1932

Abstract

Large-scale circulation of the atmosphere in the Earth's extratropics is dominated by eddies, eastward (westerly) zonal winds, and their interaction. Eddies not only bring about weather variabilities but also help maintain the average state of climate. In recent years, our understanding of how large-scale eddies and mean flows interact in the extratropical atmosphere has advanced significantly due to new dynamical constraints on finite-amplitude eddies and the related eddy-free reference state. This article reviews the theoretical foundations for finite-amplitude Rossby wave activity and related concepts. Theory is then applied to atmospheric data to elucidate how angular momentum is redistributed by the generation, transmission, and dissipation of Rossby waves and to reveal how an anomalously large wave event such as atmospheric blocking may arise from regional eddy-mean flow interaction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-035602
2024-01-19
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-035602.html?itemId=/content/journals/10.1146/annurev-fluid-121021-035602&mimeType=html&fmt=ahah

Literature Cited

  1. Allen DR, Nakamura N. 2003. Tracer equivalent latitude: a diagnostic tool for isentropic transport studies. J. Atmos. Sci. 60:287–304
    [Google Scholar]
  2. Andrews DG. 1983. A finite-amplitude Eliassen-Palm theorem in isentropic coordinates. J. Atmos. Sci. 40:1877–83
    [Google Scholar]
  3. Andrews DG, Holton JR, Leovy CB. 1987. Middle Atmosphere Dynamics San Diego/London: Academic
    [Google Scholar]
  4. Andrews DG, McIntyre ME. 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33:2031–48
    [Google Scholar]
  5. Andrews DG, McIntyre ME. 1978a. An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89:609–46
    [Google Scholar]
  6. Andrews DG, McIntyre ME. 1978b. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35:175–85
    [Google Scholar]
  7. Andrews DG, McIntyre ME. 1978c. On wave-action and its relatives. J. Fluid Mech. 89:647–64
    [Google Scholar]
  8. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH et al. 2001. The quasi-biennial oscillation. Rev. Geophys. 39:179–229
    [Google Scholar]
  9. Boyd JP. 1976. The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci. 33:2285–91
    [Google Scholar]
  10. Bretherton FP, Garrett CJR. 1968. Wavetrains in inhomogeneous moving media. Proc. R. Soc. A 302:529–54
    [Google Scholar]
  11. Bühler O. 2014. Waves and Mean Flows Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  12. Butchart N, Remsberg EE. 1986. The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci. 43:1319–39
    [Google Scholar]
  13. Charney JG. 1947. The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci. 4:136–62
    [Google Scholar]
  14. Charney JG. 1948. On the scales of atmospheric motions. Geofys. Publ. 18:3–17
    [Google Scholar]
  15. Charney JG. 1971. Geostrophic turbulence. J. Atmos. Sci. 28:1087–95
    [Google Scholar]
  16. Charney JG, Drazin PG. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66:183–109
    [Google Scholar]
  17. Chen G. 2013. The mean meridional circulation of the atmosphere using the mass above isentropes as the vertical coordinate. J. Atmos. Sci. 70:2197–223
    [Google Scholar]
  18. Dickinson RE. 1968. Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci. 25:984–1002
    [Google Scholar]
  19. Dickinson RE. 1970. Development of a Rossby wave critical level. J. Atmos. Sci. 27:627–33
    [Google Scholar]
  20. Eady ET. 1949. Long waves and cyclone waves. Tellus 1:33–52
    [Google Scholar]
  21. Edmon HJ, Hoskins BJ, McIntyre ME. 1980. Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci. 37:2600–16
    [Google Scholar]
  22. Eliassen A. 1951. Slow thermally or frictionally controlled meridional circulations in a circular vortex. Astrophys. Norv. 5:19–60
    [Google Scholar]
  23. Eliassen A, Palm E. 1961. On the transfer of energy in stationary mountain waves. Geofys. Publ. 22:1–23
    [Google Scholar]
  24. Fritts DC, Alexander MJ. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41:1003
    [Google Scholar]
  25. Fyfe J, Held IM. 1990. The two-fifths and one-fifth rules for Rossby wave breaking in the WKB limit. J. Atmos. Sci. 47:697–706
    [Google Scholar]
  26. Ghinassi P, Fragkoulidis G, Wirth V. 2018. Local finite-amplitude wave activity as a diagnostic for Rossby wave packets. Mon. Wea. Rev. 146:4099–114
    [Google Scholar]
  27. Griffa A. 1984. Canonical transformations and variational principles for fluid dynamics. Physica A 127:265–81
    [Google Scholar]
  28. Grimshaw R. 1984. Wave action and wave-mean flow interaction, with application to stratified shear flows. Annu. Rev. Fluid Mech. 16:11–44
    [Google Scholar]
  29. Harada Y, Goto A, Hasegawa H, Fujikawa N, Naoe H, Hirooka T. 2010. A major stratospheric sudden warming event in January 2009. J. Atmos. Sci. 67:2052–69
    [Google Scholar]
  30. Hartmann DL. 2015. Global Physical Climatology Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  31. Haurwitz B. 1940. The motion of atmospheric disturbances. J. Mar. Res. 3:35–50
    [Google Scholar]
  32. Haynes PH. 1988. Forced, dissipative generalizations of finite-amplitude wave-activity conservation relations for zonal and nonzonal basic flows. J. Atmos. Sci. 45:2352–62
    [Google Scholar]
  33. Held IM. 1983. Stationary and quasi-stationary eddies in the extratropical troposphere: theory. Large-Scale Dynamical Processes in the Atmosphere B Hoskins, R Pearce 127–68. New York: Academic
    [Google Scholar]
  34. Held IM, Hoskins BJ. 1985. Large-scale eddies and the general circulation of the troposphere. Adv. Geophys. 28:Part A3–31
    [Google Scholar]
  35. Held IM, Phillipps PJ. 1987. Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci. 44:200–7
    [Google Scholar]
  36. Held IM, Scheider T. 1999. The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci. 56:1688–97
    [Google Scholar]
  37. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A et al. 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146:1999–2049
    [Google Scholar]
  38. Holton JR, Lindzen RS. 1972. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29:1076–80
    [Google Scholar]
  39. Hoskins BJ, James IN, White GH. 1983. The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci. 40:1595–612
    [Google Scholar]
  40. Hoskins BJ, Karoly DJ. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38:1179–96
    [Google Scholar]
  41. Huang CSY. 2017. Finite-amplitude local wave activity as a diagnostic of anomalous weather events. PhD Thesis Univ. Chicago
    [Google Scholar]
  42. Huang CSY, Nakamura N. 2016. Local finite-amplitude wave activity as a diagnostic of anomalous weather events. J. Atmos. Sci. 73:211–29
    [Google Scholar]
  43. Huang CSY, Nakamura N. 2017. Local wave activity budgets of the wintertime Northern Hemisphere: implication for the Pacific and Atlantic storm tracks. Geophys. Res. Lett. 44:5673–82
    [Google Scholar]
  44. Iwasaki T. 1989. A diagnostic formulation for wave-mean flow interactions and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentrope. J. Meteorol. Soc. Jpn. 67:293–312
    [Google Scholar]
  45. Jeffreys H. 1926. On the dynamics of geostrophic winds. Q. J. R. Meteorol. Soc. 51:85–101
    [Google Scholar]
  46. Kautz LA, Martius O, Pfahl S, Pinto JG, Ramos AM et al. 2022. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—a review. Weather Clim. Dynam. 3:305–36
    [Google Scholar]
  47. Killworth PD, McIntyre ME. 1985. Do Rossby-wave critical layers absorb, reflect, or over-reflect?. J. Fluid Mech. 161:449–92
    [Google Scholar]
  48. Kinoshita T, Sato K. 2013. A formulation of unified three-dimensional wave activity flux of inertia–gravity waves and Rossby waves. J. Atmos. Sci. 70:1603–15
    [Google Scholar]
  49. Kuo H. 1956. Forced and free meridional circulations in the atmosphere. J. Meteorol. 13:561–68
    [Google Scholar]
  50. Lighthill MJ, Whitham GB. 1955. On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A 229:317–45
    [Google Scholar]
  51. Lindzen RS. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86:C109707–14
    [Google Scholar]
  52. Lindzen RS, Holton JR. 1968. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25:1095–107
    [Google Scholar]
  53. Longuet-Higgins MS. 1965. Planetary waves on a rotating sphere. II. Proc. R. Soc. A 284:40–68
    [Google Scholar]
  54. Lorenz EN. 1955. Available potential energy and the maintenance of the general circulation. Tellus 7:157–67
    [Google Scholar]
  55. Lupo AR. 2021. Atmospheric blocking events: a review. Ann. N. Y. Acad. Sci. 1504:5–24
    [Google Scholar]
  56. Matsueda M. 2011. Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett. 38:L06801
    [Google Scholar]
  57. Matsuno T. 1971. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28:1479–94
    [Google Scholar]
  58. McIntyre ME. 1980. An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction. Pure Appl. Geophys. 118:152–76
    [Google Scholar]
  59. McIntyre ME, Norton WA. 1990. Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech. 212:403–35
    [Google Scholar]
  60. McIntyre ME, Shepherd TG. 1987. An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnol'd's stability theorems. J. Fluid Mech. 181:527–65
    [Google Scholar]
  61. Methven J, Berrisford P. 2015. The slowly evolving background state of the atmosphere. Q. J. R. Meteorol. Soc. 141:2237–58
    [Google Scholar]
  62. Nakamura N. 1996. Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci. 53:1524–37
    [Google Scholar]
  63. Nakamura N. 2008. Quantifying inhomogeneous, instantaneous, irreversible transport using passive tracer field as a coordinate. Transport and Mixing in Geophysical Flows JB Weiss, A Provenzale 137–64. Berlin: Springer-Verlag
    [Google Scholar]
  64. Nakamura N, Faulk J, Lubis SW. 2020. Why are stratospheric sudden warmings sudden (and intermittent)?. J. Atmos. Sci. 77:943–64
    [Google Scholar]
  65. Nakamura N, Huang CSY. 2017. Local wave activity and the onset of blocking along a potential vorticity front. J. Atmos. Sci. 74:2341–62
    [Google Scholar]
  66. Nakamura N, Huang CSY. 2018. Atmospheric blocking as a traffic jam in the jet stream. Science 361:42–47
    [Google Scholar]
  67. Nakamura N, Solomon A. 2010. Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: quasigeostrophic theory and analysis. J. Atmos. Sci. 67:3967–83
    [Google Scholar]
  68. Nakamura N, Solomon A. 2011. Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part II: analysis in the isentropic coordinate. J. Atmos. Sci. 68:2783–99
    [Google Scholar]
  69. Nakamura N, Zhu D. 2010. Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci. 67:2701–16
    [Google Scholar]
  70. Neal E, Huang CSY, Nakamura N. 2022. The 2021 Pacific Northwest heat wave and associated blocking: meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49:e2021GL097699
    [Google Scholar]
  71. Palmén E. 1949. Meridional circulations and the transfer of angular momentum in the atmosphere. J. Meteorol. 6:429–30
    [Google Scholar]
  72. Pfeffer RL. 1987. Comparison of conventional and transformed Eulerian diagnostics in the troposphere. Q. J. R. Meteorol. Soc. 113:237–54
    [Google Scholar]
  73. Phillips NA. 1951. A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteorol. 8:381–94
    [Google Scholar]
  74. Platzman GW. 1968. The Rossby wave. Q. J. R. Meteorol. Soc. 94:225–48
    [Google Scholar]
  75. Plumb RA. 1977. The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34:1847–58
    [Google Scholar]
  76. Plumb RA. 1985. On the three-dimensional propagation of stationary waves. J. Atmos. Sci. 42:217–29
    [Google Scholar]
  77. Plumb RA. 1986. Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time–mean flow. J. Atmos. Sci. 43:1657–78
    [Google Scholar]
  78. Rhines PB. 1975. Waves and turbulence on a beta-plane. J. Fluid. Mech. 69:417–43
    [Google Scholar]
  79. Richards PI. 1956. Shock waves on the highway. Oper. Res. 4:42–51
    [Google Scholar]
  80. Rodwell MJ, Magnusson L, Bauer P, Bechtold P, Bonavita M et al. 2013. Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Am. Meteorol. Soc. 94:1393–405
    [Google Scholar]
  81. Rossby CG. 1939. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2:38–55
    [Google Scholar]
  82. Rossby CG, Starr V. 1949. Interpretation of the angular momentum principle as applied to the general circulation of the atmosphere. J. Meteorol. 6:288
    [Google Scholar]
  83. Salmon R. 1980. Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15:167–211
    [Google Scholar]
  84. Salmon R. 1988. Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 20:225–56
    [Google Scholar]
  85. Shepherd TG. 1988. Nonlinear saturation of baroclinic instability. Part I: the two-layer model. J. Atmos. Sci. 45:2014–25
    [Google Scholar]
  86. Solomon A, Nakamura N. 2012. An exact Lagrangian-mean wave activity for finite-amplitude disturbances to barotropic flow on a sphere. J. Fluid Mech. 693:69–92
    [Google Scholar]
  87. Starr V. 1949. Meridional circulations and the transfer of angular momentum in the atmosphere—reply. J. Meteorol. 6:430
    [Google Scholar]
  88. Starr V. 1968. Physics of Negative Viscosity Phenomena New York: McGraw-Hill
    [Google Scholar]
  89. Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 58:608–27
    [Google Scholar]
  90. Tung KK. 1986. Nongeostrophic theory of zonally averaged circulation. Part I: formulation. J. Atmos. Sci. 43:2600–18
    [Google Scholar]
  91. Vallis GK. 2017. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  92. Virasoro MA. 1981. Variational principle for two-dimensional incompressible hydrodynamics and quasigeostrophic flows. Phys. Rev. Lett. 47:1181–83
    [Google Scholar]
  93. Wallace JM, Battisti DS, Thompson DWJ, Hartmann DL. 2023. The Atmospheric General Circulation Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  94. Wang L, Nakamura N. 2015. Covariation of finite-amplitude wave activity and the zonal mean flow in the midlatitude troposphere: 1. Theory and application to the Southern Hemisphere summer. Geophys. Res. Lett. 42:8192–200
    [Google Scholar]
  95. Wang X, Fyfe J. 2000. Onset of edge wave breaking in an idealized model of the polar stratospheric vortex. J. Atmos. Sci. 57:956–66
    [Google Scholar]
  96. Woollings T, Barriopedro D, Methven J, Son SW, Martius O et al. 2018. Blocking and its response to climate change. Curr. Clim. Change Rep. 4:287–300
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-035602
Loading
/content/journals/10.1146/annurev-fluid-121021-035602
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error