1932

Abstract

Reproductive biomechanics, a broad and developing field, contains fluid mechanics problems at every stage. In particular, the human female reproductive system is a complex and dynamic fluid-structure system. Until recently, the majority of this research focused on the early moments of reproduction—namely, the transport phenomena that dominate fertilization and implantation. However, in the past two decades, fluid mechanics has begun to be used in investigations of all aspects surrounding pregnancy, labor, and delivery. In this review, we discuss human reproduction starting with the nonpregnant uterus through implantation, delivery, and lactation and breastfeeding. We cover physiologic changes from the transformation of the uterus and the cervical remodeling process to the development of the placenta and the beginning of lactation. We examine the role of reproductive fluids such as amniotic fluid and vernix caseosa, and how force is transferred during labor.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-033738
2024-01-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-033738.html?itemId=/content/journals/10.1146/annurev-fluid-121021-033738&mimeType=html&fmt=ahah

Literature Cited

  1. Agorastos T, Hollweg G, Grussendorf EI, Papaloucas A. 1988. Features of vernix caseosa cells. Am. J. Perinatol. 5:3253–59
    [Google Scholar]
  2. Ashton-Miller LA, DeLancey JOL. 2009. On the biomechanics of vaginal birth and common sequelae. Annu. Rev. Biomed. Eng. 11:163–76
    [Google Scholar]
  3. Ayehunie S, Wang YY, Landry T, Bogojevic S, Cone RA. 2018. Hyperosmolal vaginal lubricants markedly reduce epithelial barrier properties in a three-dimensional vaginal epithelium model. Toxicol. Rep. 5:134–40
    [Google Scholar]
  4. Badir S, Mazza E, Zimmermann R, Bajka M. 2013. Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique. Prenat. Diagn. 33:8737–41
    [Google Scholar]
  5. Bailet M, Zara F, Promayon E. 2013. Shell finite element model for interactive foetal head deformation during childbirth. Comput. Methods Biomech. Biomed. Eng. 16:Suppl. 1312–14
    [Google Scholar]
  6. Barbieri RL, Callery M, Perez SE. 1992. Directionality of menstrual flow: cervical os diameter as a determinant of retrograde menstruation. Fertil. Steril. 57:4727–30
    [Google Scholar]
  7. Baumer A, Gimovsky AC, Gallagher M, Leftwich MC. 2019. A synthetic cervix model and the impact of softness on cerclage integrity. Interface Focus 9:520190009
    [Google Scholar]
  8. Bautista MIB, Wickett RR, Visscher MO, Pickens WL, Hoath SB. 2000. Characterization of vernix caseosa as a natural biofilm: comparison to standard oil-based ointments. Pediatr. Dermatol. 17:4253–60
    [Google Scholar]
  9. Beier HM. 1974. Oviducal and uterine fluids. J. Reprod. Fertil. 37:11027–32
    [Google Scholar]
  10. Bonsnes RW. 1966. Composition of amniotic fluid. Clin. Obstet. Gynecol. 9:2440–48
    [Google Scholar]
  11. Borell U, Fernström I. 1967. The mechanism of labour. Radiol. Clin. 5:173–83
    [Google Scholar]
  12. Burton GJ, Fowden AL 2015. The placenta: a multifaceted, transient organ. Philos. Trans. Biol. Sci. 370: 1663.20140066
    [Google Scholar]
  13. Carichino L, Drumm D, Olson SD. 2021. A computational study of hydrodynamic interactions between pairs of sperm with planar and quasi-planar beat forms. Front. Phys. 9:735438
    [Google Scholar]
  14. Cassady G. 1971. Effect of cesarean section on neonatal body water spaces. New Engl. . J. Med. 285:16441–89
    [Google Scholar]
  15. Chen S, Grimm MJ. 2021. Childbirth computational models: characteristics and applications. J. Biomech. Eng. 143:5050801
    [Google Scholar]
  16. Chen S, Routzong MR, Abramowitch SD, Grimm MJ. 2023. A computational procedure to derive the curve of Carus for childbirth computational modeling. J. Biomech. Eng. 145:1011002
    [Google Scholar]
  17. Chernyavsky IL, Jensen OE, Leach L. 2010. A mathematical model of intervillous blood flow in the human placentone. Placenta 31:144–52
    [Google Scholar]
  18. Cibils LA. 1967. Contractility of the nonpregnant human uterus. Obstet. Gynecol. 30:3441–61
    [Google Scholar]
  19. Clark GL, Pokutta-Paskaleva AP, Lawrence DJ, Lindsey SH, Desrosiers L et al. 2019. Smooth muscle regional contribution to vaginal wall function. Interface Focus 9:420190025
    [Google Scholar]
  20. Conrad JT, Johnson WL, Kuhn WK, Hunter CA Jr. 1966. Passive stretch relationships in human uterine muscle. Am. J. Obstet. Gynecol. 96:81055–59
    [Google Scholar]
  21. Cunningham FG, Leveno KJ, Bloom SL, Dashe JS, Hoffman BL et al. 2022. Williams Obstetrics New York: McGraw-Hill Educ. , 26th ed..
  22. Damarany AI. 2020. Physical traits of vaginal mucus discharge and their relations to conception rate of Egyptain Baladi cows. Egypt. J. Anim. Prod. 57:263–70
    [Google Scholar]
  23. das Neves J, Rocha CM, Gonçalves MP, Carrier RL, Amiji M et al. 2012. Interactions of microbicide nanoparticles with a simulated vaginal fluid. Mol. Pharm. 9:113347–56
    [Google Scholar]
  24. Declercq E, Barger M, Cabral HJ, Evans SR, Kotelchuck M et al. 2007. Maternal outcomes associated with planned primary cesarean births compared with planned vaginal births. Obstet. Gynecol. 109:3669–77
    [Google Scholar]
  25. Elad D, Kozlovsky P, Blum O, Laine AF, Po MJ et al. 2014. Biomechanics of milk extraction during breast-feeding. PNAS 111:145230–35
    [Google Scholar]
  26. Eytan O, Elad D. 1999. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol. 6:2221–38
    [Google Scholar]
  27. Eytan O, Jaffa AJ, Elad D. 2001. Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med. Eng. Phys. 23:7475–84
    [Google Scholar]
  28. Eytan O, Jaffa AJ, Har-Toov J, Dalach E, Elad D. 1999. Dynamics of the intrauterine fluid–wall interface. Ann. Biomed. Eng. 27:372–79
    [Google Scholar]
  29. Fauci LJ, Dillon R. 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38:371–94
    [Google Scholar]
  30. Fernandez M, House M, Jambawalikar S, Zork N, Vink J et al. 2016. Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI. Comput. Methods Biomech. Biomed. Eng. 19:4404–17
    [Google Scholar]
  31. Fitzhugh ML, Newton M. 1956. Muscle action during childbirth. Phys. Ther. Rev. 36:12805–9
    [Google Scholar]
  32. Gaffney EA, Gadêlha H, Smith DJ, Blake JR, Kirkman-Brown JC. 2011. Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43:501–28
    [Google Scholar]
  33. Gardella C, Taylor M, Benedetti T, Hitti J, Critchlow C. 2001. The effect of sequential use of vacuum and forceps for assisted vaginal delivery on neonatal and maternal outcomes. Am. J. Obstet. Gynecol. 185:4896–902
    [Google Scholar]
  34. Geddes DT. 2007. Inside the lactating breast: the latest anatomy research. J. Midwifery Women's Health 52:6556–63
    [Google Scholar]
  35. Geddes DT, Kent JC, Mitoulas LR, Hartmann PE. 2008. Tongue movement and intra-oral vacuum in breastfeeding infants. Early Hum. Dev. 84:7471–77
    [Google Scholar]
  36. Gitau R, Menson E, Pickles V, Fisk NM, Glover C, MacLachlan N. 2001. Umbilical cortisol levels as an indicator of the fetal stress response to assisted vaginal delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 98:114–17
    [Google Scholar]
  37. Goldenberg RL, McClure EM. 2011. Maternal mortality. Am. J. Obstet. Gynecol. 205:4293–95
    [Google Scholar]
  38. Grimm MJ. 2021. Forces involved with labor and delivery—a biomechanical perspective. Ann. Biomed. Eng. 49:81819–35
    [Google Scholar]
  39. Haahti E, Nikkari T, Salmi AM, Laaksonen AL. 1961. Fatty acids of vernix caseosa. Scand. . J. Clin. Lab. Investig. 13:70–73
    [Google Scholar]
  40. Hall MH, Bewley S. 1999. Maternal mortality and mode of delivery. Lancet 354:776
    [Google Scholar]
  41. Hanumant D, Tiwari RP, Chaturvedani AK, Paikra D, Chandrakar C, Ratre P. 2019. Analysis of corporeal characteristics of cervico-vaginal mucus in cows. Pharma Innov. J. 8:3261–64
    [Google Scholar]
  42. Hee L, Liao D, Sandager P, Gregersen H, Uldbjerg N. 2014. Cervical stiffness evaluated in vivo by endoflip in pregnant women. PLOS ONE 9:3e91121
    [Google Scholar]
  43. Hillier C EM, Johanson RB 1994. Worldwide survey of assisted vaginal delivery. Int. J. Gynecol. Obstet. 47:2109–14
    [Google Scholar]
  44. Hodnett E, Chalmers B, Kung R, Willan A, Amankwah K et al. 2002. Outcomes at 3 months after planned cesarean versus planned vaginal delivery for breech presentation at term: the international randomized Term Breech Trial. J. Am. Med. Assoc. 287:141822–31
    [Google Scholar]
  45. Hoyert DL. 2022. Maternal mortality rates in the United States, 2020 Health E-Stats, Natl. Center Health Stat., Cent. Dis. Control Prevent. Atlanta, GA:
  46. Huang J, Carichino L, Olson SD. 2018. Hydrodynamic interactions of actuated elastic filaments near a planar wall with applications to sperm motility. Med. Image Anal. 6:3163–75
    [Google Scholar]
  47. Jean Dit Gautier E, Mayeur O, Lepage J, Brieu M, Cosson M, Rubod C 2018. Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results. Int. Urogynecol. J. 29:425–30
    [Google Scholar]
  48. Jensen OE, Chernyavsky IL. 2019. Blood flow and transport in the human placenta. Annu. Rev. Fluid Mech. 51:25–47
    [Google Scholar]
  49. Johanson R, Menon V. 1999. Vacuum extraction versus forceps for assisted vaginal delivery. Cochrane Database System. Rev. 1999:2CD000224
    [Google Scholar]
  50. Kauer M, Vuskovic V, Dual J, Székely G, Bajka M. 2002. Inverse finite element characterization of soft tissues. Med. Image Anal. 6:3275–87
    [Google Scholar]
  51. Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PFA. 2006. WHO analysis of causes of maternal death: a systematic review. Lancet 367:1066–74
    [Google Scholar]
  52. Kuklina EV, Meikle SF, Jamieson DJ, Whiteman MK, Barfield WD et al. 2010. Severe obstetric morbidity in the United States: 1998–2005. Obstet. Gynecol. 113:2 Part 1 293–99
    [Google Scholar]
  53. Kulkarni S. 2007. Vacuum delivery: revisited. Recent Trends in Obstetrics and Gynecology, ed. P Desai, pp. 57–68. New Delhi: BI Publ.
    [Google Scholar]
  54. Kunz G, Beil D, Deiniger D, Einspanier A, Mall G, Leyendecker G. 1997. The uterine peristaltic pump. The Fate of the Male Germ Cell, ed. R Ivell, A-F Holstein, pp. 267–77. New York: Plenum
    [Google Scholar]
  55. Kunz G, Leyendecker G. 2002. Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction. Reprod. BioMed. Online 4:5–9
    [Google Scholar]
  56. Lapeer R, Gerikhanov Z, Sadulaev SM, Audinis V, Rowland R et al. 2019. A computer-based simulation of childbirth using the partial Dirichlet–Neumann contact method with total Lagrangian explicit dynamics on the GPU. Biomech. Model. Mechanobiol. 118:681–700
    [Google Scholar]
  57. Lehn AM, Baumer A, Leftwich MC. 2016. An experimental approach to a simplified model of human birth. J. Biomech. 49:112313–17
    [Google Scholar]
  58. Lepage J, Jayyosi C, Lecomte-Grosbras P, Brieu M, Duriez C et al. 2015. Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results. Int. Urogynecol. J. 26:497–504
    [Google Scholar]
  59. Leyendecker G, Kunz G, Herbertz M, Beil D, Huppert P et al. 2004. Uterine peristaltic activity and the development of endometriosis. Ann. N.Y. Acad. Sci. 1034:338–55
    [Google Scholar]
  60. Liao D, Hee L, Sandager P, Uldbjerg N, Gregersen H. 2014. Identification of biomechanical properties in vivo in human uterine cervix. J. Mech. Behav. Biomed. Mater. 39:27–37
    [Google Scholar]
  61. Lieberman E, Davidson K, Lee-Parritz A, Shearer E. 2005. Changes in fetal position during labor and their association with epidural analgesia. Obstet. Gynecol. 105:5974–282
    [Google Scholar]
  62. Lim HJ, Son JK, Yoon HB, Baek KS, Kim TI et al. 2014. Physical properties of estrus mucus in relation to conception rates in dairy cattle. J. Embryo Transfer 29:2157–61
    [Google Scholar]
  63. Liston FA, Allen VM, O'Connell CM, Jangaard KA. 2008. Neonatal outcomes with caesarean delivery at term. Arch. Dis. Child. Fetal Neonatal Ed. 93:3F176–82
    [Google Scholar]
  64. Lopez-Gatius F, Miro J, Sebastian I, Ibarz A, Labernia J. 1993. Rheological properties of the anterior vaginal fluid from superovulated dairy heifers at estrus. Theriogenology 40:1167–80
    [Google Scholar]
  65. Magann EF, Bass JD, Chauhan SP, Young RA, Whitworth NS, Morrison JC. 1997. Amniotic fluid volume in normal singleton pregnancies. Obstet. Gynecol. 90:4524–28
    [Google Scholar]
  66. Martins JAC, Pato MPM, Pires EB, Jorge RN, Parente M, Mascarenhas T. 2007. Finite element studies of the deformation of the pelvic floor. Ann. N.Y. Acad. Sci. 1101:1316–34
    [Google Scholar]
  67. Mastroianni L Jr. 1999. The fallopian tube and reproductive health. J. Pediatr. Adolesc. Gynecol. 12:3121–26
    [Google Scholar]
  68. Mayerl CJ, Edmonds CE, Catchpole EA, Myrla AM, Gould FD et al. 2020. Sucking versus swallowing coordination, integration, and performance in preterm and term infants. J. Appl. Physiol. 129:61383–92
    [Google Scholar]
  69. Mazza E, Nava A, Bauer M, Winter R, Bajka M, Holzapfel GA. 2006. Mechanical properties of the human uterine cervix: an in vivo study. Med. Image Anal. 910:2125–36
    [Google Scholar]
  70. Medoff-Cooper B, Bilker W, Kaplan JM. 2010. Sucking patterns and behavioral state in 1-and 2-day-old full-term infants. J. Obstet. Gynecol. Neonatal Nurs. 39:5519–24
    [Google Scholar]
  71. Menacker F, Hamilton BE. 2010. Recent trends in cesarean delivery in the United States Data Brief 35, Natl. Cent. Health Stat. Hyattsville, MD:
  72. Mijovic JE, Olson DM. 1996. The physiology of human parturition. In Pregnancy and Parturition EE Bittar, T Zakar 89–119. Greenwich, CT: JAI Press
    [Google Scholar]
  73. Miura S, Sato K, Kato-Negishi M, Teshima T, Takeuchi S. 2015. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 6:8871
    [Google Scholar]
  74. Moss ML, Noback CR, Robertson GG. 1956. Growth of certain human fetal cranial bones. Am. J. Anat. 98:2191–204
    [Google Scholar]
  75. Myers KM, Elad D. 2017. Biomechanics of the human uterus. WIREs Syst. Biol. Med. 9:5e1388
    [Google Scholar]
  76. Myers KM, Feltovich H, Mazza E, Vink J, Bajka M et al. 2015. The mechanical role of the cervix in pregnancy. J. Biomech. 48:91511–23
    [Google Scholar]
  77. Myers KM, Paskaleva AP, House M, Socrate S. 2008. Mechanical and biochemical properties of human cervical tissue. Acta Biomater. 4:1104–16
    [Google Scholar]
  78. Negin Mortazavi S, Geddes D, Hassanipour F 2017. Lactation in the human breast from a fluid dynamics point of view. J. Biomech. Eng. 139:1011009
    [Google Scholar]
  79. Nishijima K, Yoneda M, Hirai T, Takakuwa K, Enomoto T. 2019. Biology of the vernix caseosa: a review. J. Obstet. Gynaecol. Res. 45:112145–49
    [Google Scholar]
  80. Noritomi PY, da Silva JL, Dellai RA, Fiorentino A, Giorleo L, Ceretti E. 2013. Virtual modeling of a female pelvic floor and hypothesis for simulating biomechanical behavior during natural delivery. Procedia CIRP 5:300–4
    [Google Scholar]
  81. Pack E, Stewart J, Rhoads M, Knight J, De Vita R et al. 2020. Quantification of zearalenone and α-zearalenol in swine liver and reproductive tissues using GC-MS. Toxicon X 8:100058
    [Google Scholar]
  82. Pearlman MD, Tintinalli JE, Lorenz RP. 1990. Blunt trauma during pregnancy. New Engl. . J. Med. 323:231609–13
    [Google Scholar]
  83. Pearsall GW, Roberts VL. 1978. Passive mechanical properties of uterine muscle (myometrium) tested in vitro. J. Biomech. 11:4167–76
    [Google Scholar]
  84. Pemathilaka RL, Reynolds DE, Hashemi NH. 2019. Drug transport across the human placenta: review of placenta-on-a-chip and previous approaches. Interface Focus 9:520190031
    [Google Scholar]
  85. Peña E, Martins P, Mascarenhas T, Natal Jorge RM, Ferreira A et al. 2011. Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 3:4275–83
    [Google Scholar]
  86. Parente MP, Jorge RMN, Mascarenhas T, Fernandes AA, Silva-Filho AL. 2010. Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am. J. Obstet. Gynecol. 203:3217.e1–6
    [Google Scholar]
  87. Pickens WL, Warner RR, Boissy YL, Boissy RE, Hoath SB. 2000. Characterization of vernix caseosa: water content, morphology, and elemental analysis. J. Investig. Dermatol. 115:5875–81
    [Google Scholar]
  88. Putta LV, Spencer JP. 2000. Assisted vaginal delivery using the vacuum extractor. Am. Fam. Phys. 62:61316–24
    [Google Scholar]
  89. Robison KM, Conway CK, Desrosiers L, Knoepp LR, Miller KS. 2017. Biaxial mechanical assessment of the murine vaginal wall using extension-inflation testing. J. Biomech. Eng. 139:10104504
    [Google Scholar]
  90. Rosati P, Pola P, Riccardi P, Flore R, Tondi P, Bellati U. 1991. The use of amniotic fluid viscosity measurements to establish fetal lung maturity. Int. J. Gynecol. Obstet. 35:4351–55
    [Google Scholar]
  91. Rubod C, Brieu M, Cosson M, Rivaux G, Clay JC et al. 2012. Biomechanical properties of human pelvic organs. Urology 79:4968.e17–22
    [Google Scholar]
  92. Russo CA, Wier L, Steiner C. 2009. Hospitalizations related to childbirth, 2006 Stat. Brief 71, U.S. Agency Healthc. Res. Qual. Rockville, MD:
  93. Rutllant J, López-Béjar M, López-Gatius F. 2005. Ultrastructural and rheological properties of bovine vaginal fluid and its relation to sperm motility and fertilization: a review. Reprod. Domest. Anim. 40:279–86
    [Google Scholar]
  94. Rutllant J, López-Béjar M, Santolaria P, Yániz J, López-Gatius F. 2002. Rheological and ultrastructural properties of bovine vaginal fluid obtained at oestrus. J. Anat. 201:153–60
    [Google Scholar]
  95. Sakalidis VS, Kent JC, Garbin CP, Hepworth AR, Hartmann PE, Geddes DT. 2013. Longitudinal changes in suck-swallow-breathe, oxygen saturation, and heart rate patterns in term breastfeeding infants. J. Hum. Lact. 29:2236–45
    [Google Scholar]
  96. Sheikhazadi A, Sadr SS, Ghadyani MH, Taher SK, Manouchehri AA et al. 2010. Study of the normal internal organ weights in Tehran's population. J. Forensic Legal Med. 17:278–83
    [Google Scholar]
  97. Singh G, Archana G. 2008. Unraveling the mystery of vernix caseosa. Indian J. Dermatol. 53:254
    [Google Scholar]
  98. Sperling JD, Dahlke JD, Gonzalez JM. 2017. Cerclage use: a review of 3 national guidelines. Obstet. Gynecol. Surv. 72:4235–41
    [Google Scholar]
  99. Uyeno D. 1919. The physical properties and chemical composition of human amniotic fluid. J. Biol. Chem. 37:177–103
    [Google Scholar]
  100. Vacca A. 2002. Vacuum-assisted delivery. Best Pract. Res. Clin. Obstet. Gynaecol. 16:117–30
    [Google Scholar]
  101. Westervelt AR, Fernandez M, House M, Vink J, Nhan-Chang CL et al. 2017. A parameterized ultrasound-based finite element analysis of the mechanical environment of pregnancy. J. Biomech. Eng. 139:50510041
    [Google Scholar]
  102. Visscher MO, Narendran V, Pickens WL, LaRuffa AA, Meinzen-Derr J et al. 2005. Vernix caseosa in neonatal adaptation. J. Perinatol. 25:440–46
    [Google Scholar]
  103. Wolf DP, Blasco L, Khan MA, Litt M. 1978. Human cervical mucus. IV. Viscoelasticity and sperm penetrability during the ovulatory menstrual cycle. Fertil. Steril. 30:2163–69
    [Google Scholar]
  104. Yan X, Kruger JA, Nielsen PM, Nash MP. 2015. Effects of fetal head shape variation on the second stage of labour. J. Biomech. 48:91593–99
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-033738
Loading
/content/journals/10.1146/annurev-fluid-121021-033738
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error