1932

Abstract

Insects, birds, and bats that power and control flight by flapping their wings perform excellent flight stability and maneuverability by rapidly and continuously varying their wing motions. This article provides an overview of the state of the art of vortex-dominated, unsteady flapping aerodynamics from the viewpoint of diversity and uniformity associated with dominant vortices, particularly of the relevant physical aspects of the flight of insects and vertebrates in the low- and intermediate-Reynolds-number () regime of 100 to 106. After briefly describing wing morphology and kinematics, we discuss the main vortices generated by flapping wings and the aerodynamic forces associated with these structures, focusing on leading-edge vortices (LEVs), wake vortices, and vortices generated by wing motions over a broad range. The LEVs are intensified by dynamic wing morphing in bird and bat flight, producing a significantly elevated vortex lift. The complex wake vortices are the footprints of lift generation; thus, the time-averaged vortex lift can be estimated from wake velocity data. Computational fluid dynamics modeling, quasi-steady models, and vortex lift models are useful tools to elucidate the intrinsic relationships between the lift and the dominant vortices in the near- and far-fields in flapping flight.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120821-032304
2024-01-19
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-120821-032304.html?itemId=/content/journals/10.1146/annurev-fluid-120821-032304&mimeType=html&fmt=ahah

Literature Cited

  1. Amador LI, Almeida FC, Giannini NP. 2020. Evolution of traditional aerodynamic variables in bats (Mammalia: Chiroptera) within a comprehensive phylogenetic framework. J. Mamm. Evol. 27:54961
    [Google Scholar]
  2. Beatus T, Cohen I. 2015. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring. Phys. Rev. E 92:022712
    [Google Scholar]
  3. Bender M, Tian L, Fan X, Kurdila A, Mueller R. 2019. Spatially recursive estimation and Gaussian process dynamic models of bat flapping flight. Nonlinear Dyn 95:21737
    [Google Scholar]
  4. Bergou AJ, Ristroph L, Guckenheimer J, Cohen I, Wang ZJ. 2010. Fruit flies modulate passive wing pitching to generate in-flight turns. Phys. Rev. Lett. 104:148101
    [Google Scholar]
  5. Birch JM, Dickinson MH. 2003. The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206:225772
    [Google Scholar]
  6. Bluman J, Kang C-K. 2017. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing. Bioinspiration Biomim 12:046004
    [Google Scholar]
  7. Bomphrey RJ, Lawson NJ, Harding NJ, Taylor GK, Thomas AR. 2005. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol. 208:107994
    [Google Scholar]
  8. Bomphrey RJ, Nakata T, Phillips N, Walker SN. 2018. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 44:9295
    [Google Scholar]
  9. Brodsky AK. 1991. Vortex formation in the tethered flight of the peacock butterfly Inachisio L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol. 161:7795
    [Google Scholar]
  10. Cai X, Kolomenskiy D, Nakata T, Liu H. 2021. A CFD data-driven aerodynamic model for fast and precise prediction of flapping aerodynamics in various flight velocities. J. Fluid Mech. 915:A114
    [Google Scholar]
  11. Cai X, Xue YJ, Kolomenskiy D, Xu R, Liu H. 2022. Elastic storage enables robustness of flapping wing dynamics. Bioinspiration Biomim. 17:045003
    [Google Scholar]
  12. Carr ZR, DeVoria AC, Ringuette MJ. 2015. Aspect-ratio effects on rotating wings: circulation and forces. J. Fluid Mech. 767:497525
    [Google Scholar]
  13. Carruthers AC, Walker SM, Thomas ALR, Taylor GK. 2010. Aerodynamics of aerofoil sections measured on a free-flying bird. Proc. Inst. Mech. Eng. G 224:855
    [Google Scholar]
  14. Chen D, Kolomenskiy D, Liu H. 2017a. Closed-form solution for the edge vortex of a revolving plate. J. Fluid Mech. 821:20018
    [Google Scholar]
  15. Chen D, Kolomenskiy D, Nakata T, Liu H. 2017b. Wing morphology matches the formation of leading-edge vortices in a revolving insect wing. . Bioinspiration Biomim. 13:016009
    [Google Scholar]
  16. Chen D, Lentink D. 2016. Flapping wing aerodynamics: from insects to vertebrates. J. Exp. Biol. 219:92032
    [Google Scholar]
  17. Chen JS, Chen JY, Chou YF. 2008. On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313:64354
    [Google Scholar]
  18. Combes SA, Daniel TL. 2003. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation. J. Exp. Biol. 206:297987
    [Google Scholar]
  19. Cummins C, Seale M, Macente A, Certini D, Mastropaolo E et al. 2018. A separated vortex ring underlies the flight of the dandelion. Nature 562:41418
    [Google Scholar]
  20. Dai H, Luo H, Doyle JF. 2012. Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693:47399
    [Google Scholar]
  21. Davidi G, Weihs D. 2012. Flow around a comb wing in low-Reynolds-number flow. AIAA J 50:24953
    [Google Scholar]
  22. Dickinson MH, Lehmann FO, Sane SP. 1999. Wing rotation and the aerodynamic basis of insect flight. Science 284:195460
    [Google Scholar]
  23. Dickinson MH, Lighton JRB. 1995. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268:8790
    [Google Scholar]
  24. Eldredge JD, Jones AR. 2019. Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51:75104
    [Google Scholar]
  25. Ellington CP. 1980. Wing mechanics and take-off preparation of thrips (Thysanoptera). J. Exp. Biol. 85:12936
    [Google Scholar]
  26. Ellington CP, van den Berg C, Willmott AP, Thomas ALR. 1996. Leading-edge vortices in insect flight. Nature 384:62630
    [Google Scholar]
  27. Engels T, Kolomenskiy D, Schneider K, Lehmann FO, Sesterhenn J. 2016. Bumblebee flight in heavy turbulence. Phys. Rev. Lett. 116:028103
    [Google Scholar]
  28. Farisenkov SE, Kolomenskiy D, Petrov PN, Engels T, Lapina NA et al. 2022. Novel flight style and light wings boost flight performance of tiny beetles. Nature 602:96100
    [Google Scholar]
  29. Farisenkov SE, Lapina NA, Petrov PN, Polilov AA. 2020. Extraordinary flight performance of the smallest beetles. PNAS 117:2464345
    [Google Scholar]
  30. Garmann DJ, Visbal MR. 2014. Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 748:93256
    [Google Scholar]
  31. Glauert H. 1983. The Elements of Aerofoil and Airscrew Theory Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  32. Gutierrez E, Quinn DB, Chin DD, Lentink D. 2017. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Bioinspiration Biomim. 12:016004
    [Google Scholar]
  33. Ha NS, Truong QT, Goo NS, Park HC. 2013. Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspiration Biomim. 84:046008
    [Google Scholar]
  34. Harbig RR, Sheridan J, Thompson MC. 2013. Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717:16692
    [Google Scholar]
  35. Harbig RR, Sheridan J, Thompson MC. 2014. The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. J. Fluid Mech. 751:71105
    [Google Scholar]
  36. Hedenström A, Johansson LC. 2015. Bat flight: aerodynamics, kinematics and flight morphology. J. Exp. Biol. 218:65363
    [Google Scholar]
  37. Hedenström A, Johansson LC, Wolf IM, Busse R, Winter Y, Spedding GR. 2007. Bat flight generates complex aerodynamic tracks. Science 316:89497
    [Google Scholar]
  38. Hedenström A, Muijres FT, Busse R, Johansson LC, Winter Y, Spedding GR. 2009. High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel. Exp. Fluids 46:92332
    [Google Scholar]
  39. Hedenström A, Spedding G. 2008. Beyond robins: aerodynamic analyses of animal flight. J. R. Soc. Interface 5:595601
    [Google Scholar]
  40. Hubel TY, Hristov NI, Swartz SM, Breuer KS. 2009. Time-resolved wake structure and kinematics of bat flight. Exp. Fluids 46:93343
    [Google Scholar]
  41. Hubel TY, Riskin DK, Swartz SM, Breuer KS. 2010. Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. J. Exp. Biol. 213:342740
    [Google Scholar]
  42. Ishihara D, Horie T, Niho T. 2014. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies. Bioinspiration Biomim. 9:046009
    [Google Scholar]
  43. Jardin T, David L. 2015. Coriolis effects enhance lift on revolving wings. Phys. Rev. E 91:031001
    [Google Scholar]
  44. Jaworski JW, Peake N. 2020. Aeroacoustics of silent owl flight. Annu. Rev. Fluid Mech. 52:395420
    [Google Scholar]
  45. Jiang Y, Zhao P, Cai X, Rong J, Dong Z et al. 2022. Bristled-wing design of materials, microstructures and aerodynamics enables flapping flight in tiny wasps. iScience 25:103692
    [Google Scholar]
  46. Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR, Hendenström A. 2008. The near and far wake of Pallasʼ long tongued bat (Glossophaga soricina). J. Exp. Biol. 211:290918
    [Google Scholar]
  47. Jones SK, Miller LA, Yun YJJ, Hedrick TL, Griffith BE, Miller LA. 2016. Bristles reduce the force required to ‘fling’ wings apart in the smallest insects. J. Exp. Biol. 219:375972
    [Google Scholar]
  48. Kang C-K, Aono H, Cesnik CES, Shyy W. 2011. Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689:3274
    [Google Scholar]
  49. Kang C-K, Shyy W. 2014. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. J. R. Soc. Interface 11:20140933
    [Google Scholar]
  50. Kim D, Gharib M. 2010. Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49:32939
    [Google Scholar]
  51. KleinHeerenbrink M, Hedenström A. 2017. Wake analysis of drag components in gliding flight of a jackdaw (Corvus monedula) during moult. Interface Focus 7:20160081
    [Google Scholar]
  52. KleinHeerenbrink M, Johansson LC, Hedenström A. 2017. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. J. R. Soc. Interface 14:20170099
    [Google Scholar]
  53. Kodali D, Kang C-K. 2016. An analytical model and scaling of chordwise flexible flapping wings in forward flight. Bioinspiration Biomim. 12:016006
    [Google Scholar]
  54. Koekkoek G, Muijres FT, Johansson LC, Stuiver M, Oudheusden BW, Hedenström A. 2012. Stroke plane angle controls leading edge vortex in a bat-inspired flapper. C. R. Mec. 340:95106
    [Google Scholar]
  55. Kolomenskiy D, Elimelech Y, Schneider K. 2014. Leading-edge vortex shedding from rotating wings. Fluid Dyn. Res. 46:031421
    [Google Scholar]
  56. Kolomenskiy D, Ravi S, Xu R, Ueyama K, Jakobi T et al. 2019. The dynamics of passive feathering rotation in hovering flight of bumblebees. J. Fluid Struct. 91:102628
    [Google Scholar]
  57. Kruyt JW, Heijst GF, Altshuler DL, Lentink D. 2015. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. J. R. Soc. Interface 12:20150051
    [Google Scholar]
  58. Le TQ, Truong TV, Park SH, Truong TQ, Ko JH et al. 2013. Improvement of the aerodynamic performance by wing flexibility and elytra-hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10:20130312
    [Google Scholar]
  59. Lehmann FO, Pick S. 2007. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings. J. Exp. Biol. 210:136277
    [Google Scholar]
  60. Lehmann FO, Sane SP, Dickinson MH. 2005. The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 208:307592
    [Google Scholar]
  61. Lentink D, Dickinson MH. 2009. Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Exp. Biol. 212:2691704
    [Google Scholar]
  62. Lentink D, Müller UK, Stamhuis EJ, de Kat R, van Gestel W et al. 2007. How swifts control their glide performance with morphing wings. Nature 446:108285
    [Google Scholar]
  63. Li GJ, Lu XY. 2012. Force and power of flapping plates in a fluid. J. Fluid Mech. 712:598613
    [Google Scholar]
  64. Lighthill J. 1975. On the Weis-Fogh mechanism of lift generation. Mathematical Biofluiddynamics17995. Philadelphia: SIAM
    [Google Scholar]
  65. Limacher E, Morton C, Wood D. 2016. On the trajectory of leading edge vortices under the influence of Coriolis acceleration. J. Fluid Mech. 800:R1
    [Google Scholar]
  66. Linehan T, Mohseni K. 2020. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. Sci. Rep. 10:7905
    [Google Scholar]
  67. Liu H. 2009. Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228:43959
    [Google Scholar]
  68. Liu H. 2020. Simulation-based insect-inspired flight systems. Curr. Opin. Insect Sci. 42:1059
    [Google Scholar]
  69. Liu H, Aono H. 2009. Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspiration Biomim. 4:015002
    [Google Scholar]
  70. Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP. 1998. A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201:46177
    [Google Scholar]
  71. Liu H, Nakata T, Li G, Kolomenskiy D. 2017. Unsteady bio-fluid dynamics in swimming and flying. Acta Mech. Sin. 33:66384
    [Google Scholar]
  72. Liu H, Ravi S, Kolomenskiy D, Tanaka H. 2016. Biomechanics and biomimetics in insect-inspired flight systems. Philos. Trans. R. Soc. B 371:20150390
    [Google Scholar]
  73. Liu T, Kuykendoll K, Rhew R, Jones S. 2006. Avian wing geometry and kinematics. AIAA J 44:95463
    [Google Scholar]
  74. Lu Y, Shen GX, Lai GJ. 2006. Dual leading-edge vortices on flapping wings. J. Exp. Biol. 209:500516
    [Google Scholar]
  75. Lyu YZ, Zhu HJ, Sun M. 2019. Aerodynamic forces and vortical structures of a flapping wing at very low Reynolds numbers. Phys. Fluids 31:041901
    [Google Scholar]
  76. Maxworthy T. 2007. The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J. Fluid Mech. 587:47175
    [Google Scholar]
  77. Maybury WJ, Rayner JMV, Couldrick LB. 2001. Lift generation by the avian tail. Proc. R. Soc. B 268:144348
    [Google Scholar]
  78. Nakata T, Liu H. 2012a. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B 279:72231
    [Google Scholar]
  79. Nakata T, Liu H. 2012b. A fluid–structure interaction model of insect flight with flexible wings. J. Comput. Phys. 228:43959
    [Google Scholar]
  80. Nakata T, Liu H, Bomphrey R. 2015. A CFD-informed quasi-steady model of flapping-wing aerodynamics. J. Fluid Mech. 783:32343
    [Google Scholar]
  81. Miller LA, Peskin CS. 2009. Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212:307690
    [Google Scholar]
  82. Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A. 2008. Leading-edge vortex improves lift in slow-flying bats. Science 319:125053
    [Google Scholar]
  83. Muijres FT, Johansson LC, Winter Y, Hedenström A. 2011. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J. R. Soc. Interface 8:141828
    [Google Scholar]
  84. Muir RE, Arredondo-Galeana A, Viola IM. 2017. The leading-edge vortex of swift wing-shaped delta wings. R. Soc. Open Sci. 4:170077
    [Google Scholar]
  85. Nachtigall W, Wieser J. 1966. Profilmessungen am Taubenflügel. Z. Vgl. Physiol. 52:33346
    [Google Scholar]
  86. Norberg UM, Winter Y. 2006. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. J. Exp. Biol. 209:388797
    [Google Scholar]
  87. Ozen CA, Rockwell D. 2012. Three-dimensional vortex structure on a rotating wing. J. Fluid Mech. 707:54150
    [Google Scholar]
  88. Pennycuick CJ, Heine CE, Kirkpatrick SJ, Fuller MR. 1992. The profile drag of a hawk's wing, measured by wake sampling in a wind tunnel. J. Exp. Biol. 165:119
    [Google Scholar]
  89. Pesavento U, Wang ZJ. 2004. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett. 93:144501
    [Google Scholar]
  90. Phillips N, Knowles K, Bomphrey RJ. 2015. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspiration Biomim. 10:056020
    [Google Scholar]
  91. Portugal SJ, Hubel TY, Fritz J, Heese S, Trobe D et al. 2014. Upwash exploitation and down-wash avoidance by flap phasing in ibis formation flight. Nature 505:399404
    [Google Scholar]
  92. Ramananarivo S, Godoy-Diana R, Thiria B. 2011. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. PNAS 108:596469
    [Google Scholar]
  93. Riskin DK, Willis DJ, Iriarte-Diaz J, Hedrick TL, Kostandov M et al. 2008. Quantifying the complexity of bat wing kinematics. J. Theor. Biol. 254:60415
    [Google Scholar]
  94. Rosén M, Spedding GR, Hedenström A. 2004. The relationship between wingbeat kinematics and vortex wake of a thrush nightingale. J. Exp. Biol. 207:425568
    [Google Scholar]
  95. Rosén M, Spedding GR, Hedenström A. 2007. Wake structure and wingbeat kinematics of a house-martin Delichon urbica. J. R. Soc. Interface 4:65968
    [Google Scholar]
  96. Sadier A, Urban DJ, Anthwal N, Howenstine AO, Sinha I et al. 2020. Making a bat: the developmental basis of bat evolution. Genet. Mol. Biol. 43:1 Suppl. 2e20190146
    [Google Scholar]
  97. Sane SP. 2003. The aerodynamics of insect flight. J. Exp. Biol. 206:4191208
    [Google Scholar]
  98. Sane SP. 2016. Neurobiology and biomechanics of flight in miniature insects. Curr. Opin. Neurobiol. 41:15866
    [Google Scholar]
  99. Sane SP, Dickinson MH. 2002. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205:108796
    [Google Scholar]
  100. Santhanakrishnan A, Robinson AK, Jones S, Low AA, Gadi S et al. 2014. Clap and fling mechanism with interacting porous wings in tiny insect flight. J. Exp. Biol. 217:3898909
    [Google Scholar]
  101. Sedov LI. 1965. Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20:123
    [Google Scholar]
  102. Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang C-K et al. 2010. Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aeronaut. Sci. 46:284327
    [Google Scholar]
  103. Shyy W, Trizila P, Kang C-K, Aono H. 2009. Can tip vortices enhance lift of a flapping wing?. AIAA J 47:28993
    [Google Scholar]
  104. Sims TW, Palazotto AN, Norris AG. 2010. A structural dynamic analysis of a Manduca sexta forewing. Int. J. Micro Air Veh. 2:11940
    [Google Scholar]
  105. Song JL, Cheney JA, Bomphrey RJ, Usherwood JR. 2022. Virtual manipulation of tail postures of a gliding barn owl (Tytoalba) demonstrates drag minimization when gliding. J. R. Soc. Interface 19:20210710
    [Google Scholar]
  106. Song JL, Luo HX, Hedrick TL. 2014. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird. J. R. Soc. Interface 11:20140541
    [Google Scholar]
  107. Spedding GR, Hedenström A, Rosen M. 2003a. Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel. Exp. Fluids 34:291303
    [Google Scholar]
  108. Spedding GR, Rosen M, Hedenström A. 2003b. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206:231344
    [Google Scholar]
  109. Sridhar M, Kang C-K. 2015. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight. Bioinspiration Biomim. 10:036007
    [Google Scholar]
  110. Srygley RB, Thomas ALR. 2002. Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420:66064
    [Google Scholar]
  111. Sun M, Tang J. 2002. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205:5570
    [Google Scholar]
  112. Sun M, Wu JH. 2003. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J. Exp. Biol. 206:306583
    [Google Scholar]
  113. Sunada S, Zeng L, Kawachi K. 1998. The relationship between dragonfly wing structure and torsional deformation. J. Theor. Biol. 193:3945
    [Google Scholar]
  114. Swartz SM, Konow N. 2015. Advances in the study of bat flight: the wing and the wind. Can. J. Zool. 93:97790
    [Google Scholar]
  115. Thomas ALR, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ. 2004. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207:4299323
    [Google Scholar]
  116. Tobalske BW. 2007. Biomechanics of bird flight. J. Exp. Biol. 210:313546
    [Google Scholar]
  117. Tong W, Wang S, Yang Y. 2022. Estimating forces from cross-sectional data in the wake of flows past a plate using theoretical and data-driven models. Phys. Fluids 34:111905
    [Google Scholar]
  118. Tong W, Yang Y, Wang S. 2021. Estimating thrust from shedding vortex surfaces in the wake of a flapping plate. J. Fluid Mech. 920:A10
    [Google Scholar]
  119. Usherwood JR, Cheney JA, Song J, Windsor SP, Stevenson JPJ et al. 2020. High aerodynamic lift from the tail reduces drag in gliding raptors. J. Exp. Biol. 223:jeb214809
    [Google Scholar]
  120. van Den Berg C, Ellington CP. 1997. The three-dimensional leading-edge vortex of a hovering model hawk moth. Philos. Trans. R. Soc. B 352:32940
    [Google Scholar]
  121. van Veen WG, Van Leeuwen JL, Muijres FT. 2019. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study. J. R. Soc. Interface 16:20190118
    [Google Scholar]
  122. Vanella M, Fitzgerald T, Preidikman S, Balara E, Balachandran B. 2009. Influence of flexibility on the aerodynamic performance of a hovering wing. J. Exp. Biol. 212:95105
    [Google Scholar]
  123. Videler JJ, Stamhuis EJ, Povel GDE. 2004. Leading-edge vortex lifts swifts. Science 306:196062
    [Google Scholar]
  124. Viswanath K, Nagendra K, Tafti D. 2014. Climbing flight of a fruit bat deconstructed Paper presented at 52nd AIAA Aerospace Science Meeting Washington, DC: AIAA Pap. 2014-0220
    [Google Scholar]
  125. Wakeling JM, Ellington CP. 1997. Dragonfly flight. II. Velocities, accelerations, and kinematics of flapping flight. J. Exp. Biol. 200:55782
    [Google Scholar]
  126. Wang C, Liu Y, Xu D, Wang S. 2022. Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing. Phys. Fluids 34:051903
    [Google Scholar]
  127. Wang Q, Goosen JFL, Van Keulen F. 2016. A predictive quasi-steady model of aerodynamic loads on flapping wings. J. Fluid Mech. 800:688719
    [Google Scholar]
  128. Wang S, He G, Liu T. 2019. Estimating lift from wake velocity data in flapping flight. J. Fluid Mech. 868:50137
    [Google Scholar]
  129. Wang S, Zhang X, He G, Liu T. 2013. A lift formula applied to low-Reynolds-number unsteady flows. Phys. Fluids 25:093605
    [Google Scholar]
  130. Wang S, Zhang X, He G, Liu T. 2014. Lift enhancement by dynamically changing wingspan in forward flapping flight. Phys. Fluids 26:061903
    [Google Scholar]
  131. Wang S, Zhang X, He G, Liu T. 2015a. Lift enhancement by bats’ dynamically changing wingspan. J. R. Soc. Interface 12:20150821
    [Google Scholar]
  132. Wang S, Zhang X, He G, Liu T. 2015b. Numerical simulation of unsteady flows over a slow-flying bat. Theor. Appl. Mech. Lett. 5:58
    [Google Scholar]
  133. Wang ZJ. 2005. Dissecting insect flight. Annu. Rev. Fluid Mech. 37:183210
    [Google Scholar]
  134. Warrick DR, Hedrick T, Fernández MJ, Tobalske B, Biewener A. 2012. Hummingbird flight. Curr. Biol. 22:R47277
    [Google Scholar]
  135. Warrick DR, Tobalske BW, Powers DR. 2005. Aerodynamics of the hovering hummingbird. Nature 435:109497
    [Google Scholar]
  136. Weis-Fogh T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production. J. Exp. Biol. 59:169230
    [Google Scholar]
  137. Whitney JP, Wood RJ. 2010. Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660:197220
    [Google Scholar]
  138. Wolf T, Konrath R. 2015. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight. Exp. Fluids 56:28
    [Google Scholar]
  139. Wolfinger M, Rockwell D. 2014. Flow structure on a rotating wing: effect of radius of gyration. J. Fluid Mech. 755:83110
    [Google Scholar]
  140. Wolfinger M, Rockwell D. 2015. Transformation of flow structure on a rotating wing due to variation of radius of gyration. Exp. Fluids 56:137
    [Google Scholar]
  141. Wu T. 2011. Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43:2558
    [Google Scholar]
  142. Xu R, Zhang X, Liu H. 2021. Effects of wing-to-body mass ratio on insect flapping flights. Phys. Fluids 33:021902
    [Google Scholar]
  143. Xue Y, Cai X, Liu H. 2022. Effects of wing–body interaction on hawkmoth aerodynamics and energetics at various flight velocities. Phys. Fluids 34:051915
    [Google Scholar]
  144. Yao J, Yeo KS. 2020. Forward flight and sideslip manoeuvre of a model hawk moth. J. Fluid Mech. 896:A22
    [Google Scholar]
  145. Yin B, Luo H. 2010. Effect of wing inertia on hovering performance of flexible flapping wings. Phys. Fluids 22:111902
    [Google Scholar]
  146. Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR. 2009. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:154952
    [Google Scholar]
  147. Zheng L, Hedrick TL, Mittal R. 2012. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLOS ONE 8:e53060
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120821-032304
Loading
/content/journals/10.1146/annurev-fluid-120821-032304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error