1932

Abstract

Until recently, observations of the giant planets of our Solar System were confined to sampling relatively shallow regions of their atmospheres, leaving many uncertainties as to the dynamics of deeper layers. The and missions to Saturn and Jupiter, however, have begun to address these issues, for example, by measuring their gravity and magnetic fields. The results show that the zonally coherent jets and cloud bands extend to levels where the electrical conductivity of the fluid becomes significant, whereas large-scale vortices, such as the Great Red Spot, are relatively shallow but may have deep-seated roots. The polar regions also exhibit intense cyclonic vortices that, on Jupiter, arrange themselves into remarkably regular “vortex crystals.” Numerical models seem able to capture some of this complexity, but many issues remain unresolved, suggesting a need for models that can represent both deep and shallow processes sufficiently realistically to compare with observations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-040058
2024-01-19
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-040058.html?itemId=/content/journals/10.1146/annurev-fluid-121021-040058&mimeType=html&fmt=ahah

Literature Cited

  1. Adriani A, Filacchione G, Iorio TD, Turrini D, Noschese R et al. 2017. JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. 213:393–446
    [Google Scholar]
  2. Adriani A, Mura A, Orton G, Hansen C, Altieri F et al. 2018. Clusters of cyclones encircling Jupiter's poles. Nature 555:216–19
    [Google Scholar]
  3. Anderson JD, Schubert G. 2007. Saturn's gravitational field, internal rotation, and interior structure. Science 317:1384–87
    [Google Scholar]
  4. Andrews DG, Holton JR, Leovy CB. 1987. Middle Atmosphere Dynamics Orlando, FL: Academic Press
  5. Andrews DG, McIntyre M. 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33:2031–48
    [Google Scholar]
  6. Andrews DG, McIntyre M. 1978. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35:175–85
    [Google Scholar]
  7. Arnol'd VI 1966. On an a priori estimate in the theory of hydrodynamical stability. Izv. Vyssh. Ucheb. Zaved. Matematika 54:3–5
    [Google Scholar]
  8. Aubert O, Le Bars M, Le Gal P, Marcus PS 2012. The universal aspect ratio of vortices in rotating stratified flows: experiments and observations. J. Fluid Mech. 706:34–45
    [Google Scholar]
  9. Barrado-Izagirre N, Pérez-Hoyos S, Sánchez-Lavega A. 2009. Brightness power spectral distribution and waves in Jupiter's upper cloud and hazes. Icarus 202:181–96
    [Google Scholar]
  10. Bolton SJ, Levin SM, Guillot T, Li C, Kaspi Y et al. 2021. Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices. Science 374:968–72
    [Google Scholar]
  11. Böning VGA, Wulff P, Dietrich W, Wicht J, Christensen UR. 2023. Direct driving of simulated planetary jets by upscale energy transfer. Astron. Astrophys. 670:A15
    [Google Scholar]
  12. Brown S, Janssen M, Adumitroaie V, Atreya S, Bolton S et al. 2018. Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature 558:87–90
    [Google Scholar]
  13. Brueshaber SR, Sayanagi KM, Dowling TE. 2018. Dynamical regimes of giant planet polar vortices. Icarus 323:46–61
    [Google Scholar]
  14. Chemke R, Kaspi Y. 2015a. The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci. 72:3891–907
    [Google Scholar]
  15. Chemke R, Kaspi Y. 2015b. Poleward migration of eddy-driven jets. J. Adv. Model. Earth Syst. 7:1457–71
    [Google Scholar]
  16. Choi DS, Showman AP. 2011. Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini. Icarus 216:597–609
    [Google Scholar]
  17. Christensen UR, Wicht J, Dietrich W. 2020. Mechanisms for limiting the depth of zonal winds in the gas giant planets. Astrophys. J. 890:61
    [Google Scholar]
  18. Cosentino RG, Simon A, Morales-Juberías R. 2019. Jupiter's turbulent power spectra from Hubble Space Telescope. J. Geophys. Res. 124:1204–25
    [Google Scholar]
  19. Del Genio AD, Achterberg RK, Baines KH, Flasar FM, Read PL et al. 2009. Saturn atmospheric structure and dynamics. Saturn from Cassini–Huygens MK Dougherty, LW Esposito, SM Krimigis 113–59. London: Springer-Verlag
    [Google Scholar]
  20. Del Genio AD, Barbara JM. 2012. Constraints on Saturn's tropospheric general circulation Cassini ISS images. Icarus 219:689–700
    [Google Scholar]
  21. Desch MD, Kaiser LM. 1981. Voyager measurements of the rotation period of Saturn's magnetic field. Geophys. Res. Lett. 8:253–56
    [Google Scholar]
  22. Dowling TE. 1995. Dynamics of Jovian atmospheres. Annu. Rev. Fluid Mech. 27:293–334
    [Google Scholar]
  23. Dowling TE, Fischer AS, Gierasch PJ, Harrington J, Lebeau RP, Santori CM. 1998. The explicit planetary isentropic-coordinate (EPIC) atmospheric model. Icarus 132:221–38
    [Google Scholar]
  24. Dritschel DG, de la Torre Juárez M. 1996. The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328:129–60
    [Google Scholar]
  25. Dritschel DG, McIntyre ME. 2008. Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65:855–74
    [Google Scholar]
  26. Duer K, Gavriel N, Galanti E, Kaspi Y, Fletcher LN et al. 2021. Evidence for multiple Ferrel-like cells on Jupiter. Geophys. Res. Lett. 48:e2021GL095651
    [Google Scholar]
  27. Fletcher LN, Kaspi Y, Guillot T, Showman AP. 2020. How well do we understand the belt/zone circulation of giant planet atmospheres?. Space Sci. Rev. 216:30
    [Google Scholar]
  28. Fletcher LN, Oyafuso FA, Allison M, Ingersoll A, Li L et al. 2021. Jupiter's temperate belt/zone contrasts revealed at depth by Juno microwave observations. J. Geophys. Res. 126:e2021JE006858
    [Google Scholar]
  29. Galanti E, Kaspi Y. 2021. Combined magnetic and gravity measurements probe the deep zonal flows of the gas giants. MNRAS 501:2352–62
    [Google Scholar]
  30. Galanti E, Kaspi Y, Miguel Y, Guillot T, Durante D et al. 2019. Saturn's deep atmospheric flows revealed by the Cassini Grand Finale gravity measurements. Geophys. Res. Lett. 46:616–24
    [Google Scholar]
  31. Galperin B, Read PL, eds. 2019. Zonal Jets: Phenomenology, Genesis and Physics Cambridge, UK: Cambridge Univ. Press
  32. Galperin B, Sukoriansky S, Dikovskaya N, Read P, Yamazaki Y, Wordsworth R. 2006. Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlin. Process. Geophys. 13:83–98
    [Google Scholar]
  33. Galperin B, Young RMB, Sukoriansky S, Dikovskaya N, Read PL et al. 2014. Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229:295–320
    [Google Scholar]
  34. Gavriel N, Kaspi Y. 2022. The oscillatory motion of Jupiter's polar cyclones results from vorticity dynamics. Geophys. Res. Lett. 49:e2022GL098708
    [Google Scholar]
  35. Guerlet S, Spiga A, Sylvestre M, Indurain M, Fouchet T et al. 2014. Global climate modeling of Saturn's atmosphere. Part I: evaluation of the radiative transfer model. Icarus 238:110–24
    [Google Scholar]
  36. Guervilly C, Cardin P. 2017. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores. Geophys. J. Int. 211:455–71
    [Google Scholar]
  37. Guillot T, Stevenson DJ, Atreya SK, Bolton SJ, Becker HN. 2021. Storms and the depletion of ammonia in Jupiter: I. Microphysics of “mushballs. .” J. Geophys. Res. 125:e2020JE006403
    [Google Scholar]
  38. Hansen C, Caplinger M, Ingersoll A, Ravine M, Jensen E et al. 2017. Junocam: Juno's outreach camera. Space Sci. Rev. 213:475–506
    [Google Scholar]
  39. Harrington J, Dowling TE, Baron RL. 1996. Jupiter's tropospheric thermal emission. II. Power spectrum analysis and wave search. Icarus 124:32–44
    [Google Scholar]
  40. Hassanzadeh P, Marcus PS, Le Gal P 2012. The universal aspect ratio of vortices in rotating stratified flows: theory and simulation. J. Fluid Mech. 706:46–57
    [Google Scholar]
  41. Heimpel M, Aurnou J, Wicht J. 2005. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–96
    [Google Scholar]
  42. Heimpel M, Gastine T, Wicht J. 2016. Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 9:19–23
    [Google Scholar]
  43. Heimpel MH, Yadav RK, Featherstone NA, Aurnou JM. 2022. Polar and mid-latitude vortices and zonal flows on Jupiter and Saturn. Icarus 379:114942
    [Google Scholar]
  44. Helled R. 2019. The interiors of Jupiter and Saturn. Oxford Research Encyclopedia of Planetary Science. New York: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190647926.013.175
    [Google Scholar]
  45. Hide R. 1966. On the circulation of the atmospheres of Jupiter and Saturn. Planet. Space Sci. 14:669–75
    [Google Scholar]
  46. Hide R. 1969. Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci. 26:841–53
    [Google Scholar]
  47. Huang HP, Galperin B, Sukoriansky S. 2001. Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13:225–40
    [Google Scholar]
  48. Hubbard WB. 1982. Effects of differential rotation on the gravitational figures of Jupiter and Saturn. Icarus 52:509–15
    [Google Scholar]
  49. Ingersoll A, Dowling T, Gierasch P, Orton G, Read P et al. 2004. Dynamics of Jupiter's atmosphere. Jupiter: The Planet, Satellites and Magnetosphere F Bagenal, T Dowling, W McKinnon 105–28. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  50. Ingersoll A, Gierasch P, Banfield D, Vasavada A, Galileo Imaging Team. 2000. Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere. Nature 403:630–32
    [Google Scholar]
  51. Ingersoll AP, Atreya S, Bolton SJ, Brueshaber S, Fletcher LN et al. 2021. Jupiter's overturning circulation: Breaking waves take the place of solid boundaries. Geophys. Res. Lett. 48:e2021GL095756
    [Google Scholar]
  52. Ingersoll AP, Beebe RF, Mitchell JL, Garneau GW, Yagi GM, Müller JP. 1981. Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. 86:8733–43
    [Google Scholar]
  53. Ingersoll AP, Pollard D. 1982. Motion in the interiors and atmospheres of Jupiter and Saturn—scale analysis, anelastic equations, barotropic-stability criterion. Icarus 52:62–80
    [Google Scholar]
  54. Janssen M, Oswald J, Brown S, Gulkis S, Levin S et al. 2017. MWR: microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. 213:139–85
    [Google Scholar]
  55. Jones C, Rotvig J, Abdulrahman A. 2003. Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30:1731
    [Google Scholar]
  56. Kaspi Y, Flierl G. 2007. Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64:3177–94
    [Google Scholar]
  57. Kaspi Y, Flierl GR, Showman AP. 2009. The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202:525–42
    [Google Scholar]
  58. Kaspi Y, Galanti E, Hubbard WB, Stevenson DJ, Bolton SJ et al. 2018. Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature 555:223–26
    [Google Scholar]
  59. Kaspi Y, Galanti E, Park RS, Duer K, Gavriel N et al. 2023. Observational evidence for cylindrically oriented zonal flows on Jupiter. Nat. Astron. In press
    [Google Scholar]
  60. Kong D, Zhang K, Schubert G, Anderson JD. 2018. Origin of Jupiter's cloud-level zonal winds remains a puzzle even after Juno. PNAS 115:8499–504
    [Google Scholar]
  61. Lapeyre G. 2017. Surface quasi-geostrophy. Fluids 2:7
    [Google Scholar]
  62. Lapeyre G, Klein P. 2006. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36:165–76
    [Google Scholar]
  63. Lemasquerier D, Facchini G, Favier B, Le Bars M 2020. Remote determination of the shape of Jupiter's vortices from laboratory experiments. Nat. Phys. 16:695–700
    [Google Scholar]
  64. Lemasquerier D, Favier B, Le Bars M 2023. Zonal jets experiments in the gas giants' zonostrophic regime. Icarus 390:115292
    [Google Scholar]
  65. Li C, Ingersoll AP, Klipfel AP, Brettle H. 2020. Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft. PNAS 117:24082–87
    [Google Scholar]
  66. Lian Y, Showman A. 2008. Deep jets on gas-giant planets. Icarus 194:597–615
    [Google Scholar]
  67. Limaye SS. 1986. Jupiter—new estimates of the mean zonal flow at the cloud level. Icarus 65:335–52
    [Google Scholar]
  68. Little B, Anger CD, Ingersoll AP, Vasavada AR, Senske DA et al. 1999. Galileo images of lightning on Jupiter. Icarus 142:306–23
    [Google Scholar]
  69. Liu J, Goldreich PM, Stevenson DJ. 2008. Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196:653–64
    [Google Scholar]
  70. Liu J, Schneider T. 2010. Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67:3652–72
    [Google Scholar]
  71. Liu J, Schneider T. 2011. Convective generation of equatorial superrotation in planetary atmospheres. J. Atmos. Sci. 68:2742–56
    [Google Scholar]
  72. Maltrud ME, Vallis GK. 1991. Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228:321–42
    [Google Scholar]
  73. Mankovitch C, Marley MS, Fortney JJ, Movshovitz N. 2019. Cassini ring seismology as a probe of Saturn's interior. I. Rigid rotation. Astrophys. J. 871:1
    [Google Scholar]
  74. Marcus PS. 1993. Jupiter's Great Red Spot and other vortices. Annu. Rev. Astron. Astrophys. 31:523–73
    [Google Scholar]
  75. Marcus PS, Lee C. 1998. A model for eastward and westward jets in laboratory experiments and planetary atmospheres. Phys. Fluids 10:1474–89
    [Google Scholar]
  76. Medvedev A, Sethunadh J, Hartogh P. 2013. From cold to warm gas giants: a three-dimensional atmospheric general circulation modeling. Icarus 225:228–35
    [Google Scholar]
  77. Morales-Juberías R, Dowling TE. 2013. Jupiter's Great Red Spot: fine-scale matches of model vorticity patterns to prevailing cloud patterns. Icarus 225:216–27
    [Google Scholar]
  78. O'Neill ME, Emanuel KA, Flierl GR. 2015. Polar vortex formation in giant-planet atmospheres due to moist convection. Nat. Geosci. 8:523–26
    [Google Scholar]
  79. Porco C, West R, McEwen A, Del Genio A, Ingersoll A et al. 2003. Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science 299:1541–47
    [Google Scholar]
  80. Read PL. 2019. Zonal jet flows in the laboratory: an introduction. See Galperin & Read 2019 121–36
  81. Read PL, Conrath BJ, Fletcher LN, Gierasch PJ, Simon-Miller AA, Zuchowski LC. 2009a. Mapping potential vorticity dynamics on Saturn: zonal mean circulation from Cassini and Voyager data. Planet. Space Sci. 57:1682–98
    [Google Scholar]
  82. Read PL, Dowling TE, Schubert G. 2009b. Saturn's rotation period from its atmospheric planetary-wave configuration. Nature 460:608–10
    [Google Scholar]
  83. Read PL, Gierasch PJ, Conrath BJ, Simon-Miller AA, Fouchet T, Yamazaki YH. 2006. Mapping potential vorticity dynamics on Jupiter. I: Zonal mean circulation from Cassini and Voyager 1 data. Q. J. R. Meteorol. Soc. 132:1577–603
    [Google Scholar]
  84. Reinaud JN. 2019. Three-dimensional quasi-geostrophic vortex equilibria with m-fold symmetry. J. Fluid Mech. 863:32–59
    [Google Scholar]
  85. Rotvig J. 2007. Multiple zonal jets and drifting: thermal convection in a rapidly rotating spherical shell compared to a quasigeostrophic model. Phys. Rev. E 76:046306
    [Google Scholar]
  86. Salyk C, Ingersoll AP, Lorre J, Vasavada A, Del Genio AD. 2006. Interaction between eddies and mean flow in Jupiter's atmosphere: analysis of Cassini imaging data. Icarus 185:430–42
    [Google Scholar]
  87. Sánchez-Lavega A, Rojas JF, Sada PV. 2000. Saturn's zonal winds at cloud level. Icarus 147:405–20
    [Google Scholar]
  88. Sánchez-Lavega A, Sromovsky LA, Showman AP, Del Genio AD, Young RMB et al. 2019. Gas giants. See Galperin & Read 2019 72–103
  89. Sayanagi KM, Baines KH, Dyudina UA, Fletcher LN, Sánchez-Lavega A, West RA 2018. Saturn's polar atmosphere. Saturn in the 21st Century KH Baines, FM Flasar, N Krupp, TE Stallard 295–336. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  90. Schneider T, Liu J. 2009. Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66:579–601
    [Google Scholar]
  91. Scott RK, Dritschel DG. 2012. The structure of zonal jets in geostrophic turbulence. J. Fluid Mech. 711:576–98
    [Google Scholar]
  92. Showman AP. 2007. Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64:3132–57
    [Google Scholar]
  93. Showman AP, Gierasch PJ, Lian Y. 2006. Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus 182:513–26
    [Google Scholar]
  94. Showman AP, Ingersoll AP, Achterberg R, Kaspi Y 2018. The global atmospheric circulation of Saturn. Saturn in the 21st Century KH Baines, FM Flasar, N Krupp, TE Stallard 337–76. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  95. Siegelman L, Klein P, Ingersoll AP, Ewald SP, Young WR et al. 2022a. Moist convection drives an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18:357–61
    [Google Scholar]
  96. Siegelman L, Young WR, Ingersoll AP. 2022b. Polar vortex crystals: emergence and structure. PNAS 119:e2120486119
    [Google Scholar]
  97. Smith C, Speer K, Griffiths R. 2014. Multiple zonal jets in a differentially heated rotating annulus. J. Phys. Oceanogr. 44:2273–91
    [Google Scholar]
  98. Spiga A, Guerlet S, Millour E, Indurain M, Meurdesoif Y et al. 2020. Global climate modeling of Saturn's atmosphere. Part II: multi-annual high-resolution dynamical simulations. Icarus 335:113377
    [Google Scholar]
  99. Sromovsky L, Revercomb H, Suomi V, Limaye S, Krauss R. 1982. Jovian winds from Voyager 2. Part II: analysis of eddy transports. J. Atmos. Sci. 39:1413–32
    [Google Scholar]
  100. Sukoriansky S, Dikovskaya N, Galperin B. 2007. On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64:3312–27
    [Google Scholar]
  101. Sukoriansky S, Galperin B, Dikovskaya N. 2002. Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett. 89:124501
    [Google Scholar]
  102. Tabataba-Vakili F, Rogers JH, Eichstädt G, Orton GS, Hansen CJ et al. 2020. Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam. Icarus 335:113405
    [Google Scholar]
  103. Thompson W. 1878. Floating magnets. Nature 18:13–14
    [Google Scholar]
  104. Tulloch R, Smith KS. 2006. A theory for the atmospheric energy spectrum: depth-limited temperature anomalies at the tropopause. PNAS 103:14690–94
    [Google Scholar]
  105. Tyler RH. 2022. Jupiter's banding and jets may be caused by tides. Planet. Sci. J. 3:250
    [Google Scholar]
  106. Vallis GK. 2017. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  107. Vasavada AR, Showman AP. 2005. Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68:1935–96
    [Google Scholar]
  108. Yadav RK, Heimpel M, Bloxham J. 2020. Deep convection–driven vortex formation on Jupiter and Saturn. Sci. Adv. 6:eabb9298
    [Google Scholar]
  109. Yamazaki Y, Skeet D, Read P. 2005. Hadley circulations and Kelvin wave-driven equatorial jets in the atmospheres of Jupiter and Saturn. Planet. Space Sci. 53:508–25
    [Google Scholar]
  110. Young RMB, Read PL. 2017. Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer. Nat. Phys. 13:1135–40
    [Google Scholar]
  111. Young RMB, Read PL, Wang Y. 2019. Simulating Jupiter's weather layer. Part I: jet spin-up in a dry atmosphere. Icarus 326:225–52
    [Google Scholar]
  112. Zuchowski LC, Yamazaki YH, Read PL. 2009a. Modeling Jupiter's cloud bands and decks: 1. Jet scale meridional circulations. Icarus 200:548–62
    [Google Scholar]
  113. Zuchowski LC, Yamazaki YH, Read PL. 2009b. Modeling Jupiter's cloud bands and decks: 2. Distribution and motion of condensates. Icarus 200:563–73
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-040058
Loading
/content/journals/10.1146/annurev-fluid-121021-040058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error