1932

Abstract

Fragmentation of bubbles and droplets in turbulence produces a dispersed phase spanning a broad range of scales, encompassing everything from droplets in nanoemulsions to centimeter-sized bubbles entrained in breaking waves. Along with deformation, fragmentation plays a crucial role in enhancing interfacial area, with far-reaching implications across various industries, including food, pharmaceuticals, and ocean engineering. However, understanding and modeling these processes are challenging due to the complexity of anisotropic and inhomogeneous turbulence typically involved, the unknown residence time in regions with different turbulence intensities, and difficulties arising from the density and viscosity ratios. Despite these challenges, recent advances have provided new insights into the underlying physics of deformation and fragmentation in turbulence. This review summarizes existing works in various fields, highlighting key results and uncertainties, and examining the impact on turbulence modulation, drag reduction, and heat and mass transfer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-034541
2024-01-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-034541.html?itemId=/content/journals/10.1146/annurev-fluid-121021-034541&mimeType=html&fmt=ahah

Literature Cited

  1. Albernaz DL, Do-Quang M, Hermanson JC, Amberg G. 2017. Droplet deformation and heat transfer in isotropic turbulence. J. Fluid Mech. 820:61–85
    [Google Scholar]
  2. Aliseda A, Lasheras J. 2011. Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23:093301
    [Google Scholar]
  3. Andersson R, Andersson B. 2006. On the breakup of fluid particles in turbulent flows. AIChE J. 52:62020–30
    [Google Scholar]
  4. Angeli P, Hewitt GF. 2000. Drop size distributions in horizontal oil-water dispersed flows. Chem. Eng. Sci. 55:163133–43
    [Google Scholar]
  5. Bagkeris I, Michael V, Prosser R, Kowalski A. 2021. Modeling drop breakage using the full energy spectrum and a specific realization of turbulence anisotropy. AIChE J. 67:7e17201
    [Google Scholar]
  6. Bakhuis D, Ezeta R, Bullee PA, Marin A, Lohse D et al. 2021. Catastrophic phase inversion in high-Reynolds-number turbulent Taylor–Couette flow. Phys. Rev. Lett. 126:064501
    [Google Scholar]
  7. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33
    [Google Scholar]
  8. Bellani G, Variano EA. 2012. Slip velocity of large neutrally buoyant particles in turbulent flows. New J. Phys. 14:125009
    [Google Scholar]
  9. Biferale L, Meneveau C, Verzicco R. 2014. Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754:184–207
    [Google Scholar]
  10. Birouk M, Gökalp I. 2006. Current status of droplet evaporation in turbulent flows. Prog. Energy Combust. Sci. 32:4408–23
    [Google Scholar]
  11. Bisten A, Schuchmann HP. 2016. Optical measuring methods for the investigation of high-pressure homogenisation. Processes 4:441
    [Google Scholar]
  12. Boxall JA, Koh CA, Sloan ED, Sum AK, Wu DT. 2012. Droplet size scaling of water-in-oil emulsions under turbulent flow. Langmuir 28:1104–10
    [Google Scholar]
  13. Boyd B, Ling Y. 2023. A consistent volume-of-fluid approach for direct numerical simulation of the aerodynamic breakup of a vaporizing drop. Comput. Fluids 254:105807
    [Google Scholar]
  14. Brandt L, Coletti F. 2022. Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54:159–89
    [Google Scholar]
  15. Bunner B, Tryggvason G. 2003. Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495:77–118
    [Google Scholar]
  16. Calabrese RV, Chang T, Dang P. 1986. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE J. 32:4657–66
    [Google Scholar]
  17. Castellano S, Carrillo L, Sheibat-Othman N, Marchisio D, Buffo A, Charton S. 2019. Using the full turbulence spectrum for describing droplet coalescence and breakage in industrial liquid-liquid systems: experiments and modeling. Chem. Eng. J. 374:1420–32
    [Google Scholar]
  18. Ceccio SL. 2010. Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42:183–203
    [Google Scholar]
  19. Chan WHR, Johnson PL, Moin P, Urzay J. 2021. The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves. J. Fluid Mech. 912:A43
    [Google Scholar]
  20. Chen HT, Middleman S. 1967. Drop size distribution in agitated liquid-liquid systems. AIChE J. 13:5989–95
    [Google Scholar]
  21. Coulaloglou C, Tavlarides LL. 1977. Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci. 32:111289–97
    [Google Scholar]
  22. Crialesi-Esposito M, Chibbaro S, Brandt L. 2023a. The interaction of droplet dynamics and turbulence cascade. Commun. Phys. 6:5
    [Google Scholar]
  23. Crialesi-Esposito M, Rosti ME, Chibbaro S, Brandt L. 2022. Modulation of homogeneous and isotropic turbulence in emulsions. J. Fluid Mech. 940:A19
    [Google Scholar]
  24. Crialesi-Esposito M, Scapin N, Demou AD, Rosti ME, Costa P et al. 2023b. FluTAS: a GPU-accelerated finite difference code for multiphase flows. Comput. Phys. Commun. 284:108602
    [Google Scholar]
  25. Davies J. 1985. Drop sizes of emulsions related to turbulent energy dissipation rates. Chem. Eng. Sci. 40:5839–42
    [Google Scholar]
  26. Deane G, Stokes M. 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418:6900839–44
    [Google Scholar]
  27. Dijkhuizen W, van Sint Annaland M, Kuipers J. 2010. Numerical and experimental investigation of the lift force on single bubbles. Chem. Eng. Sci. 65:31274–87
    [Google Scholar]
  28. Dodd MS, Ferrante A. 2016. On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806:356–412
    [Google Scholar]
  29. Dodd MS, Mohaddes D, Ferrante A, Ihme M. 2021. Analysis of droplet evaporation in isotropic turbulence through droplet-resolved DNS. Int. J. Heat Mass Transf. 172:121157
    [Google Scholar]
  30. Du Cluzeau A, Bois G, Toutant A 2019. Analysis and modelling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations. J. Fluid Mech. 866:132–68
    [Google Scholar]
  31. Duret B, Luret G, Reveillon J, Ménard T, Berlemont A, Demoulin FX. 2012. DNS analysis of turbulent mixing in two-phase flows. Int. J. Multiph. Flow 40:93–105
    [Google Scholar]
  32. Eastwood CD, Armi L, Lasheras J. 2004. The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502:309–33
    [Google Scholar]
  33. Elghobashi S. 2019. Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51:217–44
    [Google Scholar]
  34. Ezeta R, Bakhuis D, Huisman SG, Sun C, Lohse D. 2019. Drag reduction in boiling Taylor–Couette turbulence. J. Fluid Mech. 881:104–18
    [Google Scholar]
  35. Farsoiya PK, Magdelaine Q, Antkowiak A, Popinet S, Deike L. 2023. Direct numerical simulations of bubble-mediated gas transfer and dissolution in quiescent and turbulent flows. J. Fluid Mech. 954:A29
    [Google Scholar]
  36. Ferrante A, Elghobashi S. 2004. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503:345–55
    [Google Scholar]
  37. Freund A, Ferrante A. 2019. Wavelet-spectral analysis of droplet-laden isotropic turbulence. J. Fluid Mech. 875:914–28
    [Google Scholar]
  38. Galinat S, Risso F, Masbernat O, Guiraud P. 2007. Dynamics of drop breakup in inhomogeneous turbulence at various volume fractions. J. Fluid Mech. 578:85–94
    [Google Scholar]
  39. Gao Q, Deane GB, Shen L. 2021. Bubble production by air filament and cavity breakup in plunging breaking wave crests. J. Fluid Mech. 929:A44
    [Google Scholar]
  40. Garrett C, Li M, Farmer D. 2000. The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30:92163–71
    [Google Scholar]
  41. Grossmann S, Lohse D, Sun C. 2016. High–Reynolds number Taylor-Couette turbulence. Annu. Rev. Fluid Mech. 48:53–80
    [Google Scholar]
  42. Gupta A, Eral HB, Hatton TA, Doyle PS. 2016a. Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter 12:51452–58
    [Google Scholar]
  43. Gupta A, Eral HB, Hatton TA, Doyle PS. 2016b. Nanoemulsions: formation, properties and applications. Soft Matter 12:112826–41
    [Google Scholar]
  44. Håkansson A. 2019. Emulsion formation by homogenization: current understanding and future perspectives. Annu. Rev. Food Sci. Technol. 10:239–58
    [Google Scholar]
  45. Håkansson A. 2020. On the validity of different methods to estimate breakup frequency from single drop experiments. Chem. Eng. Sci. 227:115908
    [Google Scholar]
  46. Håkansson A, Crialesi-Esposito M, Nilsson L, Brandt L. 2022. A criterion for when an emulsion drop undergoing turbulent deformation has reached a critically deformed state. Colloids Surf. A 648:129213
    [Google Scholar]
  47. Herø EH, La Forgia N, Solsvik J, Jakobsen HA 2020. Single drop breakage in turbulent flow: statistical data analysis. Chem. Eng. Sci. X 8:100082
    [Google Scholar]
  48. Hessenkemper H, Ziegenhein T, Lucas D. 2020. Contamination effects on the lift force of ellipsoidal air bubbles rising in saline water solutions. Chem. Eng. J. 386:121589
    [Google Scholar]
  49. Hidman N, Ström H, Sasic S, Sardina G. 2022. The lift force on deformable and freely moving bubbles in linear shear flows. J. Fluid Mech. 952:A34
    [Google Scholar]
  50. Hinze J. 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1:3289–95
    [Google Scholar]
  51. Homann H, Bec J. 2010. Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651:81–91
    [Google Scholar]
  52. Innocenti A, Jaccod A, Popinet S, Chibbaro S. 2021. Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 918:A23
    [Google Scholar]
  53. Iwasaki T, Nishimura K, Tanaka M, Hagiwara Y. 2001. Direct numerical simulation of turbulent Couette flow with immiscible droplets. Int. J. Heat Fluid Flow 22:3332–42
    [Google Scholar]
  54. Janssen J, Meijer H. 1993. Droplet breakup mechanisms: stepwise equilibrium versus transient dispersion. J. Rheol. 37:4597–608
    [Google Scholar]
  55. Karimi M, Andersson R. 2018. An exploratory study on fluid particles breakup rate models for the entire spectrum of turbulent energy. Chem. Eng. Sci. 192:850–63
    [Google Scholar]
  56. Kitagawa A, Hishida K, Kodama Y. 2005. Flow structure of microbubble-laden turbulent channel flow measured by PIV combined with the shadow image technique. Exp. Fluids 38:4466–75
    [Google Scholar]
  57. Kolmogorov AN. 1949. On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR 66:825–28 (in Russian)
    [Google Scholar]
  58. Kolmogorov AN. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13:182–85
    [Google Scholar]
  59. Kubie J, Gardner G. 1977. Drop sizes and drop dispersion in straight horizontal tubes and in helical coils. Chem. Eng. Sci. 32:2195–202
    [Google Scholar]
  60. Lalanne B, Masbernat O, Risso F. 2019. A model for drop and bubble breakup frequency based on turbulence spectra. AIChE J. 65:1347–59
    [Google Scholar]
  61. Lamb H. 1945 (1879). Hydrodynamics Mineola, NY: Dover. , 6th ed..
  62. Lance M, Bataille J. 1991. Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222:95–118
    [Google Scholar]
  63. Legendre D, Magnaudet J. 1998. The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368:81–126
    [Google Scholar]
  64. Legendre D, Zenit R, Velez-Cordero JR. 2012. On the deformation of gas bubbles in liquids. Phys. Fluids 24:043303
    [Google Scholar]
  65. Levich VG. 1962. Physicochemical Hydrodynamics Hoboken, NJ: Prentice Hall
  66. Liu HR, Ng CS, Chong KL, Lohse D, Verzicco R. 2021. An efficient phase-field method for turbulent multiphase flows. J. Comput. Phys. 446:110659
    [Google Scholar]
  67. Lohse D. 2018. Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3:110504
    [Google Scholar]
  68. Lu J, Fernández A, Tryggvason G. 2005. The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17:095102
    [Google Scholar]
  69. Lu J, Tryggvason G. 2008. Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20:040701
    [Google Scholar]
  70. Ma T, Santarelli C, Ziegenhein T, Lucas D, Fröhlich J. 2017. Direct numerical simulation-based Reynolds-averaged closure for bubble-induced turbulence. Phys. Rev. Fluids 2:034301
    [Google Scholar]
  71. Maaß S, Kraume M. 2012. Determination of breakage rates using single drop experiments. Chem. Eng. Sci. 70:146–64
    [Google Scholar]
  72. Mac Huang J, Moore MNJ, Ristroph L 2015. Shape dynamics and scaling laws for a body dissolving in fluid flow. J. Fluid Mech. 765:R3
    [Google Scholar]
  73. Machicoane N, Bonaventure J, Volk R. 2013. Melting dynamics of large ice balls in a turbulent swirling flow. Phys. Fluids 25:125101
    [Google Scholar]
  74. Madavan N, Deutsch S, Merkle C. 1985. Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156:237–56
    [Google Scholar]
  75. Maffettone P, Minale M. 1998. Equation of change for ellipsoidal drops in viscous flow. J. Non-Newton. Fluid Mech. 78:2/3227–41
    [Google Scholar]
  76. Magnaudet J, Eames I. 2000. The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32:659–708
    [Google Scholar]
  77. Mangani F, Soligo G, Roccon A, Soldati A. 2022. Influence of density and viscosity on deformation, breakage, and coalescence of bubbles in turbulence. Phys. Rev. Fluids 7:053601
    [Google Scholar]
  78. Maniero R, Masbernat O, Climent E, Risso F. 2012. Modeling and simulation of inertial drop break-up in a turbulent pipe flow downstream of a restriction. Int. J. Multiph. Flow 42:1–8
    [Google Scholar]
  79. Marchisio DL, Fox RO. 2013. Computational Models for Polydisperse Particulate and Multiphase Systems Cambridge, UK: Cambridge Univ. Press
  80. Marié JL, Grosjean N, Méès L, Seifi M, Fournier C et al. 2014. Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high-speed camera. Exp. Fluids 55:41708
    [Google Scholar]
  81. Martínez-Bazán C, Montanes J, Lasheras JC. 1999. On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401:157–82
    [Google Scholar]
  82. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. 2006. Nanoemulsions: formation, structure, and physical properties. J. Phys. Condens. Matter 18:41R635
    [Google Scholar]
  83. Masuk AUM, Qi Y, Salibindla AK, Ni R. 2021a. Towards a phenomenological model on the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent media. J. Fluid Mech. 920:A4
    [Google Scholar]
  84. Masuk AUM, Salibindla AK, Ni R. 2019a. A robust virtual-camera 3D shape reconstruction of deforming bubbles/droplets with additional physical constraints. Int. J. Multiph. Flow 120:103088
    [Google Scholar]
  85. Masuk AUM, Salibindla AK, Ni R. 2021b. The orientational dynamics of deformable finite-sized bubbles in turbulence. J. Fluid Mech. 915:A79
    [Google Scholar]
  86. Masuk AUM, Salibindla AK, Ni R. 2021c. Simultaneous measurements of deforming Hinze-scale bubbles with surrounding turbulence. J. Fluid Mech. 910:A21
    [Google Scholar]
  87. Masuk AUM, Salibindla AK, Tan S, Ni R. 2019b. V-ONSET (Vertical Octagonal Noncorrosive Stirred Energetic Turbulence): a vertical water tunnel with a large energy dissipation rate to study bubble/droplet deformation and breakup in strong turbulence. Rev. Sci. Instrum. 90:085105
    [Google Scholar]
  88. Mathai V, Lohse D, Sun C. 2020. Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11:529–59
    [Google Scholar]
  89. Méès L, Grosjean N, Marié JL, Fournier C. 2020. Statistical Lagrangian evaporation rate of droplets released in a homogeneous quasi-isotropic turbulence. Phys. Rev. Fluids 5:113602
    [Google Scholar]
  90. Meneveau C, Sreenivasan K. 1991. The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224:429–84
    [Google Scholar]
  91. Mercado JM, Gomez DC, Van Gils D, Sun C, Lohse D. 2010. On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650:287–306
    [Google Scholar]
  92. Mougin G, Magnaudet J. 2001. Path instability of a rising bubble. Phys. Rev. Lett. 88:014502
    [Google Scholar]
  93. Mukherjee S, Safdari A, Shardt O, Kenjereš S, Van den Akker HE. 2019. Droplet–turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech. 878:221–76
    [Google Scholar]
  94. Murai Y. 2014. Frictional drag reduction by bubble injection. Exp. Fluids 55:71773
    [Google Scholar]
  95. Murai Y, Fukuda H, Oishi Y, Kodama Y, Yamamoto F. 2007. Skin friction reduction by large air bubbles in a horizontal channel flow. Int. J. Multiph. Flow 33:2147–63
    [Google Scholar]
  96. Oishi Y, Murai Y. 2014. Horizontal turbulent channel flow interacted by a single large bubble. Exp. Therm. Fluid Sci. 55:128–39
    [Google Scholar]
  97. Pal S, Merkle C, Deutsch S. 1988. Bubble characteristics and trajectories in a microbubble boundary layer. Phys. Fluids 31:4744–51
    [Google Scholar]
  98. Pandey V, Mitra D, Perlekar P. 2022. Turbulence modulation in buoyancy-driven bubbly flows. J. Fluid Mech. 932:A19
    [Google Scholar]
  99. Perlekar P, Benzi R, Clercx HJ, Nelson DR, Toschi F. 2014. Spinodal decomposition in homogeneous and isotropic turbulence. Phys. Rev. Lett. 112:014502
    [Google Scholar]
  100. Poorte R, Biesheuvel A. 2002. Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461:127–54
    [Google Scholar]
  101. Prakash V, Tagawa Y, Calzavarini E, Mercado J, Toschi F et al. 2012. How gravity and size affect the acceleration statistics of bubbles in turbulence. New J. Phys. 14:105017
    [Google Scholar]
  102. Qi Y, Masuk AUM, Ni R. 2020. Towards a model of bubble breakup in turbulence through experimental constraints. Int. J. Multiph. Flow 132:103397
    [Google Scholar]
  103. Qi Y, Tan S, Corbitt N, Urbanik C, Salibindla AK, Ni R. 2022. Fragmentation in turbulence by small eddies. Nat. Commun. 13:469
    [Google Scholar]
  104. Qian D, McLaughlin J, Sankaranarayanan K, Sundaresan S, Kontomaris K. 2006. Simulation of bubble breakup dynamics in homogeneous turbulence. Chem. Eng. Commun. 193:81038–63
    [Google Scholar]
  105. Ravelet F, Colin C, Risso F. 2011. On the dynamics and breakup of a bubble rising in a turbulent flow. Phys. Fluids 23:103301
    [Google Scholar]
  106. Ravichandar K, Vigil RD, Fox RO, Nachtigall S, Daiss A et al. 2022. Turbulent droplet breakage in a von Kármán flow cell. Phys. Fluids 34:073319
    [Google Scholar]
  107. Riboux G, Risso F, Legendre D. 2010. Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643:509–39
    [Google Scholar]
  108. Risso F. 2018. Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50:25–48
    [Google Scholar]
  109. Risso F, Fabre J. 1997. Diffusive turbulence in a confined jet experiment. J. Fluid Mech. 337:233–61
    [Google Scholar]
  110. Risso F, Fabre J. 1998. Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372:323–55
    [Google Scholar]
  111. Rivière A, Mostert W, Perrard S, Deike L. 2021. Sub-Hinze-scale bubble production in turbulent bubble break-up. J. Fluid Mech. 917:A40
    [Google Scholar]
  112. Roccon A, De Paoli M, Zonta F, Soldati A. 2017. Viscosity-modulated breakup and coalescence of large drops in bounded turbulence. Phys. Rev. Fluids 2:083603
    [Google Scholar]
  113. Rosti ME, Ge Z, Jain SS, Dodd MS, Brandt L. 2019. Droplets in homogeneous shear turbulence. J. Fluid Mech. 876:962–84
    [Google Scholar]
  114. Rushton J. 1950. Power characteristics of mixing impellers. Part 1. Chem. Eng. Prog. 46:395–404
    [Google Scholar]
  115. Russo E, Kuerten JG, Van Der Geld C, Geurts BJ. 2014. Water droplet condensation and evaporation in turbulent channel flow. J. Fluid Mech. 749:666–700
    [Google Scholar]
  116. Ruth DJ, Aiyer AK, Rivière A, Perrard S, Deike L. 2022. Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up. J. Fluid Mech. 951:A32
    [Google Scholar]
  117. Ruth DJ, Vernet M, Perrard S, Deike L. 2021. The effect of nonlinear drag on the rise velocity of bubbles in turbulence. J. Fluid Mech. 924:A2
    [Google Scholar]
  118. Salibindla AK, Masuk AUM, Ni R. 2021. Experimental investigation of the acceleration statistics and added-mass force of deformable bubbles in intense turbulence. J. Fluid Mech. 912:A50
    [Google Scholar]
  119. Salibindla AK, Masuk AUM, Tan S, Ni R. 2020. Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity. J. Fluid Mech. 894:A20
    [Google Scholar]
  120. Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL. 2006. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J. Fluid Mech. 552:353–80
    [Google Scholar]
  121. Scapin N, Dalla Barba F, Lupo G, Rosti ME, Duwig C, Brandt L 2022. Finite-size evaporating droplets in weakly compressible homogeneous shear turbulence. J. Fluid Mech. 934:A15
    [Google Scholar]
  122. Scarbolo L, Bianco F, Soldati A. 2015. Coalescence and breakup of large droplets in turbulent channel flow. Phys. Fluids 27:073302
    [Google Scholar]
  123. Scarbolo L, Molin D, Perlekar P, Sbragaglia M, Soldati A, Toschi F. 2013. Unified framework for a side-by-side comparison of different multicomponent algorithms: lattice Boltzmann versus phase field model. J. Comput. Phys. 234:263–79
    [Google Scholar]
  124. Schultz S, Wagner G, Urban K, Ulrich J. 2004. High-pressure homogenization as a process for emulsion formation. Chem. Eng. Technol. 27:4361–68
    [Google Scholar]
  125. Schuster S, Bernewitz R, Guthausen G, Zapp J, Greiner AM et al. 2012. Analysis of W1/O/W2 double emulsions with CLSM: statistical image processing for droplet size distribution. Chem. Eng. Sci. 81:84–90
    [Google Scholar]
  126. Sevik M, Park S. 1973. The splitting of drops and bubbles by turbulent fluid flow. J. Fluids Eng. 95:153–60
    [Google Scholar]
  127. Shao C, Jin T, Luo K. 2022. The interaction between droplet evaporation and turbulence with interface-resolved direct numerical simulation. Phys. Fluids 34:072102
    [Google Scholar]
  128. Shiea M, Buffo A, Vanni M, Marchisio D. 2020. Numerical methods for the solution of population balance equations coupled with computational fluid dynamics. Annu. Rev. Chem. Biomol. Eng. 11:339–66
    [Google Scholar]
  129. Shinnar R. 1961. On the behaviour of liquid dispersions in mixing vessels. J. Fluid Mech. 10:2259–75
    [Google Scholar]
  130. Soligo G, Roccon A, Soldati A. 2019. Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow. J. Fluid Mech. 881:244–82
    [Google Scholar]
  131. Solsvik J, Jakobsen HA. 2015. Single air bubble breakup experiments in stirred water tank. Int. J. Chem. React. Eng. 13:4477–91
    [Google Scholar]
  132. Solsvik J, Jakobsen HA. 2016. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence. AIChE J. 62:51795–820
    [Google Scholar]
  133. Spandan V, Lohse D, Verzicco R. 2016. Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor-Couette flow. J. Fluid Mech. 809:480–501
    [Google Scholar]
  134. Spandan V, Verzicco R, Lohse D. 2018. Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles. J. Fluid Mech. 849:R3
    [Google Scholar]
  135. Spelt P, Biesheuvel A. 1997. On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech. 336:221–44
    [Google Scholar]
  136. Sridhar G, Katz J. 1995. Drag and lift forces on microscopic bubbles entrained by a vortex. Phys. Fluids 7:2389–99
    [Google Scholar]
  137. Stone HA. 1994. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26:65–102
    [Google Scholar]
  138. Sugrue RM. 2017. A robust momentum closure approach for multiphase computational fluid dynamics applications. PhD Thesis MIT Cambridge, MA:
  139. Takagi S, Matsumoto Y. 2011. Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43:615–36
    [Google Scholar]
  140. Tan S, Salibindla A, Masuk AUM, Ni R. 2020. Introducing OpenLPT: new method of removing ghost particles and high-concentration particle shadow tracking. Exp. Fluids 61:47
    [Google Scholar]
  141. Tan S, Xu X, Qi Y, Ni R. 2023. Scalings and decay of homogeneous, nearly isotropic turbulence behind a jet array. Phys. Rev. Fluids 8:024603
    [Google Scholar]
  142. Tanaka T, Oishi Y, Park HJ, Tasaka Y, Murai Y, Kawakita C. 2021. Repetitive bubble injection promoting frictional drag reduction in high-speed horizontal turbulent channel flows. Ocean Eng. 239:109909
    [Google Scholar]
  143. Tanaka T, Oishi Y, Park HJ, Tasaka Y, Murai Y, Kawakita C. 2022. Frictional drag reduction caused by bubble injection in a turbulent boundary layer beneath a 36-m-long flat-bottom model ship. Ocean Eng. 252:111224
    [Google Scholar]
  144. Tomiyama A, Tamai H, Zun I, Hosokawa S. 2002. Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci. 57:111849–58
    [Google Scholar]
  145. Trefftz-Posada P, Ferrante A. 2023. On the interaction of Taylor length-scale size droplets and homogeneous shear turbulence. J. Fluid Mech. 972:A9
    [Google Scholar]
  146. Tripathi MK, Sahu KC, Govindarajan R. 2015. Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6:6268
    [Google Scholar]
  147. Tryggvason G, Dabiri S, Aboulhasanzadeh B, Lu J. 2013. Multiscale considerations in direct numerical simulations of multiphase flows. Phys. Fluids 25:031302
    [Google Scholar]
  148. van den Berg TH, van Gils DP, Lathrop DP, Lohse D. 2007. Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett. 98:084501
    [Google Scholar]
  149. van Gils DP, Bruggert GW, Lathrop DP, Sun C, Lohse D. 2011. The Twente turbulent Taylor-Couette (T3C) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders. Rev. Sci. Instrum. 82:025105
    [Google Scholar]
  150. van Gils DP, Guzman DN, Sun C, Lohse D. 2013. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow. J. Fluid Mech. 722:317–47
    [Google Scholar]
  151. Vankova N, Tcholakova S, Denkov ND, Vulchev VD, Danner T. 2007. Emulsification in turbulent flow. 2. Breakage rate constants. J. Colloid Interface Sci. 313:2612–29
    [Google Scholar]
  152. Vejražka J, Zedníková M, Stanovský P. 2018. Experiments on breakup of bubbles in a turbulent flow. AIChE J. 64:2740–57
    [Google Scholar]
  153. Vela-Martín A, Avila M. 2021. Deformation of drops by outer eddies in turbulence. J. Fluid Mech. 929:A38
    [Google Scholar]
  154. Vela-Martín A, Avila M. 2022. Memoryless drop breakup in turbulence. Sci. Adv. 8:50eabp9561
    [Google Scholar]
  155. Verschoof RA, Van Der Veen RC, Sun C, Lohse D. 2016. Bubble drag reduction requires large bubbles. Phys. Rev. Lett. 117:104502
    [Google Scholar]
  156. Villermaux E. 2007. Fragmentation. Annu. Rev. Fluid Mech. 39:419–46
    [Google Scholar]
  157. Villermaux E, Wang X, Deike L. 2022. Bubbles spray aerosols: certitudes and mysteries. PNAS Nexus 1:5pgac261
    [Google Scholar]
  158. Voth GA, Soldati A. 2017. Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49:249–76
    [Google Scholar]
  159. Wang C, Yi L, Jiang L, Sun C. 2022. Turbulence drag modulation by dispersed droplets in Taylor–Couette flow: the effects of the dispersed phase viscosity. J. Fluid Mech. 952:A39
    [Google Scholar]
  160. Wang L, Maxey M. 1993. The motion of microbubbles in a forced isotropic and homogeneous turbulence. Appl. Sci. Res. 51:1/2291–96
    [Google Scholar]
  161. Wang T, Wang J, Jin Y. 2003. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Eng. Sci. 58:204629–37
    [Google Scholar]
  162. Wang Z, Mathai V, Sun C. 2019. Self-sustained biphasic catalytic particle turbulence. Nat. Commun. 10:3333
    [Google Scholar]
  163. Wilkinson PM, Van Schayk A, Spronken JP, Van Dierendonck LL. 1993. The influence of gas density and liquid properties on bubble breakup. Chem. Eng. Sci. 48:71213–26
    [Google Scholar]
  164. Wooster TJ, Golding M, Sanguansri P. 2008. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24:2212758–65
    [Google Scholar]
  165. Xing C, Wang T, Guo K, Wang J. 2015. A unified theoretical model for breakup of bubbles and droplets in turbulent flows. AIChE J. 61:41391–403
    [Google Scholar]
  166. Yi L, Toschi F, Sun C. 2021. Global and local statistics in turbulent emulsions. J. Fluid Mech. 912:A13
    [Google Scholar]
  167. Yi L, Wang C, Huisman SG, Sun C. 2023. Recent developments of turbulent emulsions in Taylor-Couette flow. Philos. Trans. R. Soc. A 381:224320220129
    [Google Scholar]
  168. Yi L, Wang C, van Vuren T, Lohse D, Risso F et al. 2022. Physical mechanisms for droplet size and effective viscosity asymmetries in turbulent emulsions. J. Fluid Mech. 951:A39
    [Google Scholar]
  169. Zenit R, Feng J. 2018. Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids. Annu. Rev. Fluid Mech. 50:505–34
    [Google Scholar]
  170. Zenit R, Magnaudet J. 2008. Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys. Fluids 20:061702
    [Google Scholar]
  171. Zhang H, Yang G, Sayyar A, Wang T. 2020. An improved bubble breakup model in turbulent flow. Chem. Eng. J. 386:121484
    [Google Scholar]
  172. Zhang J, Ni MJ, Magnaudet J. 2021. Three-dimensional dynamics of a pair of deformable bubbles rising initially in line. Part 1. Moderately inertial regimes. J. Fluid Mech. 920:A16
    [Google Scholar]
  173. Zhong S, Ni R. 2023. On the breakup frequency of bubbles and droplets in turbulence: a compilation and evaluation of experimental data. arXiv:2308.13990 [physics.flu-dyn]
/content/journals/10.1146/annurev-fluid-121021-034541
Loading
/content/journals/10.1146/annurev-fluid-121021-034541
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error