation wave propagation in discretely spaced hydrocarbon cross-flow Paper presented at 2018 AIAA Aerospace Sciences Meeting, AIAA pap. 2018-1420
    [Google Scholar]
  25. Bykovskii FA, Zhdan SA, Vedernikov EF. 2006. Continuous spin detonations. J. Propul. Power 22:61204–16
    [Google Scholar]
  26. Bykovskii FA, Zhdan SA, Vedernikov EF. 2019. Continuous detonation of the liquid kerosene—air mixture with addition of hydrogen or syngas. Combust. Explos. Shock Waves 55:5589–98
    [Google Scholar]
  27. Chacon F. 2020. Non-ideal phenomena in rotating detonation combustors PhD Thesis Univ. Mich. Ann Arbor:
    [Google Scholar]
  28. Chacon F, Feleo AD, Gamba M. 2021. Secondary waves dynamics and their impact on detonation structure in rotating detonation combustors. Shock Waves 31:7675–702
    [Google Scholar]
  29. Chacon F, Gamba M. 2018. Development of an optically accessible continuous wave rotating detonation engine. Paper presented at 2018 Joint Propulsion Conference AIAA pap. 2018-4779
    [Google Scholar]
  30. Chacon F, Gamba M. 2019a. OH PLIF visualization of an optically accessible rotating detonation combustor Paper presented at 2019 AIAA Propulsion and Energy Forum pap. AIAA-2019-4217
    [Google Scholar]
  31. Chacon F, Gamba M. 2019b. Study of parasitic combustion in an optically accessible continuous wave rotating detonation engine Paper presented at 2019 AIAA Scitech Forum AIAA pap. 2019-0473
    [Google Scholar]
  32. Cho KY, Codoni JR, Rankin BA, Hoke JL, Schauer FR. 2016. High-repetition-rate chemiluminescence imaging of a rotating detonation engine. Paper presented at 54th AIAA Aerospace Sciences Meeting AIAA pap. 2016-1648
  33. Claflin S, Lynch ED, Stout J. 2015. Rotating detonation combustion for gas turbines—modeling and system synthesis to exceed 65% efficiency goal. Paper presented at University Turbine Systems Research Workshop Atlanta, Novemb:3–5
    [Google Scholar]
  34. Cocks PA, Holley AT, Rankin BA. 2016. High fidelity simulations of a non-premixed rotating detonation engine. Paper presented at 54th AIAA Aerospace Sciences Meeting pap. AIAA-2016-0125
    [Google Scholar]
  35. Connolly-Boutin S, Joseph V, Ng H, Kiyanda C. 2021. Small-size rotating detonation engine: scaling and minimum mass flow rate. Shock Waves 31:7665–74
    [Google Scholar]
  36. Cullen R, Nicholls J, Ragland K. 1966. Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rockets 3:6893–98
    [Google Scholar]
  37. Dausen D, Brophy C, Wright R, Marder J. 2012. Design of an optically accessible rotating detonation engine. Paper presented at 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit AIAA pap. 2012-3944
    [Google Scholar]
  38. Depperschmidt D, Miller R, Tobias J, Uddi M, Agrawal AK, Stout JB. 2019. Time-resolved PIV diagnostics to measure flow field exiting methane-fueled rotating detonation combustor. Paper presented at 2019 AIAA Scitech Forum AIAA pap. 2019-1514
    [Google Scholar]
  39. Dunn IB, Sosa J, Salvadori M, Ahmed KA, Menon S. 2020. Flowfield velocity measurements of a rotating detonation engine. Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-1176
    [Google Scholar]
  40. Dunn IB, Thurmond K, Ahmed KA, Vasu S. 2018. Exploration of measuring pressure gain combustion within a rotating detonation engine. Paper presented at 2018 Joint Propulsion Conference AIAA pap. 2018-4566
    [Google Scholar]
  41. Duvall J, Chacon F, Harvey C, Gamba M. 2018. Study of the effects of various injection geometries on the operation of a rotating detonation engine. Paper presented at 2018 AIAA Aerospace Sciences Meeting AIAA pap. 2018-0631
    [Google Scholar]
  42. Ettner F, Vollmer K, Sattelmayer T. 2013. Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves 23:3201–6
    [Google Scholar]
  43. Feleo A, Chacon F, Gamba M. 2019. Effects of heat release distribution on detonation properties in a H2/air rotating detonation combustor from OH* chemiluminescence Paper presented at 2019 AIAA Propulsion and Energy Forum pap. AIAA-2019-4045
    [Google Scholar]
  44. Feleo A, Shepard J, Gamba M. 2021. Elevated inlet temperature effects on the operation of a rotating detonation combustor Paper presented at 2021 AIAA Propulsion and Energy Forum pap. AIAA-2021-3673
    [Google Scholar]
  45. Ferguson DH, O'Meara B, Roy A, Johnson K 2020. Experimental measurements of NOx emissions in a rotating detonation engine. Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-0204
    [Google Scholar]
  46. Fiévet R, Voelkel S, Koo H, Raman V, Varghese PL. 2017. Effect of thermal nonequilibrium on ignition in scramjet combustors. Proc. Combust. Inst. 36:22901–10
    [Google Scholar]
  47. Fievisohn RT, Cho KY, Hoke JL, Schauer FR. 2019a. Experimental study of a linear RDE section coupled to an operating RDE Paper presented at 2019 AIAA Scitech Forum pap. AIAA-2019-1251
    [Google Scholar]
  48. Fievisohn RT, Hoke JL, Battelle RT, Klingshirn C, Holley AT, Schumaker SA. 2021. Closed loop integration of a rotating detonation combustor in a T63 gas turbine engine Paper presented at 2021 AIAA Scitech Forum AIAA pap. 2021-0900
    [Google Scholar]
  49. Fievisohn RT, Hoke JL, Holley AT. 2019b. Thermodynamic and operability implications of product recirculation in rotating detonation engines Paper presented at 2019 AIAA Propulsion and Energy 2019 Forum AIAA pap. 2019-4449
    [Google Scholar]
  50. Fievisohn RT, Hoke JL, Schumaker SA. 2020. Product recirculation and incipient autoignition in a rotating detonation engine. Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-2286
    [Google Scholar]
  51. Fotia ML, Schauer FR, Kaemming T, Hoke J. 2016. Experimental study of the performance of a rotating detonation engine with nozzle. J. Propul. Power 32:3674–81
    [Google Scholar]
  52. Frolov S, Aksenov V, Ivanov V. 2015a. Experimental proof of Zel'dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen–oxygen fuel mixture. Int. J. Hydrog. Energy 40:216970–75
    [Google Scholar]
  53. Frolov S, Aksenov V, Ivanov V, Medvedev S, Shamshin I et al. 2018. Rocket engine with continuous detonation combustion of the natural gas-oxygen propellant system. Dokl. Phys. Chem. 478:231–34
    [Google Scholar]
  54. Frolov S, Aksenov V, Ivanov V, Shamshin I. 2015b. Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrog. Energy 40:31616–23
    [Google Scholar]
  55. Frolov SM, Smetanyuk V, Ivanov V, Basara B. 2021. The influence of the method of supplying fuel components on the characteristics of a rotating detonation engine. Combust. Sci. Technol. 193:3511–38
    [Google Scholar]
  56. Gaillard T, Davidenko D, Dupoirieux F. 2015. Numerical optimisation in non reacting conditions of the injector geometry for a continuous detonation wave rocket engine. Acta Astron. 111:334–44
    [Google Scholar]
  57. Gelfand B, Frolov S, Nettleton M. 1991. Gaseous detonations—a selective review. Prog. Energy Combust. Sci. 17:4327–71
    [Google Scholar]
  58. Goto K, Kato Y, Ishihara K, Matsuoka K, Kasahara J et al. 2021a. Thrust validation of rotating detonation engine system by moving rocket sled test. J. Propul. Power 37:3419–25
    [Google Scholar]
  59. Goto K, Matsuoka K, Matsuyama K, Kawasaki A, Watanabe H et al. 2022. Flight demonstration of detonation engine system using sounding rocket S-520-31: performance of rotating detonation engine. Paper presented at 2022 AIAA Scitech Forum pap. AIAA-2022-0232
    [Google Scholar]
  60. Goto K, Ota K, Kawasaki A, Itouyama N, Watanabe H et al. 2021b. Cylindrical rotating detonation engine with propellant injection cooling. J. Propul. Power 38:341020
    [Google Scholar]
  61. Han HS, Lee ES, Choi JY. 2021. Experimental investigation of detonation propagation modes and thrust performance in a small rotating detonation engine using C2H4/O2 propellant. Energies 14:51381
    [Google Scholar]
  62. Han W, Gao Y, Law CK. 2017. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: an integrated mechanistic study. Combust. Flame 176:285–98
    [Google Scholar]
  63. Han W, Wang C, Law CK. 2019. Role of transversal concentration gradient in detonation propagation. J. Fluid Mech. 865:602–49
    [Google Scholar]
  64. Hayashi AK, Ishii K, Watanabe T, Tsuboi N, Ozawa K et al. 2021a. Experimental and numerical study on disc-RDE: flow structure and its performances Paper presented at 2021 AIAA Scitech Forum AIAA pap. 2021-1253
    [Google Scholar]
  65. Hayashi AK, Shimomura K, Tsuboi N, Ozawa K, Jourdaine NH et al. 2021b. 3D numerical study on flow field in disc-RDE Paper presented at 2021 AIAA Scitech Forum AIAA pap. 2021-3665
    [Google Scholar]
  66. Hayashi AK, Tsuboi N, Ozawa K, Watanabe T, Jourdaine NH et al. 2020. Recent experimental and numerical study on disc-type RDEs Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-1169
    [Google Scholar]
  67. Higashi J, Nakagami S, Matsuoka K, Kasahara J, Matsuo A et al. 2017. Experimental study of the disk-shaped rotating detonation turbine engine. Paper presented at 55th AIAA Aerospace Sciences Meeting AIAA pap. 2017-1286
    [Google Scholar]
  68. Hishida M, Fujiwara T, Wolański P. 2009. Fundamentals of rotating detonations. Shock Waves 19:11–10
    [Google Scholar]
  69. Hoke JL, Bradley R, Schauer FR. 2008. Single-ejector augmentation of a multi-tube pulsed detonation engine Paper presented at 46th AIAA Aerospace Sciences Meeting and Exhibit AIAA pap. 2008-115
    [Google Scholar]
  70. Houim RW, Fievisohn RT. 2017. The influence of acoustic impedance on gaseous layered detonations bounded by an inert gas. Combust. Flame 179:185–98
    [Google Scholar]
  71. Huang X, Teo CJ, Khoo BC. 2021. Wave mode dynamics in an ethylene–air rotating detonation combustor. AIAA J. 59:51808–23
    [Google Scholar]
  72. Huff R, Polanka MD, McClearn MJ, Schauer FR, Fotia ML, Hoke JL. 2019. Design and operation of a radial rotating detonation engine. J. Propul. Power 35:61143–50
    [Google Scholar]
  73. Ivanov VS, Frolov SM, Sergeev SS, Mironov YM, Novikov AE, Schultz II. 2021. Pressure measurements in detonation engines. Proc. Inst. Mech. Eng. G 235:142113–34
    [Google Scholar]
  74. Kaemming T, Fotia ML, Hoke JL, Schauer FR. 2017. Thermodynamic modeling of a rotating detonation engine through a reduced-order approach. J. Propul. Power 33:51170–78
    [Google Scholar]
  75. Kaemming TA, Paxson DE. 2018. Determining the pressure gain of pressure gain combustion. Paper presented at 2018 Joint Propulsion Conference AIAA pap. 2018-4567
    [Google Scholar]
  76. Kailasanath K. 2003. Recent developments in the research on pulse detonation engines. AIAA J. 41:2145–59
    [Google Scholar]
  77. Kailasanath K. 2017. Recent developments in the research on rotating-detonation-wave engines Paper presented at 55th AIAA Aerospace Sciences Meeting AIAA pap. 2017-0784
    [Google Scholar]
  78. Kailasanath K, Oran E, Boris J, Young T 1985. Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61:3199–209
    [Google Scholar]
  79. Kailasanath K, Schwer DA. 2017. High-fidelity simulations of pressure-gain combustion devices based on detonations. J. Propul. Power 33:1153–62
    [Google Scholar]
  80. Kessler D, Gamezo V, Oran E 2011. Multilevel detonation cell structures in methane–air mixtures. Proc. Combust. Inst. 33:22211–18
    [Google Scholar]
  81. Kessler D, Gamezo V, Oran E. 2012. Gas-phase detonation propagation in mixture composition gradients. Philos. Trans. R. Soc. A 370:1960567–96
    [Google Scholar]
  82. Khodadadi Azadboni R, Heidari A, Boeck LR, Wen JX. 2019. The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions—a numerical study. Int. J. Hydrog. Energy 44:137032–40
    [Google Scholar]
  83. Kindracki J, Siatkowski S, Lukasik B. 2020. Influence of inlet flow parameters on rotating detonation. AIAA J. 58:125046–51
    [Google Scholar]
  84. Kindracki J, Wolański P, Gut Z. 2011. Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 21:275–84
    [Google Scholar]
  85. Koch J, Kutz JN. 2020. Modeling thermodynamic trends of rotating detonation engines. Phys. Fluids 32:126102
    [Google Scholar]
  86. Koo H, Raman V, Varghese PL. 2015. Direct numerical simulation of supersonic combustion with thermal nonequilibrium. Proc. Combust. Inst. 35:22145–53
    [Google Scholar]
  87. Kubicki SW, Anderson W, Heister SD 2020. Further experimental study of a hypergolically-ignited liquid–liquid rotating detonation rocket engine Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-0196
    [Google Scholar]
  88. Lee JHS. 1984. Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech. 16:311–36
    [Google Scholar]
  89. Lele SK, Larsson J. 2009. Shock-turbulence interaction: what we know and what we can learn from peta-scale simulations. J. Phys. Conf. Ser. 180:012032
    [Google Scholar]
  90. Lentsch A, Bec R, Serre L, Falempin F, Daniau D et al. 2005. Overview of current French activities on PDRE and continuous detonation wave rocket engines Paper presented at 13th AIAA/CIRA International Space Planes and Hypersonics Systems and Technologies Conference AIAA pap. 2005-3232
    [Google Scholar]
  91. Li C, Kailasanath K, Oran ES. 1994. Detonation structures behind oblique shocks. Phys. Fluids 6:41600–11
    [Google Scholar]
  92. Lietz C, Desai Y, Hargus WA, Sankaran V. 2019. Parametric investigation of rotating detonation rocket engines using large eddy simulations Paper presented at 2019 AIAA Propulsion and Energy Forum AIAA pap. 2019-4129
    [Google Scholar]
  93. Lietz C, Ross M, Desai Y, Hargus WA. 2020. Numerical investigation of operational performance in a methane-oxygen rotating detonation rocket engine Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-0687
    [Google Scholar]
  94. Lim D, Humble J, Heister SD. 2020. Experimental testing of an RP-2-GOX rotating detonation rocket engine Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-0195
    [Google Scholar]
  95. Liu Z, Braun J, Paniagua G. 2020. Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with optimized endwalls. Int. J. Mech. Sci. 188:105918
    [Google Scholar]
  96. Lu FK, Braun EM. 2014. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propul. Power 30:51125–42
    [Google Scholar]
  97. Lu T, Law CK, Ju Y. 2003. Some aspects of chemical kinetics in Chapman–Jouguet detonation: induction length analysis. J. Propul. Power 19:5901–7
    [Google Scholar]
  98. Mathews GC, Blaisdell MG, Lemcherfi AI, Slabaugh CD, Goldenstein CS. 2021. High-bandwidth absorption-spectroscopy measurements of temperature, pressure, CO, and H2O in the annulus of a rotating detonation rocket engine. Appl. Phys. B 127:12165
    [Google Scholar]
  99. Meng H, Xiao Q, Feng W, Wu M, Han X et al. 2022. Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor. Aerosp. Sci. Technol. 122:107407
    [Google Scholar]
  100. Meng H, Zheng Q, Weng C, Wu Y, Feng W et al. 2021. Propagation mode analysis of rotating detonation waves fueled by liquid kerosene. Acta Astron. 187:248–58
    [Google Scholar]
  101. Nair AP, Lee DD, Pineda DI, Kriesel J, Hargus WA Jr. et al. 2020. MHz laser absorption spectroscopy via diplexed RF modulation for pressure, temperature, and species in rotating detonation rocket flows. Appl. Phys. B 126:8126
    [Google Scholar]
  102. Nair AP, Lee DD, Pineda DI, Kriesel J, Hargus WA Jr. et al. 2021. Methane–oxygen rotating detonation exhaust thermodynamics with variable mixing, equivalence ratio, and mass flux. Aerosp. Sci. Technol. 113:106683
    [Google Scholar]
  103. Najm HN. 2009. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41:35–52
    [Google Scholar]
  104. Nakagami S, Matsuoka K, Kasahara J, Kumazawa Y, Fujii J et al. 2017. Experimental visualization of the structure of rotating detonation waves in a disk-shaped combustor. J. Propul. Power 33:180–88
    [Google Scholar]
  105. Naples A, Hoke JL, Battelle R, Schauer FR. 2018. T63 turbine response to rotating detonation combustor exhaust flow. J. Eng. Gas Turbines Power 141:021029
    [Google Scholar]
  106. Naples A, Hoke JL, Schauer FR. 2014. Rotating detonation engine interaction with an annular ejector Paper presented at 52nd Aerospace Sciences Meeting AIAA pap. 2014-0287
    [Google Scholar]
  107. Nejaamtheen MN, Kim TY, Pavalavanni PK, Ryu J, Choi JY. 2021. Effects of the dimensionless radius of an annulus on the detonation propagation characteristics in circular and non-circular rotating detonation engines. Shock Waves 31:7703–15
    [Google Scholar]
  108. Nordeen CA, Schwer D, Schauer FR, Hoke JL, Barber T, Cetegen B. 2014. Thermodynamic model of a rotating detonation engine. Combust. Explos. Shock Waves 50:5568–77
    [Google Scholar]
  109. Oran ES, Jones DA, Sichel M. 1992. Numerical simulations of detonation transmission. Proc. R. Soc. A 436:1897267–97
    [Google Scholar]
  110. Pal P, Kumar G, Drennan SA, Rankin BA, Som S. 2019. Multidimensional numerical simulations of reacting flow in a non-premixed rotating detonation engine. Proceedings of Turbo Expo: Power for Land, Sea, and Air pap. V04BT04A050 Washington, DC: Am. Soc. Mech. Eng.
    [Google Scholar]
  111. Pal P, Kumar G, Drennan SA, Rankin BA, Som S. 2021. Multidimensional numerical modeling of combustion dynamics in a non-premixed rotating detonation engine with adaptive mesh refinement. J. Energy Resour. Technol. 143:112308
    [Google Scholar]
  112. Pan Z, Zhang Z, Yang H, Gui M, Zhang P, Zhu Y. 2021. Experimental and numerical investigation on flame propagation and transition to detonation in curved channel. Aerosp. Sci. Technol. 118:107036
    [Google Scholar]
  113. Paxson DE. 2018. Examination of wave speed in rotating detonation engines using simplified computational fluid dynamics. Paper presented at 2018 AIAA Aerospace Sciences Meeting pap. AIAA-2018-1883
    [Google Scholar]
  114. Paxson DE, Fotia ML, Hoke JL, Schauer FR. 2015. Comparison of numerically simulated and experimentally measured performance of a rotating detonation engine. Paper presented at 53rd AIAA Aerospace Sciences Meeting AIAA pap. 2015-1101
    [Google Scholar]
  115. Paxson DE, Kaemming T. 2014. Influence of unsteadiness on the analysis of pressure gain combustion devices. J. Propul. Power 30:2377–83
    [Google Scholar]
  116. Peng H, Liu W, Liu S. 2018. Ethylene continuous rotating detonation in optically accessible racetrack-like combustor. Combust. Sci. Technol. 191:4676–95
    [Google Scholar]
  117. Peng WY, Cassady SJ, Strand CL, Goldenstein CS, Spearrin RM et al. 2019. Single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water concentration and temperature within the annulus of a rotating detonation engine. Proc. Combust. Inst. 37:21435–43
    [Google Scholar]
  118. Perdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE. 2017. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proc. R. Soc. A 473:219820160751
    [Google Scholar]
  119. Powers JM, Paolucci S. 2005. Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43:51088–99
    [Google Scholar]
  120. Prakash S, Fievet R, Raman V. 2019. The effect of fuel stratification on the detonation wave structure. Paper presented at 2019 AIAA Scitech Forum AIAA pap. 2019-1511
    [Google Scholar]
  121. Prakash S, Fiévet R, Raman V, Burr J, Yu K. 2020a. Analysis of the detonation wave structure in a linearized rotating detonation engine. AIAA J. 58:125063–77
    [Google Scholar]
  122. Prakash S, Klarkowski C, Raman V. 2022. Multi-fidelity modeling-based estimation of rotating detonation engine performance Paper presented at 2022 AIAA Scitech Forum pap. AIAA-2022-0641
    [Google Scholar]
  123. Prakash S, Raman V. 2021. The effects of mixture preburning on detonation wave propagation. Proc. Combust. Inst. 38:33749–58
    [Google Scholar]
  124. Prakash S, Raman V, Lietz C, Hargus WA, Schumaker SA. 2020b. High fidelity simulations of a methane–oxygen rotating detonation rocket engine Paper presented at 2020 AIAA Scitech Forum AIAA pap. 2020-0689
    [Google Scholar]
  125. Prakash S, Raman V, Lietz CF, Hargus WA, Schumaker SA. 2021. Numerical simulation of a methane–oxygen rotating detonation rocket engine. Proc. Combust. Inst. 38:33777–86
    [Google Scholar]
  126. Qian C, Wang C, Liu J, Brandenburg A, Haugen NEL, Liberman MA. 2020. Convergence properties of detonation simulations. Geophys. Astrophys. Fluid Dyn. 114:1/258–76
    [Google Scholar]
  127. Raman V, Hassanaly M. 2019. Emerging trends in numerical simulations of combustion systems. Proc. Combust. Inst. 37:22073–89
    [Google Scholar]
  128. Rankin BA, Codoni JR, Cho KY, Hoke JL, Schauer FR. 2019. Investigation of the structure of detonation waves in a non-premixed hydrogen–air rotating detonation engine using mid-infrared imaging. Proc. Combust. Inst. 37:33479–86
    [Google Scholar]
  129. Rankin BA, Fotia ML, Naples AG, Stevens CA, Hoke JL et al. 2017a. Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propul. Power 33:1131–43
    [Google Scholar]
  130. Rankin BA, Fugger CA, Richardson DR, Cho KY, Hoke JL et al. 2016. Evaluation of mixing processes in a non-premixed rotating detonation engine using acetone PLIF Paper presented at 54th AIAA Aerospace Sciences Meeting AIAA pap. 2016-1198
    [Google Scholar]
  131. Rankin BA, Gore JP, Hoke JL, Schauer FR. 2013. Radiation measurements and temperature estimates of unsteady exhaust plumes exiting from a turbine driven by pulsed detonation combustion Paper presented at 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2013 AIAA pap. 2013-0886
    [Google Scholar]
  132. Rankin BA, Hoke JL, Schauer FR. 2014. Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine. Paper presented at 52nd Aerospace Sciences Meeting AIAA pap. 2014-1015
    [Google Scholar]
  133. Rankin BA, Richardson DR, Caswell AW, Naples AG, Hoke JL, Schauer FR. 2017b. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame 176:12–22
    [Google Scholar]
  134. Rein KD, Roy S, Hoke JL, Caswell AW, Schauer FR, Gord JR. 2017. Multi-beam temperature measurements in a rotating detonation engine using H2O absorption spectroscopy Paper presented at 55th AIAA Aerospace Sciences Meeting AIAA pap. 2017-1064
    [Google Scholar]
  135. Rein KD, Roy S, Sell BC, Hoke JL, Caswell AW et al. 2016. Time-resolved in-situ absorption spectroscopy of a hydrogen-air rotating detonation engine using a fiber-coupled tunable laser system Paper presented at 54th AIAA Aerospace Sciences Meeting AIAA pap. 2016-1199
    [Google Scholar]
  136. Sato T, Chacon F, Gamba M, Raman V. 2021a. Mass flow rate effect on a rotating detonation combustor with an axial air injection. Shock Waves 31:7741–51
    [Google Scholar]
  137. Sato T, Chacon F, White L, Raman V, Gamba M 2021b. Mixing and detonation structure in a rotating detonation engine with an axial air inlet. Proc. Combust. Inst. 38:33769–76
    [Google Scholar]
  138. Sato T, Raman V. 2020. Detonation structure in ethylene/air-based non-premixed rotating detonation engine. J. Propul. Power 36:5752–62
    [Google Scholar]
  139. Schwer D, Kailasanath K. 2011. Numerical investigation of the physics of rotating-detonation engines. Proc. Combust. Inst. 33:22195–202
    [Google Scholar]
  140. Schwinn K, Gejji R, Kan B, Sardeshmukh S, Heister S, Slabaugh CD. 2018. Self-sustained, high-frequency detonation wave generation in a semi-bounded channel. Combust. Flame 193:384–96
    [Google Scholar]
  141. Shaw IJ, Kildare JA, Evans MJ, Chinnici A, Sparks CA et al. 2019. A theoretical review of rotating detonation engines. Direct Numerical Simulations: An Introduction and Applications S Rao. London: IntechOpen. https://doi.org/10.5772/intechopen.90470
    [Crossref] [Google Scholar]
  142. Shepherd JE, Kasahara J. 2017. Analytical models for the thrust of a rotating detonation engine Tech. Rep. FM2017.001 Grad. Aerosp. Lab. Caltech, Pasadena, CA:
    [Google Scholar]
  143. Shi L, Shen H, Zhang P, Zhang D, Wen C. 2017. Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189:5841–53
    [Google Scholar]
  144. Sousa J, Paniagua G, Collado Morata E. 2017. Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Appl. Energy 195:247–56
    [Google Scholar]
  145. St. George A, Driscoll R, Anand V, Gutmark E 2017. On the existence and multiplicity of rotating detonations. Proc. Combust. Inst. 36:22691–98
    [Google Scholar]
  146. St. George A, Randall S, Anand V, Driscoll R, Gutmark E 2016. Characterization of initiator dynamics in a rotating detonation combustor. Exp. Therm. Fluid Sci. 72:171–81
    [Google Scholar]
  147. Stechmann DP, Sardeshmukh S, Heister SD, Mikoshiba K. 2019. Role of ignition delay in rotating detonation engine performance and operability. J. Propul. Power 35:1125–40
    [Google Scholar]
  148. Subramanian S, Meadows J. 2020. Novel approach for computational modeling of a non-premixed rotating detonation engine. J. Propul. Power 36:4617–31
    [Google Scholar]
  149. Taguchi T, Yamaguchi M, Matsuoka K, Kawasaki A, Watanabe H et al. 2022. Investigation of reflective shuttling detonation cycle by schlieren and chemiluminescence photography. Combust. Flame 236:111826
    [Google Scholar]
  150. Taylor B, Kessler D, Gamezo V, Oran E. 2013a. Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst. 34:22009–16
    [Google Scholar]
  151. Taylor B, Kessler D, Oran E. 2013b. Estimates of vibrational nonequilibrium time scales in hydrogen-air detonation waves. Proceedings of the 24th International Colloquium on the Dynamics of Explosive and Reactive Systems pap. 223 College Station, TX: Inst. Dyn. Explos. React. Syst.
    [Google Scholar]
  152. Thurmond K, Dunn I, Ahmed KA, Vasu S. 2019. Measurements of H2O, CO2, CO, and static temperature inside rotating detonation engines Paper presented at 2019 AIAA Scitech Forum pap. AIAA-2019-0747
    [Google Scholar]
  153. Thurmond K, Vasu S, Stout J, Coogan SB, Ahmed KA et al. 2018. MHz-rate laser spectroscopic instrument for reacting flow composition and temperature measurements inside rotating detonation engines (RDEs) Paper presented at 2018 Joint Propulsion Conference AIAA pap. 2018-4687
    [Google Scholar]
  154. Unruh EC, Spaulding M, Lineberry DM, Xu KG, Frederick RA. 2020. Development of an optically accessible racetrack-type rotating detonation rocket engine Paper presented at 2020 AIAA Propulsion and Energy Forum AIAA pap. 2020-3868
    [Google Scholar]
  155. Voelkel S, Masselot D, Varghese PL, Raman V. 2016. Analysis of hydrogen-air detonation waves with vibrational nonequilibrium. AIP Conf. Proc. 1786:070015
    [Google Scholar]
  156. Walters IV, Gejji RM, Heister SD, Slabaugh CD. 2021a. Flow and performance analysis of a natural gas–air rotating detonation engine with high-speed velocimetry. Combust. Flame 232:111549
    [Google Scholar]
  157. Walters IV, Lemcherfi A, Gejji RM, Heister SD, Slabaugh CD. 2021b. Performance characterization of a natural gas–air rotating detonation engine. J. Propul. Power 37:2292–304
    [Google Scholar]
  158. Wang Y, Wang J. 2016. Coexistence of detonation with deflagration in rotating detonation engines. Int. J. Hydrog. Energy 41:3214302–9
    [Google Scholar]
  159. Wen H, Xie Q, Wang B. 2019. Propagation behaviors of rotating detonation in an obround combustor. Combust. Flame 210:389–98
    [Google Scholar]
  160. Wilhite J, Driscoll RB, George ACS, Anand V, Gutmark EJ. 2016. Investigation of a rotating detonation engine using ethylene-air mixtures Paper presented at 54th AIAA Aerospace Sciences Meeting AIAA pap. 2016-1650
    [Google Scholar]
  161. Wolański P. 2011. Rotating detonation wave stability. Proceedings of the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems pap. 211 College Station, TX: Inst. Dyn. Explos. React. Syst.
    [Google Scholar]
  162. Wolański P. 2013. Detonative propulsion. Proc. Combust. Inst. 34:1125–58
    [Google Scholar]
  163. Wolański P. 2015. Application of the continuous rotating detonation to gas turbine. Appl. Mech. Mater. 782:3–12
    [Google Scholar]
  164. Wolański P. 2021. RDE research and development in Poland. Shock Waves 31:7623–36
    [Google Scholar]
  165. Wolański P, Kalina P, Balicki W, Rowiński A, Perkowski W et al. 2018. Development of gasturbine with detonation chamber. Detonation Control for Propulsion JM Li, CJ Teo, BC Khoo, JP Wang, C Wang 23–37 Berlin: Springer
    [Google Scholar]
  166. Xie Q, Wen H, Li W, Ji Z, Wang B, Wolański P. 2018. Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition. Energy 151:408–19
    [Google Scholar]
  167. Yamaguchi M, Matsuoka K, Kawasaki A, Kasahara J, Watanabe H, Matsuo A. 2019. Supersonic combustion induced by reflective shuttling shock wave in fan-shaped two-dimensional combustor. Proc. Combust. Inst. 37:33741–47
    [Google Scholar]
  168. Yamaguchi M, Taguchi T, Matsuoka K, Kawasaki A, Kasahara J et al. 2021. Investigation of combustion modes and pressure of reflective shuttling detonation combustor. Proc. Combust. Inst. 38:33615–22
    [Google Scholar]
  169. Yan C, Teng H, Ng HD. 2021. Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine. Acta Astron. 182:274–85
    [Google Scholar]
  170. Yao S, Wang J. 2016. Multiple ignitions and the stability of rotating detonation waves. Appl. Therm. Eng. 108:927–36
    [Google Scholar]
  171. Yi TH, Lou J, Turangan C, Choi JY, Wolański P. 2011. Propulsive performance of a continuously rotating detonation engine. J. Propul. Power 27:1171–81
    [Google Scholar]
  172. Yi TH, Lou J, Turangan C, Khoo BC, Wolański P. 2010. Effect of nozzle shapes on the performance of continuously-rotating detonation engine. Paper presented at 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition AIAA pap. 2010-152
    [Google Scholar]
  173. Yokoo R, Goto K, Kim J, Kawasaki A, Matsuoka K et al. 2020. Propulsion performance of cylindrical rotating detonation engine. AIAA J. 58:125107–16
    [Google Scholar]
  174. Zhao M, Buttsworth D, Gollan RJ, Jacobs PA. 2018. Simulation of a rotating detonation ramjet model in Mach 4 flow. Proceedings of the 21st Australasian Fluid Mechanics Conference Perth, Aust.: Australas. Fluid Mech. Soc.
    [Google Scholar]
  175. Zhao M, Zhang H. 2021. Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: droplet size and equivalence ratio effects. Fuel 304:121481
    [Google Scholar]
  176. Zhong Y, Wu Y, Jin D, Chen X, Yang X, Wang S 2019. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene. Aerosp. Sci. Technol. 95:105480
    [Google Scholar]
  177. Zhou R, Wang JP. 2013. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves 23:5461–72
    [Google Scholar]
  178. Zhou R, Wu D, Wang J. 2016. Progress of continuously rotating detonation engines. Chin. J. Aeronaut. 29:115–29
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-032612
Loading
/content/journals/10.1146/annurev-fluid-120720-032612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error