1932

Abstract

In the last ten years, advances in experimental techniques have enabled remarkable discoveries of how the dynamics of thin gas films can profoundly influence the behavior of liquid droplets. Drops impacting onto solids can skate on a film of air so that they bounce off solids. For drop–drop collisions, this effect, which prevents coalescence, has been long recognized. Notably, the precise physical mechanisms governing these phenomena have been a topic of intense debate, leading to a synergistic interplay of experimental, theoretical, and computational approaches. This review attempts to synthesize our knowledge of when and how drops bounce, with a focus on () the unconventional microscale and nanoscale physics required to predict transitions to/from merging and () the development of computational models. This naturally leads to the exploration of an array of other topics, such as the Leidenfrost effect and dynamic wetting, in which gas films also play a prominent role.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-021121
2024-01-19
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-021121.html?itemId=/content/journals/10.1146/annurev-fluid-121021-021121&mimeType=html&fmt=ahah

Literature Cited

  1. Aarts DGAL, Schmidt M, Lekkerkerker HNW. 2004. Direct visual observation of thermal capillary waves. Science 304:5672847–50
    [Google Scholar]
  2. Ababaei A, Rosa B. 2023. Collision efficiency of cloud droplets in quiescent air considering lubrication interactions, mobility of interfaces, and noncontinuum molecular effects. Phys. Rev. Fluids 8:014102
    [Google Scholar]
  3. Abouelsoud M, Bai BÇ. 2021. Bouncing and coalescence dynamics during the impact of a falling drop with a sessile drop on different solid surfaces. Phys. Fluids 33:6063309
    [Google Scholar]
  4. Al-Dirawi KH, Bayly AE. 2019. A new model for the bouncing regime boundary in binary droplet collisions. Phys. Fluids 31:2027105
    [Google Scholar]
  5. Alventosa LFL, Cimpeanu R, Harris DM. 2023. Inertio-capillary rebound of a droplet impacting a fluid bath. J. Fluid Mech. 958:A24
    [Google Scholar]
  6. Anthony CR, Wee H, Garg V, Thete SS, Kamat PM et al. 2023. Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence. Annu. Rev. Fluid Mech. 55:707–47
    [Google Scholar]
  7. Aursand E, Davis SH, Ytrehus T. 2018. Thermocapillary instability as a mechanism for film boiling collapse. J. Fluid Mech. 852:283–312
    [Google Scholar]
  8. Bach GA, Koch DL, Gopinath A. 2004. Coalescence and bouncing of small aerosol droplets. J. Fluid Mech. 518:157–85
    [Google Scholar]
  9. Benkreira H, Khan M. 2008. Air entrainment in dip coating under reduced air pressures. Chem. Eng. Sci. 63:2448–59
    [Google Scholar]
  10. Biance AL, Clanet C, Quéré D. 2003. Leidenfrost drops. Phys. Fluids 15:61632
    [Google Scholar]
  11. Binysh J, Chakraborty I, Chubynsky MV, Melian VLD, Waitukaitis SR et al. 2022. Thermodynamic lubrication in the elastic Leidenfrost effect. arXiv:2207.02769 [cond-mat.soft]. https://doi.org/10.48550/arXiv.2207.02769
  12. Bird GA. 1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford, UK: Oxford Univ. Press
  13. Blake TD, Ruschak KJ. 1979. A maximum speed of wetting. Nature 282:5738489–91
    [Google Scholar]
  14. Bouillant A, Cohen C, Clanet C, Quéré D. 2021. Self-excitation of Leidenfrost drops and consequences on their stability. PNAS 118:26e2021691118
    [Google Scholar]
  15. Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D. 2018. Leidenfrost wheels. Nat. Phys. 14:121188–92
    [Google Scholar]
  16. Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG et al. 2012. Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109:26264501
    [Google Scholar]
  17. Brandão R, Schnitzer O. 2020. Spontaneous dynamics of two-dimensional Leidenfrost wheels. Phys. Rev. Fluids 5:9091601
    [Google Scholar]
  18. Brunet P, Snoeijer J. 2011. Star-drops formed by periodic excitation and on an air cushion—a short review. Eur. Phys. J. Spec. Top. 192:207–26
    [Google Scholar]
  19. Burton JC, Sharpe AL, van der Veen RCA, Franco A, Nagel SR. 2012. Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109:7074301
    [Google Scholar]
  20. Bush JW. 2015. Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47:269–92
    [Google Scholar]
  21. Castrejón-Pita JR, Muñoz-Sánchez BN, Hutchings IM, Castrejón-Pita AA. 2016. Droplet impact onto moving liquids. J. Fluid Mech. 809:716–25
    [Google Scholar]
  22. Cercignani C. 2006. Slow Rarefied Flows Basel, Switz.: Birkhäuser
  23. Chakraborty I, Chubynsky MV, Sprittles JE. 2022. Computational modelling of Leidenfrost drops. J. Fluid Mech. 936:A12
    [Google Scholar]
  24. Chan DYC, Klaseboer E, Manica R. 2011. Film drainage and coalescence between deformable drops and bubbles. Soft Matter 7:62235–64
    [Google Scholar]
  25. Chantelot P, Lohse D. 2021a. Drop impact on superheated surfaces: short-time dynamics and transition to contact. J. Fluid Mech. 928:A36
    [Google Scholar]
  26. Chantelot P, Lohse D. 2021b. Leidenfrost effect as a directed percolation phase transition. Phys. Rev. Lett. 127:12124502
    [Google Scholar]
  27. Chubynsky MV, Belousov KI, Lockerby DA, Sprittles JE. 2020. Bouncing off the walls: the influence of gas-kinetic and van der Waals effects in drop impact. Phys. Rev. Lett. 124:8084501
    [Google Scholar]
  28. Couder Y, Fort E, Gautier CH, Boudaoud A. 2005. From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94:17177801
    [Google Scholar]
  29. Cuttle C, Thompson AB, Pihler-Puzović D, Juel A. 2021. The engulfment of aqueous droplets on perfectly wetting oil layers. J. Fluid Mech. 915:A66
    [Google Scholar]
  30. Davis MH. 1972. Collisions of small cloud droplets: gas kinetic effects. J. Atmos. Sci. 29:5911–15
    [Google Scholar]
  31. Davis MH, Sartor JD. 1967. Theoretical collision efficiencies for small cloud droplets in Stokes flow. Nature 215:51081371–72
    [Google Scholar]
  32. Davis RH, Schonberg JA, Rallison JM. 1989. The lubrication force between two viscous drops. Phys. Fluids A 1:77–81
    [Google Scholar]
  33. de Goede TC, de Bruin KG, Shahidzadeh N, Bonn D. 2019. Predicting the maximum spreading of a liquid drop impacting on a solid surface: effect of surface tension and entrapped air layer. Phys. Rev. Fluids 4:5053602
    [Google Scholar]
  34. de Ruiter J, Lagraauw R, Mugele F, van den Ende D. 2015a. Bouncing on thin air: how squeeze forces in the air film during non-wetting droplet bouncing lead to momentum transfer and dissipation. J. Fluid Mech. 776:531–67
    [Google Scholar]
  35. de Ruiter J, Lagraauw R, van den Ende D, Mugele F. 2015b. Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11:48–53
    [Google Scholar]
  36. de Ruiter J, Oh JM, van den Ende D, Mugele F. 2012. Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108:7074505
    [Google Scholar]
  37. de Ruiter J, van den Ende D, Mugele F. 2015c. Air cushioning in droplet impact. II. Experimental characterization of the air film evolution. Phys. Fluids 27:012105
    [Google Scholar]
  38. Dias F, Dyachenko AI, Zakharov VE. 2008. Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions. Phys. Lett. A 372:81297–302
    [Google Scholar]
  39. Driscoll MM, Nagel SR. 2011. Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107:15154502
    [Google Scholar]
  40. Duchemin L, Josserand C. 2011. Curvature singularity and film-skating during drop impact. Phys. Fluids 23:9091701
    [Google Scholar]
  41. Duchemin L, Josserand C. 2020. Dimple drainage before the coalescence of a droplet deposited on a smooth substrate. PNAS 117:3420416–22
    [Google Scholar]
  42. Duez C, Ybert C, Clanet C, Bocquet L. 2007. Making a splash with water repellency. Nat. Phys. 3:3180–83
    [Google Scholar]
  43. Fetzer R, Rauscher M, Seemann R, Jacobs K, Mecke K. 2007. Thermal noise influences fluid flow in thin films during spinodal dewetting. Phys. Rev. Lett. 99:11114503
    [Google Scholar]
  44. Foote GB. 1975. The water drop rebound problem: dynamics of collision. J. Atmos. Sci. 32:2390–402
    [Google Scholar]
  45. Fu Z, Jin H, Zhang J, Xue T, Wen D. 2021. Air film evolution during droplet impact onto a solid surface. Phys. Fluids 33:9092107
    [Google Scholar]
  46. Fudge BD, Cimpeanu R, Castrejón-Pita AA. 2021. Dipping into a new pool: the interface dynamics of drops impacting onto a different liquid. Phys. Rev. E 104:6065102
    [Google Scholar]
  47. Fukai J, Shiiba Y, Yamamoto T, Miyatake O, Poulikakos D et al. 1995. Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys. Fluids 7:2236–47
    [Google Scholar]
  48. Fukui S, Kaneko R. 1988. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow. J. Tribol. 110:2253–61
    [Google Scholar]
  49. Galeano-Rios CA, Milewski PA, Vanden-Broeck JM. 2017. Non-wetting impact of a sphere onto a bath and its application to bouncing droplets. J. Fluid Mech. 826:97–127
    [Google Scholar]
  50. Gauthier A, Bird JC, Clanet C, Quéré D. 2016. Aerodynamic Leidenfrost effect. Phys. Rev. Fluids 1:8084002
    [Google Scholar]
  51. Gopinath A, Chen SB, Koch DL. 1997. Lubrication flows between spherical particles colliding in a compressible non-continuum gas. J. Fluid Mech. 344:245–69
    [Google Scholar]
  52. Gopinath A, Koch DL. 2002. Collision and rebound of small droplets in an incompressible continuum gas. J. Fluid Mech. 454:145–201
    [Google Scholar]
  53. Gordillo JM, Riboux G. 2019. A note on the aerodynamic splashing of droplets. J. Fluid Mech. 871:R3
    [Google Scholar]
  54. Gordillo JM, Riboux G. 2022. The initial impact of drops cushioned by an air or vapour layer with applications to the dynamic Leidenfrost regime. J. Fluid Mech. 941:A10
    [Google Scholar]
  55. Grabowski WW, Wang LP. 2013. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45:293–324
    [Google Scholar]
  56. Graeber G, Regulagadda K, Hodel P, Küttel C, Landolf D et al. 2021. Leidenfrost droplet trampolining. Nat. Commun. 12:1727
    [Google Scholar]
  57. Hadjiconstantinou NG. 2024. Molecular mechanics of liquid and gas slip flow. Annu. Rev. Fluid Mech. 56:43561
    [Google Scholar]
  58. Hamdan KS, Kim DE, Moon SK. 2015. Droplets behavior impacting on a hot surface above the Leidenfrost temperature. Ann. Nuclear Energy 80:338–47
    [Google Scholar]
  59. Hao J, Lu J, Lee L, Wu Z, Hu G, Floryan JM. 2019. Droplet splashing on an inclined surface. Phys. Rev. Lett. 122:5054501
    [Google Scholar]
  60. Harvey D, Burton JC. 2023. Hydrodynamic collapse of the Leidenfrost vapor layer. arXiv:2301.10650 [physics.flu-dyn]. https://doi.org/10.48550/arXiv.2301.10650
  61. Harvey D, Harper JM, Burton JC. 2021. Minimum Leidenfrost temperature on smooth surfaces. Phys. Rev. Lett. 127:10104501
    [Google Scholar]
  62. He C, Xia X, Zhang P. 2019. Non-monotonic viscous dissipation of bouncing droplets undergoing off-center collision. Phys. Fluids 31:5052004
    [Google Scholar]
  63. Heil M, Hazel A, Puneet M. 2022. oomph-lib. Object-oriented, open-source finite-element library https://github.com/oomph-lib/oomph-lib
    [Google Scholar]
  64. Hicks PD, Purvis R. 2010. Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649:135–63
    [Google Scholar]
  65. Hicks PD, Purvis R. 2011. Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23:6062104
    [Google Scholar]
  66. Hicks PD, Purvis R. 2013. Liquidsolid impacts with compressible gas cushioning. J. Fluid Mech. 735:120–49
    [Google Scholar]
  67. Hocking LM. 1959. The collision efficiency of small drops. Q. J. R. Meteorol. Soc. 85:36344–50
    [Google Scholar]
  68. Hocking LM. 1973. The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Eng. Math. 7:3207–21
    [Google Scholar]
  69. Hocking LM, Jonas PR. 1970. The collision efficiency of small drops. Q. J. R. Meteorol. Soc. 96:410722–29
    [Google Scholar]
  70. How MLS, Koch DL, Collins LR. 2021. Non-continuum tangential lubrication gas flow between two spheres. J. Fluid Mech. 920:A2
    [Google Scholar]
  71. Huang KL, Pan KL. 2021. Transitions of bouncing and coalescence in binary droplet collisions. J. Fluid Mech. 928:A7
    [Google Scholar]
  72. Jian Z, Josserand C, Popinet S, Ray P, Zaleski S. 2018. Two mechanisms of droplet splashing on a solid substrate. J. Fluid Mech. 835:1065–86
    [Google Scholar]
  73. Jiang YJ, Umemura A, Law CK. 1992. An experimental investigation on the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234:171–90
    [Google Scholar]
  74. Josserand C, Thoroddsen S. 2016. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48:365–91
    [Google Scholar]
  75. Josserand C, Zaleski S. 2003. Droplet splashing on a thin liquid film. Phys. Fluids 15:61650
    [Google Scholar]
  76. Kavehpour HP. 2015. Coalescence of drops. Annu. Rev. Fluid Mech. 47:245–68
    [Google Scholar]
  77. Kaviani R, Kolinski JM. 2023. The characteristic rupture height of the mediating air film beneath an impacting drop on atomically smooth mica. arXiv:2302.12740 [physics.flu-dyn]. https://doi.org/10.48550/arXiv.2302.12740
  78. Kolinski JM, Mahadevan L, Rubinstein SM. 2014. Drops can bounce from perfectly hydrophilic surfaces. Europhys. Lett. 108:224001
    [Google Scholar]
  79. Kolinski JM, Rubinstein SM, Mandre S, Brenner MP, Weitz DA, Mahadevan L. 2012. Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108:7074503
    [Google Scholar]
  80. Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R et al. 2017. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J. Control. Release 261:207–15
    [Google Scholar]
  81. Langley KR, Li EQ, Thoroddsen ST. 2017. Impact of ultra-viscous drops: air-film gliding and extreme wetting. J. Fluid Mech. 813:647–66
    [Google Scholar]
  82. Langley KR, Thoroddsen ST. 2019. Gliding on a layer of air: impact of a large-viscosity drop on a liquid film. J. Fluid Mech. 878:R2
    [Google Scholar]
  83. Law KL, Chu HY. 2019. Bowling water drops on water surface. Phys. Fluids 31:6067101
    [Google Scholar]
  84. Lee SH, Harth K, Rump M, Kim M, Lohse D et al. 2020. Drop impact on hot plates: contact times, lift-off and the lamella rupture. Soft Matter 16:347935–49
    [Google Scholar]
  85. Lesser MB, Field JE. 1983. The impact of compressible liquids. Annu. Rev. Fluid Mech. 15:97–122
    [Google Scholar]
  86. Li EQ, Vakarelski IU, Thoroddsen ST. 2015. Probing the nanoscale: the first contact of an impacting drop. J. Fluid Mech. 785:R2
    [Google Scholar]
  87. Li J. 2016. Macroscopic model for head-on binary droplet collisions in a gaseous medium. Phys. Rev. Lett. 117:21214502
    [Google Scholar]
  88. Liu D, Tran T. 2020. Size-dependent spontaneous oscillations of Leidenfrost droplets. J. Fluid Mech. 902:A21
    [Google Scholar]
  89. Liu M, Bothe D. 2019. Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions. Acta Mech. 230:2623–44
    [Google Scholar]
  90. Liu Y, Tan P, Xu L. 2015. Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. PNAS 112:113280–84
    [Google Scholar]
  91. Lo HY, Liu Y, Xu L. 2017. Mechanism of contact between a droplet and an atomically smooth substrate. Phys. Rev. X 7:2021036
    [Google Scholar]
  92. Ma X, Liétor-Santos JJ, Burton JC. 2017. Star-shaped oscillations of Leidenfrost drops. Phys. Rev. Fluids 2:3031602
    [Google Scholar]
  93. Mandre S, Mani M, Brenner MP. 2009. Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102:13134502
    [Google Scholar]
  94. Mani M, Mandre S, Brenner MP. 2010. Events before droplet splashing on a solid surface. J. Fluid Mech. 647:163–85
    [Google Scholar]
  95. Marchand A, Chan TS, Snoeijer JH, Andreotti B. 2012. Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108:20204501
    [Google Scholar]
  96. Maxwell JC. 1879. VII. On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170:231–56
    [Google Scholar]
  97. Moon JH, Choi CK, Allen JS, Lee SH. 2018. Observation of a mixed regime for an impinging droplet on a sessile droplet. Int. J. Heat Mass Transf. 127:130–35
    [Google Scholar]
  98. Neitzel GP, Dell'Aversana P. 2002. Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech. 34:267–89
    [Google Scholar]
  99. Nobari MRH, Tryggvason G. 1996. Numerical simulations of three-dimensional drop collisions. AIAA J. 34:4750–55
    [Google Scholar]
  100. Pack M, Hu H, Kim D, Zheng Z, Stone HA, Sun Y. 2017. Failure mechanisms of air entrainment in drop impact on lubricated surfaces. Soft Matter 13:122402–9
    [Google Scholar]
  101. Pan KL, Chou PC, Tseng YJ. 2009. Binary droplet collision at high Weber number. Phys. Rev. E 80:3036301
    [Google Scholar]
  102. Pan KL, Law CK. 2007. Dynamics of droplet–film collision. J. Fluid Mech. 587:1–22
    [Google Scholar]
  103. Pan KL, Law CK, Zhou B. 2008. Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J. Appl. Phys. 103:6064901
    [Google Scholar]
  104. Pirat C, Lebon L, Fruleux A, Roche JS, Limat L. 2010. Gyroscopic instability of a drop trapped inside an inclined circular hydraulic jump. Phys. Rev. Lett. 105:8084503
    [Google Scholar]
  105. Popinet S. 2018. Numerical models of surface tension. Annu. Rev. Fluid Mech. 50:49–75
    [Google Scholar]
  106. Qian J, Law CK. 1997. Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331:59–80
    [Google Scholar]
  107. Quéré D. 2013. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45:197–215
    [Google Scholar]
  108. Rayleigh. 1899. XXXVI. Investigations in capillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 48:293321–37
    [Google Scholar]
  109. Rein M. 1993. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12:261–93
    [Google Scholar]
  110. Rein M, Delplanque JP. 2008. The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech. 201:105–18
    [Google Scholar]
  111. Reitz RD. 2013. Directions in internal combustion engine research. Combust. Flame 160:11–8
    [Google Scholar]
  112. Reynolds O. 1881. On the floating of drops on the surface of water depending only on the purity of the surface. Proc. Lit. Philos. Soc. Manch. 21:1413–14
    [Google Scholar]
  113. Reynolds O. 1886. IV. On the theory of lubrication and its application to Mr. Beauchamp tower's experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177:157–234
    [Google Scholar]
  114. Riboux G, Gordillo JM. 2014. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113:2024507
    [Google Scholar]
  115. Sanjay V, Lakshman S, Chantelot P, Snoeijer J, Lohse D. 2023. Drop impact on viscous liquid films. J. Fluid Mech. 958:A25
    [Google Scholar]
  116. Schotland RM. 1960. Experimental results relating to the coalescence of water drops with water surfaces. Discuss. Faraday Soc. 30:72–77
    [Google Scholar]
  117. Sharipov F, Seleznev V. 1998. Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27:3657–706
    [Google Scholar]
  118. Sharma PK, Dixit HN. 2021. Regimes of wettability-dependent and wettability-independent bouncing of a drop on a solid surface. J. Fluid Mech. 908:A37
    [Google Scholar]
  119. Shikhmurzaev YD. 2007. Capillary Flows with Forming Interfaces Boca Raton, FL: CRC
  120. Shirota M, van Limbeek MAJ, Lohse D, Sun C. 2017. Measuring thin films using quantitative frustrated total internal reflection (FTIR). Eur. Phys. J. E 40:554
    [Google Scholar]
  121. Shirota M, van Limbeek MAJ, Sun C, Prosperetti A, Lohse D. 2016. Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116:6064501
    [Google Scholar]
  122. Siewert CE. 2003. The linearized Boltzmann equation: concise and accurate solutions to basic flow problems. Z. Angew. Math. Phys. 54:2273–303
    [Google Scholar]
  123. Smith FT, Li L, Wu GX. 2003. Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482:291–318
    [Google Scholar]
  124. Sobac B, Rednikov A, Dorbolo S, Colinet P. 2014. Leidenfrost effect: accurate drop shape modeling and refined scaling laws. Phys. Rev. E 90:5053011 Erratum.; 2021. Phys. Rev. E 103:3039901
    [Google Scholar]
  125. Sprittles JE. 2015. Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. J. Fluid Mech. 769:444–81
    [Google Scholar]
  126. Sprittles JE. 2017. Kinetic effects in dynamic wetting. Phys. Rev. Lett. 118:11114502
    [Google Scholar]
  127. Staat HJJ, Tran T, Geerdink B, Riboux G, Sun C et al. 2015. Phase diagram for droplet impact on superheated surfaces. J. Fluid Mech. 779:R3
    [Google Scholar]
  128. Stimson M, Jeffery GB, Filon LNG. 1926. The motion of two spheres in a viscous fluid. Proc. R. Soc. Ser. A 111:757110–16
    [Google Scholar]
  129. Struchtrup H. 2005. Macroscopic Transport Equations for Rarefied Gas Flows. Interaction of Mechanics and Mathematics Berlin: Springer
  130. Sundararajakumar RR, Koch DL. 1996. Non-continuum lubrication flows between particles colliding in a gas. J. Fluid Mech. 313:283–308
    [Google Scholar]
  131. Tang X, Saha A, Law CK, Sun C. 2016. Nonmonotonic response of drop impacting on liquid film: mechanism and scaling. Soft Matter 12:204521–29
    [Google Scholar]
  132. Tang X, Saha A, Law CK, Sun C. 2019. Bouncing drop on liquid film: dynamics of interfacial gas layer. Phys. Fluids 31:013304
    [Google Scholar]
  133. Thoroddsen ST, Etoh T, Takehara K. 2008. High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40:257–85
    [Google Scholar]
  134. Thoroddsen ST, Takehara K, Etoh TG. 2010. Bubble entrapment through topological change. Phys. Fluids 22:5051701
    [Google Scholar]
  135. Tran T, Staat HJJ, Prosperetti A, Sun C, Lohse D. 2012. Drop impact on superheated surfaces. Phys. Rev. Lett. 108:3036101
    [Google Scholar]
  136. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N et al. 2001. A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169:2708–59
    [Google Scholar]
  137. Usawa M, Fujita Y, Tagawa Y, Riboux G, Gordillo JM. 2021. Large impact velocities suppress the splashing of micron-sized droplets. Phys. Rev. Fluids 6:2023605
    [Google Scholar]
  138. van Limbeek MAJ, Hoefnagels PBJ, Shirota M, Sun C, Lohse D. 2018. Boiling regimes of impacting drops on a heated substrate under reduced pressure. Phys. Rev. Fluids 3:5053601
    [Google Scholar]
  139. van Limbeek MAJ, Ramírez-Soto O, Prosperetti A, Lohse D. 2021. How ambient conditions affect the Leidenfrost temperature. Soft Matter 17:113207–15
    [Google Scholar]
  140. van Limbeek MAJ, Schaarsberg MHK, Sobac B, Rednikov A, Sun C et al. 2017. Leidenfrost drops cooling surfaces: theory and interferometric measurement. J. Fluid Mech. 827:614–39
    [Google Scholar]
  141. Vandre E, Carvalho MS, Kumar S. 2012. Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707:496–520
    [Google Scholar]
  142. Waitukaitis SR, Zuiderwijk A, Souslov A, Coulais C, van Hecke M. 2017. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nat. Phys. 13:111095–99
    [Google Scholar]
  143. Wang CH, Hung WG, Fu SY, Huang WC, Law CK. 2003. On the burning and microexplosion of collision-generated two-component droplets: miscible fuels. Combust. Flame 134:3289–300
    [Google Scholar]
  144. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR. 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1:213–44
    [Google Scholar]
  145. Williams H, Sprittles J, Padrino JC, Denissenko P. 2022. Effect of ambient gas on cavity formation for sphere impacts on liquids. Phys. Rev. Fluids 7:9094003
    [Google Scholar]
  146. Willis KD, Orme ME. 2000. Experiments on the dynamics of droplet collisions in a vacuum. Exp. Fluids 29:4347–58
    [Google Scholar]
  147. Wu X, Saha A. 2022. Droplet impact on liquid films: bouncing-to-merging transitions for two-liquid systems. Phys. Fluids 34:10103313
    [Google Scholar]
  148. Xu L, Zhang WW, Nagel SR. 2005. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94:18184505
    [Google Scholar]
  149. Yim E, Bouillant A, Quéré D, Gallaire F. 2022. Leidenfrost flows: instabilities and symmetry breakings. Flow 2:E18
    [Google Scholar]
  150. Zhang L, Soori T, Rokoni A, Kaminski A, Sun Y. 2021a. Air film contact modes of drop impact on lubricated surfaces under reduced pressures. Phys. Fluids 33:9092110
    [Google Scholar]
  151. Zhang L, Soori T, Rokoni A, Kaminski A, Sun Y. 2021b. Thin film instability driven dimple mode of air film failure during drop impact on smooth surfaces. Phys. Rev. Fluids 6:4044002
    [Google Scholar]
  152. Zhang L, Soori T, Rokoni A, Sun Y. 2022. Postcontact droplet spreading and bubble entrapment on a smooth surface. Phys. Rev. Fluids 7:10104003
    [Google Scholar]
  153. Zhang P, Law CK. 2011. An analysis of head-on droplet collision with large deformation in gaseous medium. Phys. Fluids 23:4042102
    [Google Scholar]
  154. Zhang Z, Chi Y, Shang L, Zhang P, Zhao Z. 2016. On the role of droplet bouncing in modeling impinging sprays under elevated pressures. Int. J. Heat Mass Transf. 102:657–68
    [Google Scholar]
  155. Zhao TY, Patankar NA. 2020. The thermo-wetting instability driving Leidenfrost film collapse. PNAS 117:2413321–28
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-021121
Loading
/content/journals/10.1146/annurev-fluid-121021-021121
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error