1932

Abstract

High-speed disperse multiphase flows are present in numerous environmental and engineering applications with complex interactions between turbulence, shock waves, and particles. Compared with its incompressible counterpart, compressible two-phase flows introduce new scales of motion that challenge simulations and experiments. This review focuses on gas–particle interactions spanning subsonic to supersonic flow conditions. An overview of existing Mach-number-dependent drag laws is presented, with origins from eighteenth-century cannon firings and new insights from particle-resolved numerical simulations. The equations of motion and phenomenology for a single particle are first reviewed. Multiparticle systems spanning dusty gases to dense suspensions are then discussed from numerical and experimental perspectives.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-015818
2024-01-19
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-015818.html?itemId=/content/journals/10.1146/annurev-fluid-121021-015818&mimeType=html&fmt=ahah

Literature Cited

  1. Akiki G, Jackson TL, Balachandar S. 2017. Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813:882–928
    [Google Scholar]
  2. Anderson TB, Jackson R. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6:4527–39
    [Google Scholar]
  3. Bagchi P, Balachandar S. 2002. Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid Mech. 466:365–407
    [Google Scholar]
  4. Bailey WS, Nilson EN, Serra RA, Zupnik TF. 1961. Gas particle flow in an axisymmetric nozzle. Am. Rocket Soc. J. 31:6793–98
    [Google Scholar]
  5. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33
    [Google Scholar]
  6. Balakrishnan K, Bellan J. 2021. Fluid density effects in supersonic jet-induced cratering in a granular bed on a planetary body having an atmosphere in the continuum regime. J. Fluid Mech. 915:A29
    [Google Scholar]
  7. Bashforth F 1870. Reports on Experiments Made with the Bashforth Chronograph to Determine the Resistance of the Air to the Motion of Projectiles: 1865–1870 London: W. Clowes & Sons
    [Google Scholar]
  8. Bashforth F, Adams J 1883. An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. Beresh SJ. 2021. Time-resolved particle image velocimetry. Meas. Sci. Technol. 32:10102003
    [Google Scholar]
  10. Bordoloi AD, Martinez AA, Prestridge K. 2017. Relaxation drag history of shock accelerated microparticles. J. Fluid Mech. 823:R4
    [Google Scholar]
  11. Brandt L, Coletti F. 2022. Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54:159–89
    [Google Scholar]
  12. Bredin M, Skews B. 2007. Drag measurement in unsteady compressible flow—part 1: an unsteady flow facility and stress wave drag balance. Res. Dev. J. S. Afr. Inst. Mech. Eng. 23:11–10
    [Google Scholar]
  13. Britan A, Elperin T, Igra O, Jiang J. 1995. Acceleration of a sphere behind planar shock waves. Exp. Fluids 20:284–90
    [Google Scholar]
  14. Buchmann NA, Atkinson C, Soria J. 2012. Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows. Meas. Sci. Technol. 24:2024005
    [Google Scholar]
  15. Buchta DA, Shallcross G, Capecelatro J. 2019. Sound and turbulence modulation by particles in high-speed shear flows. J. Fluid Mech. 875:254–85
    [Google Scholar]
  16. Capecelatro J. 2022. Modeling high-speed gas–particle flows relevant to spacecraft landings. Int. J. Multiphase Flow 150:104008
    [Google Scholar]
  17. Capecelatro J, Desjardins O. 2013. An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238:1–31
    [Google Scholar]
  18. Capecelatro J, Desjardins O, Fox RO. 2015. On fluid-particle dynamics in fully developed cluster-induced turbulence. J. Fluid Mech. 780:578–635
    [Google Scholar]
  19. Carcano S, Ongaro TE, Bonaventura L, Neri A. 2014. Influence of grain-size distribution on the dynamics of underexpanded volcanic jets. J. Volcanol. Geotherm. Res. 285:60–80
    [Google Scholar]
  20. Carrier GF. 1958. Shock waves in a dusty gas. J. Fluid Mech. 4:4376–82
    [Google Scholar]
  21. Chen Y, Wagner JL, Farias PA, DeMauro EP, Guildenbecher DR. 2018. Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow. Int. J. Multiphase Flow 106:147–63
    [Google Scholar]
  22. Clift R, Gauvin WH. 1971. Motion of entrained particles in gas streams. Can. J. Chem. Eng. 49:4439–48
    [Google Scholar]
  23. Clift R, Grace JR, Weber ME. 2005. Bubbles, Drops, and Particles Chelmsford, MA: Courier Corp.
    [Google Scholar]
  24. Crighton DG, Williams JF. 1969. Sound generation by turbulent two-phase flow. J. Fluid Mech. 36:3585–603
    [Google Scholar]
  25. Crist S, Glass DR, Sherman PM. 1966. Study of the highly underexpanded sonic jet. AIAA J. 4:168–71
    [Google Scholar]
  26. Crowe CT, Troutt TR, Chung JN. 1996. Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28:11–43
    [Google Scholar]
  27. Daniel KA, Wagner JL. 2022. The shock-induced dispersal of particle curtains with varying material density. Int. J. Multiphase Flow 152:104082
    [Google Scholar]
  28. Das P, Sen O, Choi K, Jacobs G, Udaykumar H. 2018a. Strategies for efficient machine learning of surrogate drag models from three-dimensional mesoscale computations of shocked particulate flows. Int. J. Multiphase Flow 108:51–68
    [Google Scholar]
  29. Das P, Sen O, Jacobs G, Udaykumar H. 2018b. Metamodels for interphase heat transfer from mesoscale simulations of shock–cylinder interactions. AIAA J. 56:103975–87
    [Google Scholar]
  30. DeMauro EP, Wagner JL, Beresh SJ, Farias PA. 2017. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV. Phys. Rev. Fluids 2:6064301
    [Google Scholar]
  31. DeMauro EP, Wagner JL, DeChant LJ, Beresh SJ, Turpin AM. 2019. Improved scaling laws for the shock-induced dispersal of a dense particle curtain. J. Fluid Mech. 876:881–95
    [Google Scholar]
  32. Draine BT, McKee CF. 1993. Theory of interstellar shocks. Annu. Rev. Astron. Astrophys. 31:373–432
    [Google Scholar]
  33. Elghobashi S. 1994. On predicting particle-laden turbulent flows. Appl. Sci. Res. 52:4309–29
    [Google Scholar]
  34. Esteghamatian A, Euzenat F, Hammouti A, Lance M, Wachs A. 2018. A stochastic formulation for the drag force based on multiscale numerical simulation of fluidized beds. Int. J. Multiphase Flow 99:363–82
    [Google Scholar]
  35. Fox RO. 2012. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44:47–76
    [Google Scholar]
  36. Fox RO. 2014. On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742:368–424
    [Google Scholar]
  37. Fox RO. 2019. A kinetic-based hyperbolic two-fluid model for binary hard-sphere mixtures. J. Fluid Mech. 877:282–329
    [Google Scholar]
  38. Fox RO, Laurent F, Vié A. 2020. A hyperbolic two-fluid model for compressible flows with arbitrary material-density ratios. J. Fluid Mech. 903:A5
    [Google Scholar]
  39. Frost DL. 2018. Heterogeneous/particle-laden blast waves. Shock Waves 28:3439–49
    [Google Scholar]
  40. Gatignol R. 1983. The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Mec. Theor. Appl. 1:146–60
    [Google Scholar]
  41. Gilman F. 1905. The ballistic problem. Ann. Math. 6:379–89
    [Google Scholar]
  42. Goldstein S. 1929. The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers. Proc. R. Soc. A 123:791225–35
    [Google Scholar]
  43. Griffith WC. 1978. Dust explosions. Annu. Rev. Fluid Mech. 10:93–105
    [Google Scholar]
  44. Henderson B. 2010. Fifty years of fluidic injection for jet noise reduction. Int. J. Aeroacoust. 9:1–291–122
    [Google Scholar]
  45. Henderson CB. 1976. Drag coefficients of spheres in continuum and rarefied flows. AIAA J. 14:6707–8
    [Google Scholar]
  46. Hoglund RF. 1962. Recent advances in gas-particle nozzle flows. Am. Rocket Soc. J. 32:5662–71
    [Google Scholar]
  47. Horwitz JAK, Mani A. 2016. Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 318:85–109
    [Google Scholar]
  48. Hosseinzadeh-Nik Z, Subramaniam S, Regele JD. 2018. Investigation and quantification of flow unsteadiness in shock-particle cloud interaction. Int. J. Multiphase Flow 101:186–201
    [Google Scholar]
  49. Houim RW, Oran ES. 2016. A multiphase model for compressible granular–gaseous flows: formulation and initial tests. J. Fluid Mech. 789:166–220
    [Google Scholar]
  50. Hughes KT, Charonko JJ, Prestridge KP, Kim NH, Haftka RT, Balachandar S. 2021. Proton radiography of explosively dispersed metal particles with varying volume fraction and varying carrier phase. Shock Waves 31:175–88
    [Google Scholar]
  51. Igra O, Takayama K. 1993. Shock tube study of the drag coefficient of a sphere in a non-stationary flow. Proc. R. Soc. A 442:1915231–47
    [Google Scholar]
  52. Inoue T, Yamazaki R, Inutsuka S. 2009. Turbulence and magnetic field amplification in supernova remnants: interactions between a strong shock wave and multiphase interstellar medium. Astrophys. J. 695:2825
    [Google Scholar]
  53. Jacobs GB, Don WS. 2009. A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks. J. Comput. Phys. 228:51365–79
    [Google Scholar]
  54. Jarvinen PO, Draper JS. 1967. Underexpanded gas-particle jets. AIAA J. 5:4824–25
    [Google Scholar]
  55. Jourdan G, Houas L, Igra O, Estivalezes JL, Devals C, Meshkov EE. 2007. Drag coefficient of a sphere in a non-stationary flow: new results. Proc. R. Soc. A 463:20883323–45
    [Google Scholar]
  56. Khalloufi M, Capecelatro J. 2023. Drag force of compressible flows past random arrays of spheres. Int. J. Multiphase Flow 165:104496
    [Google Scholar]
  57. Krothapalli A, Venkatakrishnan L, Lourenco L, Greska B, Elavarasan R. 2003. Turbulence and noise suppression of a high-speed jet by water injection. J. Fluid Mech. 491:131–59
    [Google Scholar]
  58. Kuhn MB, Desjardins O. 2021. An all-Mach, low-dissipation strategy for simulating multiphase flows. J. Comput. Phys. 445:110602
    [Google Scholar]
  59. Lattanzi AM, Tavanashad V, Subramaniam S, Capecelatro J. 2022. Stochastic model for the hydrodynamic force in Euler–Lagrange simulations of particle-laden flows. Phys. Rev. Fluids 7:1014301
    [Google Scholar]
  60. Lewis CH Jr., Carlson DJ. 1964. Normal shock location in underexpanded gas and gas-particle jets. AIAA J. 2:4776–77
    [Google Scholar]
  61. Lhuillier D, Chang CH, Theofanous TG. 2013. On the quest for a hyperbolic effective-field model of disperse flows. J. Fluid Mech. 731:184–94
    [Google Scholar]
  62. Lighthill MJ. 1952. On sound generated aerodynamically I. General theory. Proc. R. Soc. A 211:1107564–87
    [Google Scholar]
  63. Ling Y, Balachandar S, Parmar M. 2016. Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. Phys. Fluids 28:3033304
    [Google Scholar]
  64. Ling Y, Wagner JL, Beresh SJ, Kearney SP, Balachandar S. 2012. Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24:11113301
    [Google Scholar]
  65. Lingeman JE, McAteer JA, Gnessin E, Evan AP. 2009. Shock wave lithotripsy: advances in technology and technique. Nat. Rev. Urol. 6:12660–70
    [Google Scholar]
  66. Longhorn AL. 1952. The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Math. 5:164–81
    [Google Scholar]
  67. Loth E. 2008. Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46:92219–28
    [Google Scholar]
  68. Loth E, Daspit JT, Jeong M, Nagata T, Nonomura T. 2021. Supersonic and hypersonic drag coefficients for a sphere. AIAA J. 59:3261–74
    [Google Scholar]
  69. Lube G, Breard ECP, Esposti-Ongaro T, Dufek J, Brand B. 2020. Multiphase flow behaviour and hazard prediction of pyroclastic density currents. Nat. Rev. Earth Environ. 1:7348–65
    [Google Scholar]
  70. Mačak J, Goniva C, Radl S. 2021. Regimes of subsonic compressible flow in gas-particle systems. Powder Technol. 394:44–61
    [Google Scholar]
  71. Magnaudet J, Rivero M, Fabre J. 1995. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284:97–135
    [Google Scholar]
  72. Mäkiharju SA, Dewanckele J, Boone M, Wagner C, Griesser A. 2022. Tomographic X-ray particle tracking velocimetry. Exp. Fluids 63:16
    [Google Scholar]
  73. Marble FE. 1963. Nozzle contours for minimum particle-lag loss. AIAA J. 1:122793–801
    [Google Scholar]
  74. Marble FE. 1970. Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2:397–446
    [Google Scholar]
  75. Maxey MR, Riley JJ. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:4883–89
    [Google Scholar]
  76. Maxon WC, Nielsen T, Denissen N, Regele JD, McFarland J. 2021. A high resolution simulation of a single shock-accelerated particle. J. Fluids Eng. 143:7071403
    [Google Scholar]
  77. McFarland JA, Black WJ, Dahal J, Morgan BE. 2016. Computational study of the shock driven instability of a multiphase particle-gas system. Phys. Fluids 28:2024105
    [Google Scholar]
  78. Mehrabadi M, Tenneti S, Garg R, Subramaniam S. 2015. Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely evolving suspensions. J. Fluid Mech. 770:210–46
    [Google Scholar]
  79. Mehta Y, Goetsch RJ, Vasilyev OV, Regele JD. 2022. A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles. Comput. Fluids 248:105670
    [Google Scholar]
  80. Mehta Y, Jackson TL, Balachandar S. 2019a. Pseudo-turbulence in inviscid simulations of shock interacting with a bed of randomly distributed particles. Shock Waves 30:49–62
    [Google Scholar]
  81. Mehta Y, Salari K, Jackson TL, Balachandar S. 2019b. Effect of Mach number and volume fraction in air-shock interacting with a bed of randomly distributed spherical particles. Phys. Rev. Fluids 4:1014303
    [Google Scholar]
  82. Mikida C, Klöckner A, Bodony D. 2019. Multi-rate time integration on overset meshes. J. Comput. Phys. 396:325–46
    [Google Scholar]
  83. Miles JW. 1951. On virtual mass and transient motion in subsonic compressible flow. Q. J. Mech. Appl. Math. 4:4388–400
    [Google Scholar]
  84. Miller DG, Bailey AB. 1979. Sphere drag at Mach numbers from 0.3 to 2.0 at Reynolds numbers approaching 107. J. Fluid Mech. 93:3449–64
    [Google Scholar]
  85. Miura H, Glass II. 1982. On a dusty-gas shock tube. Proc. R. Soc. A 382:1783373–88
    [Google Scholar]
  86. Nagata T, Noguchi A, Nonomura T, Ohtani K, Asai K 2020a. Experimental investigation of transonic and supersonic flow over a sphere for Reynolds numbers of 103–105 by free-flight tests with schlieren visualization. Shock Waves 30:2139–51
    [Google Scholar]
  87. Nagata T, Nonomura T, Takahashi S, Fukuda K. 2020b. Direct numerical simulation of subsonic, transonic and supersonic flow over an isolated sphere up to a Reynolds number of 1000. J. Fluid Mech. 904:A36
    [Google Scholar]
  88. Nili S, Park C, Kim NH, Haftka RT, Balachandar S. 2021. Prioritizing possible force models error in multiphase flow using global sensitivity analysis. AIAA J. 59:51749–59
    [Google Scholar]
  89. Oseen CW. 1910. Über die Stokes'sche Formel und über eine verwandte Aufgabe in der Hydrodynamik. Arkiv Mat. Astron. Fysik 6:1
    [Google Scholar]
  90. Osnes AN, Vartdal M. 2021. Performance of drag force models for shock-accelerated flow in dense particle suspensions. Int. J. Multiphase Flow 137:103563
    [Google Scholar]
  91. Osnes AN, Vartdal M. 2022. Mach and Reynolds number dependency of the unsteady shock-induced drag force on a sphere. Phys. Fluids 34:4043303
    [Google Scholar]
  92. Osnes AN, Vartdal M, Khalloufi M, Capecelatro J, Balachandar S. 2023. Comprehensive quasi-steady force correlations for compressible flow through random particle suspensions. Int. J. Multiphase Flow 165:104485
    [Google Scholar]
  93. Osnes AN, Vartdal M, Omang MG, Reif BAP. 2019. Computational analysis of shock-induced flow through stationary particle clouds. Int. J. Multiphase Flow 114:268–86
    [Google Scholar]
  94. Osnes AN, Vartdal M, Reif P. 2018. Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell. Shock Waves 28:3451–61
    [Google Scholar]
  95. Pantano C, Sarkar S. 2002. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451:329–71
    [Google Scholar]
  96. Parmar M, Haselbacher A, Balachandar S. 2008. On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Philos. Trans. R. Soc. A 366:18732161–75
    [Google Scholar]
  97. Parmar M, Haselbacher A, Balachandar S. 2009. Modeling of the unsteady force for shock–particle interaction. Shock Waves 19:4317–29
    [Google Scholar]
  98. Parmar M, Haselbacher A, Balachandar S. 2010. Improved drag correlation for spheres and application to shock-tube experiments. AIAA J. 48:61273–76
    [Google Scholar]
  99. Parmar M, Haselbacher A, Balachandar S. 2011. Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106:8084501
    [Google Scholar]
  100. Parmar M, Haselbacher A, Balachandar S. 2012. Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699:352–75
    [Google Scholar]
  101. Patankar NA, Joseph DD. 2001. Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach. Int. J. Multiphase Flow 27:101659–84
    [Google Scholar]
  102. Robins B 1742. New Principles of Gunnery: The Determination of the Force of Gun-Powder and an Investigation of the Difference in the Resisting Power of the Air to Swift and Slow Motions London: Royal Society
    [Google Scholar]
  103. Rodriguez V, Saurel R, Jourdan G, Houas L 2013. Solid-particle jet formation under shock-wave acceleration. Phys. Rev. E 88:6063011
    [Google Scholar]
  104. Rogue X, Rodriguez G, Haas JF, Saurel R. 1998. Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8:129–45
    [Google Scholar]
  105. Sarkar S. 1992. The pressure–dilatation correlation in compressible flows. Phys. Fluids 4:122674–82
    [Google Scholar]
  106. Schiller L, Naumann A. 1933. Fundamental calculations in gravitational processing. Z. Ver. Deutsch. Ing. 77:318–20
    [Google Scholar]
  107. Sen O, Gaul NJ, Davis S, Choi KK, Jacobs G, Udaykumar HS. 2018. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure. Shock Waves 28:579–97
    [Google Scholar]
  108. Shallcross GS, Capecelatro J. 2018. A parametric study of particle-laden shock tubes using an Eulerian–Lagrangian framework Paper presented at 2018 AIAA Aerospace Sciences Meeting Kissimmee, FL: AIAA Pap. 2018-2080
    [Google Scholar]
  109. Shallcross GS, Fox RO, Capecelatro J. 2020. A volume-filtered description of compressible particle-laden flows. Int. J. Multiphase Flow 122:103138
    [Google Scholar]
  110. Singh N, Schwartzentruber TE. 2016. Heat flux correlation for high-speed flow in the transitional regime. J. Fluid Mech. 792:981–96
    [Google Scholar]
  111. Singh N, Schwartzentruber TE. 2017. Aerothermodynamic correlations for high-speed flow. J. Fluid Mech. 821:421–39
    [Google Scholar]
  112. Skews BW, Bredin MS, Efune M. 2007. Drag measurement in unsteady compressible flow. Part 2: shock wave loading of spheres and cones. Res. Dev. J. S. Afr. Inst. Mech. Eng. 23:13–19
    [Google Scholar]
  113. Sommerfeld M. 1994. The structure of particle-laden, underexpanded free jets. Shock Waves 3:4299–311
    [Google Scholar]
  114. Stuhmiller JH. 1977. The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiphase Flow 3:6551–60
    [Google Scholar]
  115. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D. 2014. Pyroclastic density currents: state of the art and perspectives. J. Volcanol. Geotherm. Res. 283:36–65
    [Google Scholar]
  116. Sun M, Saito T, Takayama K, Tanno H. 2005. Unsteady drag on a sphere by shock wave loading. Shock Waves 14:13–9
    [Google Scholar]
  117. Suzuki T, Sakamura Y, Igra O, Adachi T, Kobayashi S et al. 2005. Shock tube study of particles' motion behind a planar shock wave. Meas. Sci. Technol. 16:122431
    [Google Scholar]
  118. Tam CKW. 1995. Supersonic jet noise. Annu. Rev. Fluid Mech. 27:17–43
    [Google Scholar]
  119. Tanno H, Itoh K, Saito T, Abe A, Takayama K. 2003. Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves 13:3191–200
    [Google Scholar]
  120. Taylor GI. 1928. The forces on a body placed in a curved or converging stream of fluid. Proc. R. Soc. A 120:785260–83
    [Google Scholar]
  121. Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46:199–230
    [Google Scholar]
  122. Theofanous TG, Mitkin V, Chang CH. 2016. The dynamics of dense particle clouds subjected to shock waves. Part 1. Experiments and scaling laws. J. Fluid Mech. 792:658–81
    [Google Scholar]
  123. Theofanous TG, Mitkin V, Chang CH. 2018. Shock dispersal of dilute particle clouds. J. Fluid Mech. 841:732–45
    [Google Scholar]
  124. Valentine GA, Sweeney MR. 2018. Compressible flow phenomena at inception of lateral density currents fed by collapsing gas-particle mixtures. J. Geophys. Res. 123:21286–302
    [Google Scholar]
  125. Vijayan AM, Levin DA. 2022. Kinetic modeling of fractal aggregate mobility. Phys. Fluids 34:4043315
    [Google Scholar]
  126. Wagner JL, Beresh SJ, Kearney SP, Pruett BOM, Wright EK. 2012a. Shock tube investigation of quasi-steady drag in shock-particle interactions. Phys. Fluids 24:12123301
    [Google Scholar]
  127. Wagner JL, Beresh SJ, Kearney SP, Trott WM, Castaneda JN et al. 2012b. A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52:61507–17
    [Google Scholar]
  128. Wagner JL, Daniel K, Downing C, Grasser TW, Lynch KP. 2023. Shock-particle curtain interactions at high Mach number Paper presented at 2023 AIAA SciTech Forum National Harbor, MD: AIAA Pap. 2023-2303
    [Google Scholar]
  129. Wagner JL, Kearney SP, Beresh SJ, DeMauro EP, Pruett BO. 2015. Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain. Exp. Fluids 56:12213
    [Google Scholar]
  130. Zhang F, Frost DL, Thibault PA, Murray SB. 2001. Explosive dispersal of solid particles. Shock Waves 10:6431–43
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-015818
Loading
/content/journals/10.1146/annurev-fluid-121021-015818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error