1932

Abstract

The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal gases. Due to nonideal fluid thermodynamic properties, unconventional gas dynamic effects are possible, including nonclassical rarefaction shock waves and the nonmonotonic variation of the Mach number along steady isentropic expansions. This review provides a comprehensive theoretical framework of the fundamentals of nonideal compressible fluid dynamics (NICFD). The relation between nonideal gas dynamics and the complexity of the fluid molecules is clarified. The theoretical, numerical, and experimental tools currently employed to investigate NICFD flows and related applications are reviewed, followed by an overview of industrial processes involving NICFD, ranging from organic Rankine and supercritical CO cycle power systems to supercritical processes. The future challenges facing researchers in the field are briefly outlined.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-033342
2024-01-19
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-120720-033342.html?itemId=/content/journals/10.1146/annurev-fluid-120720-033342&mimeType=html&fmt=ahah

Literature Cited

  1. Anders JB, Anderson WK, Murthy AV. 1999. Transonic similarity theory applied to a supercritical airfoil in heavy gases. J. Aircraft 36:6957–64
    [Google Scholar]
  2. Angelino G. 1968. Carbon dioxide condensation cycles for power production. J. Eng. Power 90:287–95
    [Google Scholar]
  3. Baab S, Förster FJ, Lamanna G, Weigand B. 2016. Speed of sound measurements and mixing characterization of underexpanded fuel jets with supercritical reservoir condition using laser-induced thermal acoustics. Exp. Fluids 57:1117213
    [Google Scholar]
  4. Banuti DT. 2015. Crossing the Widom line—supercritical pseudo-boiling. J. Supercrit. Fluids 98:12–16
    [Google Scholar]
  5. Bates JW, Montgomery DC. 1999. Some numerical studies of exotic shock wave behavior. Phys. Fluids 11:2462–75
    [Google Scholar]
  6. Baumgärtner D, Otter JJ, Wheeler APS. 2020. The effect of isentropic exponent on transonic turbine performance. J. Turbomach. 142:808100710
    [Google Scholar]
  7. Bell IH, Alpert BK. 2021. Efficient and precise representation of pure fluid phase equilibria with Chebyshev expansions. Int. J. Thermophys. 42:7516
    [Google Scholar]
  8. Bell IH, Laesecke A. 2016. Viscosity of refrigerants and other working fluids from residual entropy scaling. Paper presented at the 16th International Refrigeration and Air Conditioning Conference at Purdue University West Lafayette, IN: July 11–14
    [Google Scholar]
  9. Bellan J ed. 2020. High-Pressure Flows for Propulsion Applications Reston, VA: AIAA
  10. Beltrame F, De Servi C, Head AJ, Pini M, Schrijer F, Colonna P 2021. First experiments and commissioning of the ORCHID nozzle test section. Proceedings of the 3rd International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power M Pini, C De Servi, A Spinelli, F di Mare, A Guardone 169–78. Cham, Switz: Springer
  11. Bethe HA. 1942. The theory of shock waves for an arbitrary equation of state Tech. Rep. 545, Off. Sci. Res. Dev. New York:
  12. Bier K, Ehrler F, Niekrawietz M 1990. Experimental investigation and computer analysis of spontaneous condensation in stationary nozzle flow of CO2-air mixtures. Adiabatic Waves in Liquid-Vapor Systems GEA Meier, PA Thompson 113–27. Berlin: Springer
    [Google Scholar]
  13. Bradshaw P. 1977. Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9:33–52
    [Google Scholar]
  14. Callen HB. 1985. Thermodynamics and an Introduction to Thermostatistics Toronto: Wiley. , 2nd ed..
  15. Cammi G, Spinelli A, Cozzi F, Guardone A. 2021. Automatic detection of oblique shocks and simple waves in schlieren images of two-dimensional supersonic steady flows. Measurement 168:10826014
    [Google Scholar]
  16. Castier M, Cabral VF. 2012. Pure saturated gases with predicted negative fundamental derivative of gas dynamics. Fluid Phase Equilib. 334:128–36
    [Google Scholar]
  17. Chandrasekar D, Prasad P. 1991. Transonic flow of a fluid with positive and negative nonlinearity through a nozzle. Phys. Fluids A 3:3427–38
    [Google Scholar]
  18. Chandrasekaran NB. 2023. Nonclassical gasdynamics: theory and experiments on nonlinear wave propagation in BZT fluids PhD Thesis Delft Univ. Technol. Delft, Neth:.
  19. Chichester JC, Huber ML. 2008. Documentation and assessment of the transport property model for mixtures implemented in NIST REFPROP (version 8.0) Tech. Rep. NISTIR 6650, Natl. Inst. Stand. Technol. Boulder, CO:
    [Google Scholar]
  20. Cinnella P. 2006. Roe-type schemes for dense gas flow computations. Comput. Fluids 35:101264–81
    [Google Scholar]
  21. Cinnella P, Hercus SJ. 2010. Robust optimization of dense gas flows under uncertain operating conditions. Comput. Fluids 39:101893–908
    [Google Scholar]
  22. Colonna P, Casati E, Trapp C, Mathijssen T, Larjola J et al. 2015. Organic Rankine cycle power systems: from the concept to current technology, applications, and an outlook to the future. J. Eng. Gas Turb. Power 137:1010080119
    [Google Scholar]
  23. Colonna P, Guardone A. 2006. Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model. Phys. Fluids 18:505610114
    [Google Scholar]
  24. Colonna P, Guardone A, Nannan NR, van der Stelt TP. 2009. On the computation of the fundamental derivative of gas dynamics using equations of state. Fluid Phase Equilib. 286:143–54
    [Google Scholar]
  25. Colonna P, Rebay S. 2004. Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver. Int. J. Numer. Meth. Fluids 46:7735–65
    [Google Scholar]
  26. Colonna P, Silva P. 2003. Dense gas thermodynamic properties of single and multi-component fluids for fluid dynamics simulations. J. Fluids Eng. 125:3414–27
    [Google Scholar]
  27. Conti CC, Fusetti A, Spinelli A, Gaetani P, Guardone A. 2022a. Pneumatic system for pressure probe measurements in transient flows of non-ideal vapors subject to line condensation. Measurement 192:11080213
    [Google Scholar]
  28. Conti CC, Fusetti A, Spinelli A, Guardone A. 2022b. Shock loss measurements in non-ideal supersonic flows of organic vapors. Exp. Fluids 63:711711
    [Google Scholar]
  29. Conti CC, Spinelli A, Cammi G, Zocca M, Cozzi F, Guardone A. 2017. Schlieren visualizations of non-ideal compressible fluid flows Paper presented at the 13th International Conference on Heat Transfer Fluid Mechanics and Thermodynamics Portoroz, Slovenia: July 17–19
  30. Conti CC, Spinelli A, Guardone A 2021. Similarity parameters for non-ideal one-dimensional isentropic expansions. Proceedings of the 3rd International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power M Pini, C De Servi, A Spinelli, F di Mare, A Guardone 26–35. Cham, Switz: Springer
  31. Cramer MS, Best LM. 1991. Steady, isentropic flows of dense gases. Phys. Fluids A 3:4219–26
    [Google Scholar]
  32. Cramer MS, Fry NR. 1993. Nozzle flows of dense gases. Phys. Fluids A 5:51246–59
    [Google Scholar]
  33. Cramer MS, Park SH, Watson LT. 1997. Numerical verification of scaling laws for shock-boundary layer interactions in arbitrary gases. J. Fluids Eng. 119:167–73
    [Google Scholar]
  34. Cramer MS, Whitlock ST, Tarkenton GM. 1996. Transonic and boundary layer similarity laws in dense gases. J. Fluids Eng. 118:3481–85
    [Google Scholar]
  35. Dettleff G, Thompson PA, Meier EA, Speckmann H. 1979. An experimental study of liquefaction shock waves. J. Fluid Mech. 95:279–304
    [Google Scholar]
  36. Duan L, Zheng Q, Jiang Z, Wang J. 2021. Dense gas effect on small-scale structures of compressible isotropic turbulence. Phys. Fluids 33:1111511323
    [Google Scholar]
  37. Duff K. 1966. Non-equilibrium condensation of carbon dioxide in supersonic nozzles PhD Thesis Mass. Inst. Technol. Cambridge, Mass.:
  38. Durá Galiana FJ, Wheeler APS, Ong J. 2016. A study of trailing-edge losses in organic Rankine cycle turbines. J. Turbomach. 138:121210039
    [Google Scholar]
  39. Fergason SH, Guardone A, Argrow BM. 2003. Construction and validation of a dense gas shock tube. J. Thermophys. Heat Transf. 17:3326–33
    [Google Scholar]
  40. Förster FJ, Baab S, Steinhausen C, Lamanna G, Ewart P, Weigand B. 2018. Mixing characterization of highly underexpanded fluid jets with real gas expansion. Exp. Fluids 59:344
    [Google Scholar]
  41. Gallarini S, Cozzi F, Spinelli A, Guardone A. 2021. Direct velocity measurements in high-temperature non-ideal vapor flows. Exp. Fluids 62:1019918
    [Google Scholar]
  42. Giauque A, Corre C, Vadrot A. 2020. Direct numerical simulations of forced homogeneous isotropic turbulence in a dense gas. J. Turbul. 21:3186–208
    [Google Scholar]
  43. Giuffré A , Pini M. 2020. Design guidelines for axial turbines operating with non-ideal compressible flows. J. Eng. Gas Turb. Power 143:1011004
    [Google Scholar]
  44. Gloerfelt X, Robinet JC, Sciacovelli L, Cinnella P, Grasso F. 2020. Dense-gas effects on compressible boundary-layer stability. J. Fluid Mech. 893:A1941
    [Google Scholar]
  45. Gori G, Zocca M, Cammi G, Spinelli A, Congedo PM, Guardone A. 2020a. Accuracy assessment of the non-ideal computational fluid dynamics model for siloxane MDM from the open-source SU2 suite. Eur. J. Mech. B/Fluids 79:109–20
    [Google Scholar]
  46. Gori G, Zocca M, Guardone A, Le Maître OP, Congedo PM 2020b. Bayesian inference of thermodynamic models from vapor flow experiments. Comput. Fluids 205:10455017
    [Google Scholar]
  47. Gross J, Sadowski G. 2001. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40:41244–60
    [Google Scholar]
  48. Guardone A, Colonna P, Casati E, Rinaldi E. 2014. Nonclassical gasdynamics of BZT mixtures. J. Fluid Mech. 741:681–701
    [Google Scholar]
  49. Guardone A, Vigevano L. 2002. Roe linearization for the van der Waals gas. J. Comput. Phys. 175:150–78
    [Google Scholar]
  50. Guardone A, Vimercati D. 2016. Exact solutions to non-classical steady nozzle flows of Bethe-Zel'dovich-Thompson fluids. J. Fluid Mech. 800:278–306
    [Google Scholar]
  51. Hake L, Sundermeier S, Cakievski L, Bäumer J, aus der Wiesche S et al. 2022. Hot-wire anemometry in high subsonic organic vapor flows Paper presented at ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition Rotterdam, Neth.: June 13–17
  52. Head AJ. 2021. Novel experiments for the investigation of non-ideal compressible fluid dynamics. PhD Thesis Delft Univ. Technol. Delft, Neth:.
    [Google Scholar]
  53. Head AJ, Michelis T, Beltrame F, Fuentes Monjas B, Casati E et al. 2023. Mach number estimation and pressure profile measurements of expanding dense organic vapors. Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power M White, T El Samad, I Karathanassis, A Sayma, M Pini, A Guardone 229–38. Cham, Switz: Springer
  54. Jofre L, Urzay J. 2021. Transcritical diffuse-interface hydrodynamics of propellants in high-pressure combustors of chemical propulsion systems. Prog. Energy Combust. Sci. 82:100877
    [Google Scholar]
  55. Kawai S. 2019. Heated transcritical and unheated non-transcritical turbulent boundary layers at supercritical pressures. J. Fluid Mech. 865:563–601
    [Google Scholar]
  56. Kluwick A. 1993. Transonic nozzle flow of dense gases. J. Fluid Mech. 247:661–88
    [Google Scholar]
  57. Kluwick A 1994. Interacting laminar boundary layers of dense gases. Fluid- and Gasdynamics. Acta Mechanica GH Schnerr, R Bohning, W Frank, K Bühler 335–49. Vienna: Springer
    [Google Scholar]
  58. Kluwick A 2001. Rarefaction shocks. Handbook of Shock Waves G Ben-Dor, O Igra, T Elperin 339–411. San Diego, CA: Academic
    [Google Scholar]
  59. Kluwick A. 2004. Internal flows of dense gases. Acta Mech. 169:123–43
    [Google Scholar]
  60. Kutateladze SS, Nakoryakov VE, Borisov AA. 1987. Rarefaction waves in liquid and gas-liquid media. Annu. Rev. Fluid Mech. 19:577–600
    [Google Scholar]
  61. Lettieri C, Baltadjiev N, Casey M, Spakovszky Z. 2014. Low-flow-coefficient centrifugal compressor design for supercritical CO2. J. Turbomach. 136:80810089
    [Google Scholar]
  62. Lettieri C, Yang D, Spakovszky Z. 2015. An investigation of condensation effects in supercritical carbon dioxide compressors. J. Eng. Gas Turb. Power 137:80826028
    [Google Scholar]
  63. Liu TP. 1976. The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53:178–88
    [Google Scholar]
  64. Lopez-Echeverry JS, Reif-Acherman S, Araujo-Lopez E. 2017. Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilib. 447:39–71
    [Google Scholar]
  65. Lötgering-Lin O, Gross J. 2015. Group contribution method for viscosities based on entropy scaling using the perturbed-chain polar statistical associating fluid theory. Ind. Eng. Chem. Res. 54:327942–52
    [Google Scholar]
  66. Ly N, Ihme M. 2022. Destabilization of binary mixing layer in supercritical conditions. J. Fluid Mech. 945:R2
    [Google Scholar]
  67. Ly N, Rusak Z, Wang S. 2018. Swirling flow states of compressible single-phase supercritical fluids in a rotating finite-length straight circular pipe. J. Fluid Mech. 849:576–614
    [Google Scholar]
  68. Macchi E. 1977. Design criteria for turbines operating with fluids having a low speed of sound. Lecture Series 100 on Closed-Cycle Gas Turbines Rhode-Saint-Genése, Belg.: Von Karman Inst Fluid Dyn.:
    [Google Scholar]
  69. Manfredi M, Persico G, Spinelli A, Gaetani P, Dossena V. 2023. Design and commissioning of experiments for supersonic ORC nozzles in linear cascade configuration. Appl. Therm. Eng. 224:11999611
    [Google Scholar]
  70. Mathijssen T, Gallo M, Casati E, Nannan NR, Zamfirescu C et al. 2015. The flexible asymmetric shock tube (FAST)—Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids. Exp. Fluids 56:1019512
    [Google Scholar]
  71. McQuarrie DA. 1976. Statistical Mechanics New York: Harper Collins
  72. Menikoff R, Plohr BJ. 1989. The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61:175–130
    [Google Scholar]
  73. Mercier B, Chandrasekaran NB, Colonna P. 2023. Speed of sound measurements in dense siloxane D6 vapour at temperatures up to 645 K by means of a new prismatic resonator. J. Chem. Eng. Data 68:3561–73
    [Google Scholar]
  74. Milan PJ, Hickey JP, Wang X, Yang V. 2021. Deep-learning accelerated calculation of real-fluid properties in numerical simulation of complex flowfields. J. Comput. Phys. 444:11056725
    [Google Scholar]
  75. Müller H, Niedermeier CA, Matheis J, Pfitzner M, Hickel S. 2016. Large-eddy simulation of nitrogen injection at trans- and supercritical conditions. Phys. Fluids 28:101510228
    [Google Scholar]
  76. Nannan NR, Guardone A, Colonna P. 2013. On the fundamental derivative of gas dynamics in the vapor-liquid critical region of single-component typical fluids. Fluid Phase Equilib. 337:259–73
    [Google Scholar]
  77. Nannan RN, Guardone A, Colonna P. 2014. Critical point anomalies include expansion shock waves. Phys. Fluids 26:2021701
    [Google Scholar]
  78. Novak LT. 2011. Fluid viscosity-residual entropy correlation. Int. J. Chem. React. Eng. 9:1A107
    [Google Scholar]
  79. Otero GJ, Patel A, Diez R, Pecnik R. 2018. Turbulence modelling for flows with strong variations in thermo-physical properties. Int. J. Heat Fluid Flow 73:114–23
    [Google Scholar]
  80. Pecnik R, Patel A. 2017. Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823:R1–12
    [Google Scholar]
  81. Peeters JWR, Pecnik R, Rohde M, van der Hagen THJJ, Boersma BJ. 2016. Turbulence attenuation in simultaneously heated and cooled annular flows at supercritical pressure. J. Fluid Mech. 799:505–40
    [Google Scholar]
  82. Persico G, Rodriguez-Fernandez P, Romei A. 2019. High-fidelity shape optimization of non-conventional turbomachinery by surrogate evolutionary strategies. J. Turbomach. 141:808101011
    [Google Scholar]
  83. Pini M, De Servi C 2020. Entropy generation in laminar boundary layers of non-ideal fluid flows. Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power F di Mare, A Spinelli, M Pini 104–17. Cham, Switz: Springer
  84. Pini M, Spinelli A, Persico G, Rebay S. 2015. Consistent look-up table interpolation method for real-gas flow simulations. Comput. Fluids 107:178–88
    [Google Scholar]
  85. Poling BE, Prausnitz JM, O'Connell JP 2001. Properties of Gases and Liquids New York: McGraw-Hill. , 5th ed..
  86. Qi J, Xu J, Han K, Jahn I. 2022. Development and validation of a Riemann solver in OpenFOAM for non-ideal compressible fluid dynamics. Eng. Appl. Comp. Fluid 16:116–40
    [Google Scholar]
  87. Quiñones-Cisneros SE, Pollak S, Schmidt KAG. 2021. Friction theory model for thermal conductivity. J. Chem. Eng. Data 66:114215–27
    [Google Scholar]
  88. Quiñones-Cisneros SE, Zéberg-Mikkelsen CK, Stenby EH. 2000. The friction theory (f-theory) for viscosity modeling. Fluid Phase Equilib. 169:2249–76
    [Google Scholar]
  89. Razaaly N, Persico G, Congedo PM. 2019. Impact of geometric, operational, and model uncertainties on the non-ideal flow through a supersonic ORC turbine cascade. Energy 169:213–27
    [Google Scholar]
  90. Re B, Abgrall R. 2022. A pressure-based method for weakly compressible two-phase flows under a Baer-Nunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Meth. Fluids 94:81183–232
    [Google Scholar]
  91. Reinker F, Wagner R, Hake L, aus der Wiesche S. 2021. High subsonic flow of an organic vapor past a circular cylinder. Exp. Fluids 62:35416
    [Google Scholar]
  92. Ren J, Fu S, Pecnik R. 2019a. Linear instability of Poiseuille flows with highly non-ideal fluids. J. Fluid Mech. 859:89–125
    [Google Scholar]
  93. Ren J, Marxen O, Pecnik R. 2019b. Boundary-layer stability of supercritical fluids in the vicinity of the Widom line. J. Fluid Mech. 871:831–64
    [Google Scholar]
  94. Reynolds WC, Colonna P. 2018. Thermodynamics: Fundamentals and Engineering Applications Cambridge, UK: Cambridge Univ. Press
  95. Rinaldi E, Colonna P, Pecnik R. 2015. Flux-conserving treatment of non-conformal interfaces for finite-volume discretization of conservation laws. Comput. Fluids 120:126–39
    [Google Scholar]
  96. Romei A, Vimercati D, Persico G, Guardone A. 2020. Non-ideal compressible flows in supersonic turbine cascades. J. Fluid Mech. 882:A1226
    [Google Scholar]
  97. Rubino A, Colonna P, Pini M. 2021. Adjoint-based unsteady optimization of turbomachinery operating with nonideal compressible flows. J. Propul. Power 37:6910–18
    [Google Scholar]
  98. Rubino A, Pini M, Kosec M, Vitale S, Colonna P. 2018. A look-up table method based on unstructured grids and its application to non-ideal compressible fluid dynamic simulations. J. Comput. Sci. 28:70–77
    [Google Scholar]
  99. Schaffer C, Speck K, Gummer V. 2022. Numerical calibration and investigation of the influence of Reynolds number on measurements with five-hole probes in compressible flows. J. Turbomach. 144:9091010
    [Google Scholar]
  100. Schuster D, Ince Y, Giauque A, Corre C 2023. Assessment of compressibility corrections for RANS simulations of real gas flows using SU2. Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power M White, T El Samad, I Karathanassis, A Sayma, M Pini, A Guardone 82–90. Cham, Switz: Springer
  101. Sciacovelli L, Cinnella P, Gloerfelt X. 2018. A priori tests of RANS models for turbulent channel flows of a dense gas. Flow Turbul. Combust. 101:2295–315
    [Google Scholar]
  102. Sciacovelli L, Cinnella P, Grasso F. 2017. Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. J. Fluid Mech. 825:515–49
    [Google Scholar]
  103. Sciacovelli L, Gloerfelt X, Passiatore D, Cinnella P, Grasso F. 2020. Numerical investigation of high-speed turbulent boundary layers of dense gases. Flow Turbul. Combust. 105:2555–79
    [Google Scholar]
  104. Sharan N, Bellan J. 2021. Investigation of high-pressure turbulent jets using direct numerical simulation. J. Fluid Mech. 922:A2448
    [Google Scholar]
  105. Span R. 2000. Multiparameter Equations of State Berlin: Springer-Verlag
  106. Spinelli A, Cammi G, Gallarini S, Zocca M, Cozzi F et al. 2018. Experimental evidence of non-ideal compressible effects in expanding flow of a high molecular complexity vapor. Exp. Fluids 59:812616
    [Google Scholar]
  107. Spinelli A, Guardone A, Cozzi F, Carmine M, Cheli R et al. 2017. Experimental observation of non-ideal nozzle flow of siloxane vapor MDM. Energy Procedia 129:1125–32
    [Google Scholar]
  108. Sundermeier SC, Matar C, Aus der Wiesche S, Cinnella P, Hake L, Gloerfelt X 2023. Experimental and numerical study of transonic flow of an organic vapor past a circular cylinder. Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power M White, T El Samad, I Karathanassis, A Sayma, M Pini, A Guardone 209–16. Cham, Switz: Springer
  109. Swesty FD. 1996. Thermodynamically consistent interpolation for equation of state tables. J. Comput. Phys. 127:1118–27
    [Google Scholar]
  110. Thompson PA. 1971. A fundamental derivative in gasdynamics. Phys. Fluids 14:91843–49
    [Google Scholar]
  111. Thompson PA, Lambrakis KC. 1973. Negative shock waves. J. Fluid Mech. 60:187–208
    [Google Scholar]
  112. Tosto F. 2023. Modeling and characterization of nonideal compressible flows in unconventional turbines PhD Thesis Delft Univ. Technol. Delft, Neth:.
  113. Tosto F, Giuffré A, Colonna P, Pini M. 2022. Flow deviation and critical choking in transonic turbine cascades operating with non-ideal compressible flows. J. Glob. Propul. Power Soc. 6:181–99
    [Google Scholar]
  114. Touber E. 2019. Small-scale two-dimensional turbulence shaped by bulk viscosity. J. Fluid Mech. 875:974–1003
    [Google Scholar]
  115. Traxinger C, Pfitzner M. 2021. Effect of nonideal fluid behavior on the jet mixing process under high-pressure and supersonic flow conditions. J. Supercrit. Fluids 172:10519517
    [Google Scholar]
  116. Trettel A, Larsson J. 2016. Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28:2026102
    [Google Scholar]
  117. Vadrot A, Giauque A, Corre C. 2021. Direct numerical simulations of temporal compressible mixing layers in a Bethe–Zel'dovich–Thompson dense gas: influence of the convective Mach number. J. Fluid Mech. 922:A536
    [Google Scholar]
  118. Van Nieuwenhuyse J, Lecompte S, De Paepe M. 2023. Current status of the thermohydraulic behavior of supercritical refrigerants: a review. Appl. Therm. Eng. 218:11920120
    [Google Scholar]
  119. Vimercati D, Gori G, Guardone A. 2018a. Non-ideal oblique shock waves. J. Fluid Mech. 847:266–85
    [Google Scholar]
  120. Vimercati D, Guardone A. 2018. On the numerical simulation of non-classical quasi-1D steady nozzle flows: capturing sonic shocks. Appl. Math. Comput. 319:617–32
    [Google Scholar]
  121. Vimercati D, Kluwick A, Guardone A. 2018b. Oblique waves in steady supersonic flows of Bethe-Zel'dovich-Thompson fluids. J. Fluid Mech. 855:445–68
    [Google Scholar]
  122. Vimercati D, Kluwick A, Guardone A. 2020. Shock interactions in two-dimensional steady flows of Bethe-Zel'dovich-Thompson fluids. J. Fluid Mech. 887:A1226
    [Google Scholar]
  123. Vitale S, Albring TA, Pini M, Gauger NR, Colonna P. 2017. Fully turbulent discrete adjoint solver for non-ideal compressible flow applications. J. Glob. Propul. Power Soc. 1:252–70
    [Google Scholar]
  124. Vitale S, Gori G, Pini M, Guardone A, Economon TD et al. 2015. Extension of the SU2 open source CFD code to the simulation of turbulent flows of fluids modelled with complex thermophysical laws Paper presented at 22nd AIAA Fluid Dynamics Conference Dallas, AIAA Pap: 2015-2760
  125. Vitale S, Pini M, Colonna P. 2020. Multi-stage turbomachinery design using the discrete adjoint method within the open-source software SU2. J. Propul. Power 36:3465–78
    [Google Scholar]
  126. Wheeler APS, Ong J. 2013. The role of dense gas dynamics on organic Rankine cycle turbine performance. J. Eng. Gas Turb. Power 135:101026039
    [Google Scholar]
  127. Yang X, Xiao X, Thol M, Richter M, Bell IH. 2022. Linking viscosity to equations of state using residual entropy scaling theory. Int. J. Thermophys. 43:1218324
    [Google Scholar]
  128. Yoo JY. 2013. The turbulent flows of supercritical fluids with heat transfer. Annu. Rev. Fluid Mech. 45:495–525
    [Google Scholar]
  129. Zamfirescu C, Guardone A, Colonna P. 2008. Admissibility region for rarefaction shock waves in dense gases. J. Fluid Mech. 599:363–81
    [Google Scholar]
  130. Zel'dovich YB 1946. On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4:363–64
    [Google Scholar]
  131. Zocca M. 2018. Experimental Observation of Supersonic Non-Ideal Compressible-Fluid Flows PhD Thesis Politecnico di Milano Italy:
  132. Zocca M, Gajoni P, Guardone A. 2023. NIMOC: a design and analysis tool for supersonic nozzles under non-ideal compressible flow conditions. J. Comput. Appl. Math. 429:11521015
    [Google Scholar]
  133. Zocca M, Guardone A, Cammi G, Cozzi F, Spinelli A. 2019. Experimental observation of oblique shock waves in steady non-ideal flows. Exp. Fluids 60:610112
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-033342
Loading
/content/journals/10.1146/annurev-fluid-120720-033342
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error