1932

Abstract

This review discusses Operator Inference, a nonintrusive reduced modeling approach that incorporates physical governing equations by defining a structured polynomial form for the reduced model, and then learns the corresponding reduced operators from simulated training data. The polynomial model form of Operator Inference is sufficiently expressive to cover a wide range of nonlinear dynamics found in fluid mechanics and other fields of science and engineering, while still providing efficient reduced model computations. The learning steps of Operator Inference are rooted in classical projection-based model reduction; thus, some of the rich theory of model reduction can be applied to models learned with Operator Inference. This connection to projection-based model reduction theory offers a pathway toward deriving error estimates and gaining insights to improve predictions. Furthermore, through formulations of Operator Inference that preserve Hamiltonian and other structures, important physical properties such as energy conservation can be guaranteed in the predictions of the reduced model beyond the training horizon. This review illustrates key computational steps of Operator Inference through a large-scale combustion example.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-025220
2024-01-19
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-025220.html?itemId=/content/journals/10.1146/annurev-fluid-121021-025220&mimeType=html&fmt=ahah

Literature Cited

  1. Alsup T, Peherstorfer B. 2023. Context-aware surrogate modeling for balancing approximation and sampling costs in multi-fidelity importance sampling and Bayesian inverse problems. SIAM/ASA J. Uncertain. Quant. 11:1285–319
    [Google Scholar]
  2. Amsallem D, Farhat C. 2008. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46:71803–13
    [Google Scholar]
  3. Antoulas AC. 2005. Approximation of Large-Scale Dynamical Systems. Philadelphia: SIAM
  4. Antoulas AC, Beattie CA, Gugercin S. 2021. Interpolatory Methods for Model Reduction. Philadelphia: SIAM
  5. Astrid P, Weiland S, Willcox K, Backx T. 2008. Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control 53:102237–51
    [Google Scholar]
  6. Audouze C, De Vuyst F, Nair PB. 2009. Reduced-order modeling of parameterized PDEs using time–space-parameter principal component analysis. Int. J. Numer. Methods Eng. 80:81025–57
    [Google Scholar]
  7. Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y et al. 2019. Workshop report on basic research needs for scientific machine learning: core technologies for artificial intelligence. Tech. Rep., Off. Sci. Dep. Energy Washington, DC:
  8. Balajewicz M, Tezaur I, Dowell E. 2016. Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations. J. Comput. Phys. 321:224–41
    [Google Scholar]
  9. Becker R, Rannacher R. 2001. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10:1–102
    [Google Scholar]
  10. Benner P, Breiten T. 2015. Two-sided projection methods for nonlinear model order reduction. SIAM J. Sci. Comput. 37:2B239–60
    [Google Scholar]
  11. Benner P, Goyal P, Gugercin S. 2018. -quasi-optimal model order reduction for quadratic-bilinear control systems. SIAM J. Matrix Anal. Appl. 39:2983–1032
    [Google Scholar]
  12. Benner P, Goyal P, Kramer B, Peherstorfer B, Willcox K. 2020. Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms. Comput. Methods Appl. Mech. Eng. 372:113433
    [Google Scholar]
  13. Benner P, Gugercin S, Willcox K. 2015. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57:4483–531
    [Google Scholar]
  14. Brenig L. 2018. Reducing nonlinear dynamical systems to canonical forms. Philos. Trans. R. Soc. A 376:212420170384
    [Google Scholar]
  15. Brunton SL, Brunton BW, Proctor JL, Kutz JN. 2016a. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE 11:2e0150171
    [Google Scholar]
  16. Brunton SL, Noack BR, Koumoutsakos P. 2020. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52:477–508
    [Google Scholar]
  17. Brunton SL, Proctor JL, Kutz JN. 2016b. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS 113:153932–37
    [Google Scholar]
  18. Bui-Thanh T, Willcox K, Ghattas O, van Bloemen Waanders B. 2007. Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput. Phys. 224:2880–96
    [Google Scholar]
  19. Bychkov A, Pogudin G 2021. Optimal monomial quadratization for ODE systems. Combinatorial Algorithms P Flocchini, L Moura 122–36. Cham, Switz.: Springer
    [Google Scholar]
  20. Chesi G. 2007. Estimating the domain of attraction via union of continuous families of Lyapunov estimates. Syst. Control Lett. 56:4326–33
    [Google Scholar]
  21. Chorin A, Hald OH, Kupferman R. 2002. Optimal prediction with memory. Physica D 166:3239–57
    [Google Scholar]
  22. Chorin A, Stinis P. 2006. Problem reduction, renormalization, and memory. Commun. Appl. Math. Comput. Sci. 1:11–27
    [Google Scholar]
  23. Cole JD. 1951. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9:3225–36
    [Google Scholar]
  24. Coveney PV, Dougherty ER, Highfield RR. 2016. Big data need big theory too. Philos. Trans. R. Soc. A 374:208020160153
    [Google Scholar]
  25. Degroote J, Vierendeels J, Willcox K. 2010. Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int. J. Numer. Methods Fluids 63:2207–30
    [Google Scholar]
  26. Dowell EH, Hall KC. 2001. Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 33:445–90
    [Google Scholar]
  27. Drmač Z, Gugercin S. 2016. A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions. SIAM J. Sci. Comput. 38:2A631–48
    [Google Scholar]
  28. Duraisamy K, Iaccarino G, Xiao H. 2019. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51:357–77
    [Google Scholar]
  29. Farcaş I, Gundevia R, Munipalli R, Willcox KE. 2023a. Parametric non-intrusive reduced-order models via operator inference for large-scale rotating detonation engine simulations Paper presented at 2023 AIAA SCITECH Forum National Harbor, MD: pap. AIAA 2023-0172
  30. Farcaş I, Munipalli R, Willcox KE. 2022. On filtering in non-intrusive data-driven reduced-order modeling. Paper presented at AIAA AVIATION 2022 Forum Chicago, pap: AIAA 2022-2111
  31. Farcaş IG, Peherstorfer B, Neckel T, Jenko F, Bungartz HJ. 2023b. Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification. Comput. Methods Appl. Mech. Eng. 406:115908
    [Google Scholar]
  32. Forrester AIJ, Sobester A, Keane AJ. 2008. Engineering Design via Surrogate Modelling: A Practical Guide. Hoboken, NJ: Wiley
  33. Gear CW, Hyman JM, Kevrekidid PG, Kevrekidis IG, Runborg O, Theodoropoulos C. 2003. Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1:4715–62
    [Google Scholar]
  34. Geelen R, Willcox K. 2022. Localized non-intrusive reduced-order modelling in the operator inference framework. Philos. Trans. R. Soc. A 380:222920210206
    [Google Scholar]
  35. Geelen R, Wright S, Willcox K. 2023. Operator inference for non-intrusive model reduction with quadratic manifolds. Comput. Methods Appl. Mech. Eng. 403:115717
    [Google Scholar]
  36. Ghattas O, Willcox K. 2021. Learning physics-based models from data: perspectives from inverse problems and model reduction. Acta Numer. 30:445–554
    [Google Scholar]
  37. Givon D, Kupferman R, Stuart A. 2004. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17:6R55–127
    [Google Scholar]
  38. Grepl MA, Patera AT. 2005. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math. Model. Numer. Anal. 39:1157–81
    [Google Scholar]
  39. Gu C. 2011. QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30:91307–20
    [Google Scholar]
  40. Guillot L, Cochelin B, Vergez C. 2019. A generic and efficient Taylor series–based continuation method using a quadratic recast of smooth nonlinear systems. Int. J. Numer. Methods Eng. 119:4261–80
    [Google Scholar]
  41. Guo M, McQuarrie SA, Willcox KE. 2022. Bayesian operator inference for data-driven reduced-order modeling. Comput. Methods Appl. Mech. Eng. 402:115336
    [Google Scholar]
  42. Haasdonk B, Ohlberger M. 2011. Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17:2145–61
    [Google Scholar]
  43. Hairer E, Lubich C, Wanner G. 2006. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Ser. Comput. Math. Vol. 31 Berlin: Springer
  44. Hall KC, Thomas JP, Dowell EH. 2000. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 38:101853–62
    [Google Scholar]
  45. Harvazinski ME, Huang C, Sankaran V, Feldman TW, Anderson WE et al. 2015. Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor. Phys. Fluids 27:045102
    [Google Scholar]
  46. Hemati MS, Rowley CW, Deem EA, Cattafesta LN. 2017. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets. Theor. Comput. Fluid Dyn. 31:349–68
    [Google Scholar]
  47. Hemery M, Fages F, Soliman S 2020. On the complexity of quadratization for polynomial differential equations. Computational Methods in Systems Biology A Abate, T Petrov, V Wolf 120–40. Cham, Switz.: Springer
    [Google Scholar]
  48. Hemery M, Fages F, Soliman S 2021. Compiling elementary mathematical functions into finite chemical reaction networks via a polynomialization algorithm for ODEs. Computational Methods in Systems Biology E Cinquemani, L Paulevé 74–90. Cham, Switz.: Springer
    [Google Scholar]
  49. Hesthaven JS, Rozza G, Stamm B. 2016. Certified Reduced Basis Methods for Parametrized Partial Differential Equations Cham, Switz.: Springer
  50. Hesthaven JS, Ubbiali S. 2018. Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363:55–78
    [Google Scholar]
  51. Hinze M, Volkwein S 2005. Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. Dimension Reduction of Large-Scale Systems P Benner, V Mehrmann, D Sorensen 261–306. Lect. Notes Comput. Appl. Math. Vol. 45 Berlin: Springer
    [Google Scholar]
  52. Holmes P, Lumley J, Berkooz G. 1996. Turbulence, Coherent Structures, Dynamical Systems and Symmetry Cambridge, UK: Cambridge Univ. Press
  53. Hopf E. 1950. The partial differential equation ut+ uux= μxx. Commun. Pure Appl. Math. 3:3201–30
    [Google Scholar]
  54. Huang C, Duraisamy K, Merkle CL. 2019. Investigations and improvement of robustness of reduced-order models of reacting flow. AIAA J. 57:125377–89
    [Google Scholar]
  55. Huang C, Gejji R, Anderson W, Yoon C, Sankaran V. 2020. Combustion dynamics in a single-element lean direct injection gas turbine combustor. Combust. Sci. Technol. 192:122371–98
    [Google Scholar]
  56. Hughes TJ, Franca L, Mallet M. 1986. A new finite element formulation for computational fluid dynamics. I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54:2223–34
    [Google Scholar]
  57. Issan O, Kramer B. 2022. Predicting solar wind streams from the inner-heliosphere to Earth via shifted operator inference. J. Comput. Phys. 3473:111689
    [Google Scholar]
  58. Jain P, McQuarrie S, Kramer B. 2021. Performance comparison of data-driven reduced models for a single-injector combustion process Paper presented at 2021 AIAA Propulsion and Energy Forum and Exposition online, pap. AIAA 2021-3633
  59. Jakubczyk B, Respondek W. 1980. On linearization of control systems. Bull. Acad. Polon. Sci. 28:517–22
    [Google Scholar]
  60. Kalashnikova I, Barone M. 2011. Stable and efficient Galerkin reduced order models for non-linear fluid flow. Paper presented at 6th AIAA Theoretical Fluid Mechanics Conference Honolulu, HI: pap. AIAA 2011-3110
  61. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. 2021. Physics-informed machine learning. Nat. Rev. Phys. 3:6422–40
    [Google Scholar]
  62. Khalil HK. 2002. Nonlinear Systems Upper Saddle River, NJ: Prentice Hall. , 3rd ed..
  63. Khodabakhshi P, Willcox KE. 2022. Non-intrusive data-driven model reduction for differential–algebraic equations derived from lifting transformations. Comput. Methods Appl. Mech. Eng. 389:114296
    [Google Scholar]
  64. Kramer B. 2021. Stability domains for quadratic-bilinear reduced-order models. SIAM J. Appl. Dyn. Syst. 20:2981–96
    [Google Scholar]
  65. Kramer B, Peherstorfer B, Willcox K. 2017. Feedback control for systems with uncertain parameters using online-adaptive reduced models. SIAM J. Appl. Dyn. Syst. 16:31563–86
    [Google Scholar]
  66. Kramer B, Willcox K. 2019. Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition. AIAA J. 57:62297–307
    [Google Scholar]
  67. Kramer B, Willcox K 2022. Balanced truncation model reduction for lifted nonlinear systems. Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday of Thanos Antoulas C Beattie, P Benner, M Embree, S Gugercin, S Lefteriu 157–74. Cham, Switz.: Springer
    [Google Scholar]
  68. Kutz JN, Brunton SL, Brunton BW, Proctor JL. 2016. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems Philadelphia: SIAM
  69. Langley P. 1981. Data-driven discovery of physical laws. Cogn. Sci. 5:131–54
    [Google Scholar]
  70. Le Clainche S, Vega J 2017. Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16:2882–925
    [Google Scholar]
  71. Leimkuhler B, Reich S. 2004. Simulating Hamiltonian Dynamics Cambridge, UK: Cambridge Univ. Press
  72. Li Z, Bian X, Caswell B, Karniadakis GE. 2014. Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter 10:438659–72
    [Google Scholar]
  73. Lieberman C, Willcox K. 2013. Goal-oriented inference: approach, linear theory, and application to advection diffusion. SIAM Rev. 55:3493–519
    [Google Scholar]
  74. Lieberman C, Willcox K. 2014. Nonlinear goal-oriented Bayesian inference: application to carbon capture and storage. SIAM J. Sci. Comput. 36:3B427–49
    [Google Scholar]
  75. Liljegren-Sailer B, Marheineke N. 2022. Input-tailored system-theoretic model order reduction for quadratic-bilinear systems. SIAM J. Matrix Anal. Appl. 43:11–39
    [Google Scholar]
  76. Liu J, Zhan N, Zhao H, Zou L. 2015. Abstraction of elementary hybrid systems by variable transformation. FM15: Formal Methods. International Symposium on Formal Methods360–77. Berlin: Springer
    [Google Scholar]
  77. Ljung L. 1987. System Identification Upper Saddle River, NJ: Prentice Hall
  78. Lumley J 1967. The structures of inhomogeneous turbulent flow. Atmospheric Turbulence and Radio Wave Propagation AM Yaglom, VI Tartarsky 166–78. Fort Belvoir, VA: Defense Tech. Inf. Cent.
    [Google Scholar]
  79. McCormick GP. 1976. Computability of global solutions to factorable nonconvex programs. Part I: Convex underestimating problems. Math. Progr. 10:1147–75
    [Google Scholar]
  80. McQuarrie SA, Huang C, Willcox K. 2021. Data-driven reduced-order models via regularised operator inference for a single-injector combustion process. J. R. Soc. N. Z. 51:2194–211
    [Google Scholar]
  81. Mezić I. 2005. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41:1–3309–25
    [Google Scholar]
  82. Netto M, Susuki Y, Krishnan V, Zhang Y. 2021. On analytical construction of observable functions in extended dynamic mode decomposition for nonlinear estimation and prediction. 2021 American Control Conference4190–95. Piscataway, NJ: IEEE
    [Google Scholar]
  83. Noether E. 1971. Invariant variation problems. Transp. Theory Stat. Phys. 1:3186–207
    [Google Scholar]
  84. Pan S, Duraisamy K. 2018. Data-driven discovery of closure models. SIAM J. Appl. Dyn. Syst. 17:42381–413
    [Google Scholar]
  85. Panzer H, Mohring J, Eid R, Lohmann B. 2010. Parametric model order reduction by matrix interpolation. Automatisierungstechnik 58:8475–84
    [Google Scholar]
  86. Peherstorfer B. 2020a. Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. SIAM J. Sci. Comput. 42:5A2803–36
    [Google Scholar]
  87. Peherstorfer B. 2020b. Sampling low-dimensional Markovian dynamics for preasymptotically recovering reduced models from data with operator inference. SIAM J. Sci. Comput. 42:5A3489–515
    [Google Scholar]
  88. Peherstorfer B. 2022. Breaking the Kolmogorov barrier with nonlinear model reduction. Not. Am. Math. Soc. 69:725–33
    [Google Scholar]
  89. Peherstorfer B, Drmač Z, Gugercin S. 2020. Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points. SIAM J. Sci. Comput. 42:A2837–64
    [Google Scholar]
  90. Peherstorfer B, Willcox K. 2015. Dynamic data-driven reduced-order models. Comput. Methods Appl. Mech. Eng. 291:21–41
    [Google Scholar]
  91. Peherstorfer B, Willcox K. 2016a. Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Eng. 306:196–215
    [Google Scholar]
  92. Peherstorfer B, Willcox K. 2016b. Dynamic data-driven model reduction: adapting reduced models from incomplete data. Adv. Model. Simul. Eng. Sci. 3:11
    [Google Scholar]
  93. Peherstorfer B, Willcox K, Gunzburger M. 2018. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60:3550–91
    [Google Scholar]
  94. Peng L, Mohseni K. 2016. Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38:1A1–27
    [Google Scholar]
  95. Prud'homme C, Rovas DV, Veroy K, Machiels L, Maday Y et al. 2001. Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124:170–80
    [Google Scholar]
  96. Prudhomme S, Oden J. 1999. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176:1313–31
    [Google Scholar]
  97. Qian E, Farcaş IG, Willcox K. 2022. Reduced operator inference for nonlinear partial differential equations. SIAM J. Sci. Comput. 44:4A1934–59
    [Google Scholar]
  98. Qian E, Kramer B, Peherstorfer B, Willcox K. 2020. Lift & Learn: physics-informed machine learning for large-scale nonlinear dynamical systems. Physica D 406:132401
    [Google Scholar]
  99. Quarteroni A, Rozza G, eds. 2014. Reduced Order Methods for Modeling and Computational Reduction Berlin: Springer
  100. Raissi M, Karniadakis GE. 2018. Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357:125–41
    [Google Scholar]
  101. Rasmussen C, Williams C. 2006. Gaussian Processes for Machine Learning Cambridge, MA: MIT Press
  102. Rezaian E, Wei M. 2020. Impact of symmetrization on the robustness of POD-Galerkin ROMs for compressible flows Paper presented at 2020 AIAA SCITECH Forum Orlando, FL: pap. AIAA 2020-1318
  103. Rowley CW, Dawson ST. 2017. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49:387–417
    [Google Scholar]
  104. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641:115–27
    [Google Scholar]
  105. Rozza G, Huynh DBP, Patera AT. 2008. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15:3229–75
    [Google Scholar]
  106. Savageau MA, Voit EO. 1987. Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math. Biosci. 87:183–115
    [Google Scholar]
  107. Sawant N, Kramer B, Peherstorfer B. 2023. Physics-informed regularization and structure preservation for learning stable reduced models from data with operator inference. Comput. Methods Appl. Mech. Eng. 404:115836
    [Google Scholar]
  108. Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  109. Schmid PJ. 2022. Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 54:225–54
    [Google Scholar]
  110. Schmidt M, Lipson H. 2009. Distilling free-form natural laws from experimental data. Science 324:592381–85
    [Google Scholar]
  111. Sharma H, Kramer B. 2022. Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale mechanical systems. arXiv:2203.06361 [math.NA]
  112. Sharma H, Patil M, Woolsey C. 2020. A review of structure-preserving numerical methods for engineering applications. Comput. Methods Appl. Mech. Eng. 366:113067
    [Google Scholar]
  113. Sharma H, Wang Z, Kramer B. 2022. Hamiltonian operator inference: Physics-preserving learning of reduced-order models for Hamiltonian systems. Physica D 431:133122
    [Google Scholar]
  114. Sirovich L. 1987. Turbulence and the dynamics of coherent structures. Part 1. Coherent structures. Q. Appl. Math. 45:3561–71
    [Google Scholar]
  115. Spantini A, Cui T, Willcox K, Tenorio L, Marzouk Y. 2017. Goal-oriented optimal approximations of Bayesian linear inverse problems. SIAM J. Sci. Comput. 39:5S167–96
    [Google Scholar]
  116. Swischuk R, Kramer B, Huang C, Willcox K. 2020a. Learning physics-based reduced-order models for a single-injector combustion process. AIAA J. 58:62658–72
    [Google Scholar]
  117. Swischuk R, Mainini L, Peherstorfer B, Willcox K. 2019. Projection-based model reduction: formulations for physics-based machine learning. Comput. Fluids 179:704–17
    [Google Scholar]
  118. Tesi A, Villoresi F, Genesio R. 1994. On stability domain estimation via a quadratic Lyapunov function: convexity and optimality properties for polynomial systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control, Vol. 21907–12. Piscataway, NJ: IEEE
    [Google Scholar]
  119. Thiede EH, Giannakis D, Dinner AR, Weare J. 2019. Galerkin approximation of dynamical quantities using trajectory data. J. Chem. Phys. 150:244111
    [Google Scholar]
  120. Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. 2014. On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1:2391–421
    [Google Scholar]
  121. Urban K, Patera AT. 2012. A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. 350:3/4203–7
    [Google Scholar]
  122. Uy WIT, Peherstorfer B. 2021a. Operator inference of non-Markovian terms for learning reduced models from partially observed state trajectories. J. Sci. Comput. 88:391
    [Google Scholar]
  123. Uy WIT, Peherstorfer B. 2021b. Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations. ESAIM Math. Model. Numer. Anal. 55:3735–61
    [Google Scholar]
  124. Uy WIT, Wang Y, Wen Y, Peherstorfer B. 2023. Active operator inference for learning low-dimensional dynamical-system models from noisy data. SIAM J. Sci. Comput. 45:4A1462–90
    [Google Scholar]
  125. Veroy K, Rovas DV, Patera AT. 2002. A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “convex inverse” bound conditioners. ESAIM Control Optim. Calc. Var. 8:1007–28
    [Google Scholar]
  126. Wang Q, Hesthaven JS, Ray D. 2019. Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384:289–307
    [Google Scholar]
  127. Werner SWR, Peherstorfer B. 2023a. Context-aware controller inference for stabilizing dynamical systems from scarce data. Proc. R. Soc. A 479:227020220506
    [Google Scholar]
  128. Werner SWR, Peherstorfer B. 2023b. On the sample complexity of stabilizing linear dynamical systems from data. Found. Comput. Math. https://doi.org/10.1007/s10208-023-09605-y
    [Google Scholar]
  129. Willcox KE, Ghattas O, Heimbach P. 2021. The imperative of physics-based modeling and inverse theory in computational science. Nat. Comput. Sci. 1:166–68
    [Google Scholar]
  130. Willcox K, Ghattas O, van Bloemen Waanders B, Bader B. 2005. An optimization framework for goal-oriented, model-based reduction of large-scale systems. Proceedings of the 44th IEEE Conference on Decision and Control2265–71. Piscataway, NJ: IEEE
    [Google Scholar]
  131. Williams MO, Kevrekidis IG, Rowley CW. 2015. A data–driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25:61307–46
    [Google Scholar]
  132. Zimmermann R, Willcox K. 2016. An accelerated greedy missing point estimation procedure. SIAM J. Sci. Comput. 38:5A2827–50
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-025220
Loading
/content/journals/10.1146/annurev-fluid-121021-025220
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error