1932

Abstract

Airtanker firefighting is the most spectacular tool used to fight wildland fires. However, it employs a rudimentary large-scale spraying technology operating at a high speed and a long distance from the target. This review gives an overview of the fluid dynamics processes that govern this practice, which are characterized by rich and varied physical phenomena. The liquid column penetration in the air, its large-scale fragmentation, and an intense surface atomization give shape to the rainfall produced by the airtanker and the deposition of the final product on the ground. The cloud dynamics is controlled by droplet breakup, evaporation, and wind dispersion. The process of liquid deposition onto the forest canopy is full of open questions of great interest for rainfall retention in vegetation. Of major importance, but still requiring investigation, is the role of the complex non-Newtonian viscoelastic and shear-thinning behavior of the retardant dropped to stop the fire propagation. The review describes the need for future research devoted to the subject.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-041642
2024-01-19
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-041642.html?itemId=/content/journals/10.1146/annurev-fluid-121021-041642&mimeType=html&fmt=ahah

Literature Cited

  1. Abarzhi SI. 2008. Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory. Phys. Scr. 2008:T132014012
    [Google Scholar]
  2. Alon U, Hecht J, Offer D, Shvarts D. 1995. Power-laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74:534
    [Google Scholar]
  3. Amorim JH. 2011a. Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part I: model development. Int. J. Wildland Fire 20:384–93
    [Google Scholar]
  4. Amorim JH. 2011b. Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part II: model validation. Int. J. Wildland Fire 20:394–406
    [Google Scholar]
  5. Anderson WH, Brown RE, Blatz PJ, Louie NA, Burchfield J. 1974. Investigation of rheological properties of aerial-delivered fire retardant Tech. Rep. 8990-04 North. Forest Fire Lab., U.S. Forest Serv. Washington, DC:
    [Google Scholar]
  6. Attané P, Girard F, Morin V. 2007. An energy balance approach of the dynamics of drop impact on a solid surface. Phys. Fluids 19:012101
    [Google Scholar]
  7. Behzad M, Ashgriz N, Mashayek A. 2015. Azimuthal shear instability of a liquid jet injected into a gaseous cross-flow. J. Fluid Mech. 767:146–72
    [Google Scholar]
  8. Bellman R, Pennington RH. 1954. Effects of surface tension and viscosity on Taylor instability. Q. Appl. Math. 12:151–62
    [Google Scholar]
  9. Biance AL, Clanet C, Quéré D. 2003. Leidenfrost drops. Phys. Fluids 15:1632–37
    [Google Scholar]
  10. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009. Wetting and spreading. Rev. Mod. Phys. 81:739–805
    [Google Scholar]
  11. Boulesteix S. 2010. Cisaillement d'une interface gaz-liquide en conduite et entraînement de gouttelettes PhD Thesis Inst. Natl. Polytech. Toulouse, France:
    [Google Scholar]
  12. Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG. 2012. Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109:26264501
    [Google Scholar]
  13. Broumand M, Birouk M. 2016. Liquid jet in a subsonic gaseous crossflow: recent progress and remaining challenges. Prog. Energy Combust. Sci. 57:1–29
    [Google Scholar]
  14. Calbrix C, Stoukov A, Cadière A, Roig B, Legendre D. 2023. Numerical simulation of aerial liquid drops of Canadair CL-415 and Dash-8 airtankers. Int. J. Wildland Fire 32:11151528
    [Google Scholar]
  15. Calogine D, Rimbert N, Séro-Guillaume O. 2007. Modelling of the deposition of retardant in a tree crown during fire fighting. Environ. Model. Softw. 22:1654–66
    [Google Scholar]
  16. Chen J, Zhou Y, Antonia R, Zhou T 2018. Characteristics of the turbulent energy dissipation rate in a cylinder wake. J. Fluid Mech. 835:271–300
    [Google Scholar]
  17. Chou WH, Faeth GM. 1998. Temporal properties of secondary drop breakup in the bag breakup regime. Int. J. Multiph. Flow 24:889–912
    [Google Scholar]
  18. Clift R, Gauvin WH. 1970. The motion of particles in turbulent gas streams. Proceedings of Chemeca Conference '70, Vol. 114–28. London: Butterworth
    [Google Scholar]
  19. Cossali GE, Coghe A, Marengo MT. 1997. Characteristics of the turbulent energy dissipation rate in a cylinder wake. Exp. Fluids 22:463–72
    [Google Scholar]
  20. Cox SJ, Salt DW, Lee BE, Ford MG. 2000. A model for the capture of aerially sprayed pesticide by barley. J. Wind Eng. Ind. Aerodyn. 87:217–30
    [Google Scholar]
  21. Davies RM, Taylor GI. 1950. The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. A 200:375–90
    [Google Scholar]
  22. de Goede T, de Bruin K, Shahidzadeh N, Bonn D. 2021. Droplet splashing on rough surfaces. Phys. Rev. Fluids 6:043604
    [Google Scholar]
  23. Deike L. 2022. Mass transfer at the ocean–atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu. Rev. Fluid Mech. 54:191–224
    [Google Scholar]
  24. Dhar P, Mishra SR, Gairola A, Samanta D. 2020. Delayed Leidenfrost phenomenon during impact of elastic fluid droplets. Proc. R. Soc. A 476:20200556
    [Google Scholar]
  25. Dorr GJ, Kempthorne DM, Mayo LC, Forster WA, Zabkiewicz JA et al. 2014. Towards a model of spray–canopy interactions: interception, shatter, bounce and retention of droplets on horizontal leaves. J. Fluid Mech. 290:94–101
    [Google Scholar]
  26. Dussan EB. 1985. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2. Small drops or bubbles having contact angles of arbitrary size. J. Fluid Mech. 151:1–20
    [Google Scholar]
  27. Furmidge CGL. 1962a. Physico-chemical studies on agricultural sprays. IV. The retention of spray liquids on leaf surfaces. J. Sci. Food Agric. 13:127–40
    [Google Scholar]
  28. Furmidge CGL. 1962b. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17:309–24
    [Google Scholar]
  29. Garcia-Geijo P, Quintero E, Riboux G, Gordillo J. 2021. Spreading and splashing of drops impacting rough substrates. J. Fluid Mech. 917:A50
    [Google Scholar]
  30. Garcia-Geijo P, Riboux G, Gordillo J. 2020. Inclined impact of drops. J. Fluid Mech. 897:A12
    [Google Scholar]
  31. Gatignol CGL. 1983. The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Mécan. Théor. Appl. 1:143–60
    [Google Scholar]
  32. George CW, Johnson GM. 1990. Developing air tanker performance guidelines Tech. Rep. INT-GTR-268 US Forest Serv. Intermt. Res. Stn. Ogden, UT:
    [Google Scholar]
  33. Gilet T, Bourouiba L. 2015. Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12:20141092
    [Google Scholar]
  34. Ginebra-Solanellas RM, Holder CD, Lauderbaugh LK, Webb R. 2020. The influence of changes in leaf inclination angle and leaf traits during the rainfall interception process. Agric. Forest Meteorol. 285–86:107924
    [Google Scholar]
  35. Gordillo JM, Riboux G, Quintero ES. 2019. A theory on the spreading of impacting droplets. J. Fluid Mech. 866:298–315
    [Google Scholar]
  36. Hinze JO. 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1:3289–95
    [Google Scholar]
  37. Holder CD. 2013. Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology 6:483–90
    [Google Scholar]
  38. Ito T, Kato H, Goda Y, Tagawa S, Negishi E. 2010. Water-dropping aerodynamics for fire-fighting amphibian. Paper presented at the 27th International Council of the Aeronautical Sciences Nice, France: Sept. 19
    [Google Scholar]
  39. Josserand C, Thoroddsen ST. 2009. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 8:365–91
    [Google Scholar]
  40. Kataoka I, Ishii M, Mishima K. 1983. Generation and size distribution of droplet in annular two-phase flow. Trans. ASME J. Fluids Eng. 105:230–38
    [Google Scholar]
  41. Keshavarz B, Houze EC, Koerner MR, Moore JR, Cotts PM et al. 2015. Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER). J. Non-Newton. Fluid Mech. 222:171–89
    [Google Scholar]
  42. Keshavarz B, Houze EC, Moore JR, Koerner MR, McKinley MC. 2016. Ligament mediated fragmentation of viscoelastic liquids. Phys. Rev. Lett. 117:154502
    [Google Scholar]
  43. Klamerus-Iwan A, Łagan S, Zarek M, Słowik-Opoka E, Wojtan B. 2020. Variability of leaf wetting and water storage capacity of branches of 12 deciduous tree species. Forests 11:1158
    [Google Scholar]
  44. Koga JO. 1981. Direct production of droplets from breaking wind-waves: its observation by a multi-colored overlapping exposure photographing technique. Tellus 33:552–63
    [Google Scholar]
  45. Lake A, Marchant A. 1983. The use of dimensional analysis in a study of drop retention on barley. Pestic. Sci. 14:638–44
    [Google Scholar]
  46. Lebanoff A, Dickerson A. 2020. Drop impact onto pine needle fibers with non-circular cross section. Phys. Fluids 32:092113
    [Google Scholar]
  47. Lee J, Laan N, De Bruin K, Skantzaris G, Shahidzadeh H et al. 2016. Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786:R4
    [Google Scholar]
  48. Legendre D, Becker B, Alméras E, Chassagne A. 2013. Air tanker drop patterns. Int. J. Wildland Fire 23:2272–80
    [Google Scholar]
  49. Le Grand N, Daerr A, Limat L 2005. Shape and motion of drops sliding down an inclined plate. J. Fluid Mech. 541:293–315
    [Google Scholar]
  50. Lewis DJ. 2022. The instability of liquid surfaces when accelerated in a direction perpendicular to their plane. Proc. R. Soc. A 202:81–96
    [Google Scholar]
  51. Lhuissier H, Villermaux E. 2009. Bursting bubbles. Phys. Fluids 21:091111
    [Google Scholar]
  52. Lhuissier H, Villermaux E. 2012. Bursting bubble aerosols. J. Fluid Mech. 696:5–39
    [Google Scholar]
  53. Liang G, Mudawar I. 2017. Review of drop impact on heated walls. Int. J. Heat Mass Transf. 106:103–26
    [Google Scholar]
  54. Lohse D. 2022. Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54:349–82
    [Google Scholar]
  55. Lubarsky E, Shcherbik D, Bibik A, Gopala Y, Zinn B. 2012. Fuel jet in cross flow—experimental study of spray characteristics. Adv. Fluid Dyn. 4:59–80
    [Google Scholar]
  56. Maglio M, Legendre D. 2014. Numerical simulation of sliding drops on an inclined solid surface. Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment47–69. Cham, Switz: Springer Int.
    [Google Scholar]
  57. Makhnenko I, Alonzi ER, Fredericks SA, Colby CM, Dutcher CS. 2021. A review of liquid sheet breakup: perspectives from agricultural sprays. J. Aerosol Sci. 157:105805
    [Google Scholar]
  58. Mao T, Kuhn DCS, Tran H. 1997. Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43:2169–79
    [Google Scholar]
  59. Marmanis H, Thoroddsen E. 1996. Scaling of the fingering pattern of an impacting drop. Phys. Fluids 8:1344–46
    [Google Scholar]
  60. Marmottant P, Villermaux E. 2009. On spray formation. J. Fluid Mech. 498:73–38
    [Google Scholar]
  61. Mashayek A, Ashgriz N. 2011. Atomization of a liquid jet in a crossflow. Handbook of Atomization and Sprays N Ashgriz 657–83. New York: Springer
    [Google Scholar]
  62. Maxey MR, Riley JJ. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:883–89
    [Google Scholar]
  63. Mueller JA, Veron F. 2009. A sea state dependent spume generation function. J. Phys. Oceanogr. 39:2363–72
    [Google Scholar]
  64. Mundo C, Sommerfeld M, Tropea C. 1995. Characteristics of the turbulent energy dissipation rate in a cylinder wake. Int. J. Multiph. Flow 21:151–73
    [Google Scholar]
  65. No SY. 2015. A review on empirical correlations for jet/spray trajectory of liquid jet in uniform cross flow. J. Spray Combust. Dyn. 7:283–314
    [Google Scholar]
  66. Pappa AA, Tzamtzis NE, Statheropoulos MK, Liodakis SE, Parissakis GK. 1995. A comparative study of the effects of fire retardants on the pyrolysis of cellulose and Pinus halepensis pine-needles. J. Anal. Appl. Pyrolys. 31:85–100
    [Google Scholar]
  67. Pepper RE, Courbin L, Stone HA. 2008. Splashing on elastic membranes: The importance of early-time dynamics. Phys. Fluids 20:082103
    [Google Scholar]
  68. Pilch M, Erdman C. 1987. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13:6741–57
    [Google Scholar]
  69. Picknett RG, Bexon R. 1977. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61:2336–50
    [Google Scholar]
  70. Quéré D. 2013. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45:19–215
    [Google Scholar]
  71. Qureshi S, Altman A. 2018. Studying fluid breakup and dispersion to predict aerial firefighting ground drop patterns Paper presented at the 2018 AIAA Aerospace Sciences Meeting Kissimee, FL: Jan. 8
    [Google Scholar]
  72. Rayleigh L. 1883. Investigations of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1-14:170–77
    [Google Scholar]
  73. Rouaix C, Stoukov A, Bury Y, Joubert D, Legendre D. 2023. Liquid jet breakup in gaseous crossflow injected through a large diameter nozzle. Int. J. Multiph. Flow 163:104419
    [Google Scholar]
  74. Renksizbulut M, Yuen MC. 1983. Experimental study of droplet evaporation with variable properties and internal circulation at intermediate Reynolds numbers. Int. J. Multiph. Flow 14:189–202
    [Google Scholar]
  75. Rimbert N. 2003. Contribution à l'étude de la pulvérisation et de la dispersion dans l'air de fluides newtoniens et non-newtoniens. Application au largage aérien d'eau et de mélanges retardants PhD Thesis Inst. Natl. Polytech. Lorraine Nancy, France:
    [Google Scholar]
  76. Rimbert N, Castanet G. 2011. Crossover between Rayleigh-Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime. Phys. Rev. E 84:016318
    [Google Scholar]
  77. Rui N. 2024. Deformation and breakup of bubbles and drops in turbulence. Annu. Rev. Fluid Mech. 56:31947
    [Google Scholar]
  78. Satoh K, Kuwahara K, Yang KT. 2000. Experimental and numerical simulations of flow patterns of dropping water from fire-fighting helicopters. Proceedings of the ASME 2000 International Mechanical Engineering Congress and Exposition, Vol. 5 Heat Transfer57–64. Orlando, FL: ASME
    [Google Scholar]
  79. Shaw RA. 2003. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35:183–227
    [Google Scholar]
  80. Snoeijer JH, Brunet P, Eggers J. 2009. Maximum size of drops levitated by an air cushion. Phys. Rev. E 79:036307
    [Google Scholar]
  81. Steiner M, Smith JA, Uijlenhoet R. 2004. A microphysical interpretation of the radar reflectivity-rain rate relationship. J. Atmos. Sci. 61:1114–31
    [Google Scholar]
  82. Suter A. 2000. Drop testing airtankers: a discussion of the cup-and-grid method Tech. Rep. 0057-2868-MTDC Technol. Dev. Cent., US Forest Serv. Missoula, MT:
    [Google Scholar]
  83. Tanner LH. 1979. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12:1473
    [Google Scholar]
  84. Taylor P. 2011. The wetting of leaf surfaces. Curr. Opin. Colloid Interface Sci. 16:326–34
    [Google Scholar]
  85. Testik FY, Barros AP. 2007. Towards elucidating the microstructure of warm rainfall: a survey. Rev. Geophys. 45:RG2003
    [Google Scholar]
  86. Tomé MJC. 2004. Modelação da nuvem de retardante químico: optimização no combate aos fogos florestais PhD Thesis Univ. Aveiro, Port.:
    [Google Scholar]
  87. Tran T, Staat HJJ, Prosperetti A, Sun C, Lohse D. 2012. Drop impact on superheated surfaces. Phys. Rev. Lett. 108:036101
    [Google Scholar]
  88. Troitskaya Y, Kandaurov A, Ermakova O, Kozlov D, Sergeev D, Zilitinkevich S. 2018. The “bag breakup” spume droplet generation mechanism at high winds. Part I: spray generation function. Geophys. Res. Lett. 48:2167–88
    [Google Scholar]
  89. Vallon R, Abid A, Anselmet F. 2021. Multimodal distributions of agricultural-like sprays: a statistical analysis of drop population from a pressure-atomized spray. Phys. Rev. Fluids 6:2023604
    [Google Scholar]
  90. Veron F. 2015. Ocean spray. Annu. Rev. Fluid Mech. 47:507–31
    [Google Scholar]
  91. Veron F, Hopkins C, Harrison EL, Mueller JA. 2012. Sea spray spume droplet production in high wind speeds. J. Phys. Oceanogr. 39:L16602
    [Google Scholar]
  92. Villermaux E. 2007. Fragmentation. Annu. Rev. Fluid Mech. 39:419–27
    [Google Scholar]
  93. Villermaux E. 2020. Fragmentation. J. Fluid Mech. 898:P1
    [Google Scholar]
  94. Villermaux E, Bossa B. 2009. Single drop fragmentation determines size distribution of raindrops. Nat. Phys. 5:697–702
    [Google Scholar]
  95. Villermaux E, Bossa B. 2010. Size distribution of raindrops. Nat. Phys 6:232
    [Google Scholar]
  96. Wakata Y, Zhu N, Chen X, Lyu S, Lohse D et al. 2023. How roughness and thermal properties of a solid substrate determine the Leidenfrost temperature: experiments and a model. Phys. Rev. Fluids 8:L061601
    [Google Scholar]
  97. Wildeman S, Visser CW, Sun C, Lohse D. 2016. On the spreading of impacting drops. J. Fluid Mech. 805:636–55
    [Google Scholar]
  98. Wilson JE, Grib SW, Ahmad AD, Renfro MW, Adams SA, Salaimeh AA. 2018. Study of near-cup droplet breakup of an automotive electrostatic rotary bell (ESRB) atomizer using high-speed shadowgraph imaging. Coatings 8:5174
    [Google Scholar]
  99. Winkels K, Weijs J, Eddi A, Snoeijer JAS. 2012. Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85:055301
    [Google Scholar]
  100. Wu PK, Kirkendall KA, Fuller RP, Nejad AS. 1997. Breakup processes of liquid jets in subsonic crossflows. J. Propul. Power 13:164–73
    [Google Scholar]
  101. Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing, …. Annu. Rev. Fluid Mech. 38:159–92
    [Google Scholar]
  102. Zhao X, Zhou P, Yan X, Weng Y, Yang XL. 2018. Numerical simulation of the aerial drop of water for fixed-wing airtankers. Paper presented at the 31st Congress of the International Council of the Aeronautical Sciences Belo Horizonte, Brazil: Sept. 9
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-041642
Loading
/content/journals/10.1146/annurev-fluid-121021-041642
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error