1932

Abstract

The fluid dynamics of microswimmers has received attention from the fields of microbiology, microrobotics, and active matter. Microorganisms have evolved organelles termed cilia for propulsion through liquids. Each cilium periodically performs effective and recovery strokes, creating a metachronal wave as a whole and developing a propulsive force. One well-established mathematical model of ciliary swimming is the squirmer model, which focuses on surface squirming velocities. This model is also useful when studying active colloids and droplets. The squirmer model has been recently used to investigate the behaviors of microswimmers in complex environments, their collective dynamics, and the characteristics of active fluids. Efforts have also been made to broaden the range of applications beyond the assortment permitted by the squirmer model, which was established to specifically represent ciliary flow and incorporate biological features. The stress swimmer model imposes stresses above the cell body surface that enforce the no-slip condition. The ciliated swimmer model precisely reproduces the behaviors of each cilium that engages in mutual hydrodynamic interactions. Mathematical models have improved our understanding of various microbial phenomena, including cell–cell and cell–wall interactions and energetics. Here, I review recent advances in the hydrodynamics of ciliary swimming and then discuss future challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-042929
2024-01-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-042929.html?itemId=/content/journals/10.1146/annurev-fluid-121021-042929&mimeType=html&fmt=ahah

Literature Cited

  1. Alert R, Casademunt J, Joanny J-F. 2022. Active turbulence. Annu. Rev. Condens. Matter Phys. 13:14370
    [Google Scholar]
  2. Aragones JL, Yazdi S, Alexander-Katz A 2018. Diffusion of self-propelled particles in complex media. Phys. Rev. Fluids 3:083301
    [Google Scholar]
  3. Batchelor GK. 1970. The stress system in a suspension of force-free particles. J. Fluid Mech. 41:54570
    [Google Scholar]
  4. Bees MA. 2020. Advances in bioconvection. Annu. Rev. Fluid Mech. 52:44976
    [Google Scholar]
  5. Berg HC. 2004. E. coli in Motion New York: Springer-Verlag
    [Google Scholar]
  6. Blake JR. 1971. A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46:199208
    [Google Scholar]
  7. Böddeker TJ, Karpitschka S, Kreis CT, Magdelaine Q, Bäumchen O. 2020. Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors. J. R. Soc. Interface 17:20190580
    [Google Scholar]
  8. Brennen C, Winet H. 1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9:33998
    [Google Scholar]
  9. Brumley DR, Pedley TJ. 2019. Stability of arrays of bottom-heavy spherical squirmers. Phys. Rev. Fluids 4:053102
    [Google Scholar]
  10. Brumley DR, Polin M, Pedley TJ, Goldstein RE. 2012. Hydrodynamic synchronization and metachronal waves on the surface of the colonial alga Volvox carteri. Phys. Rev. Lett. 109:268102
    [Google Scholar]
  11. Brumley DR, Polin M, Pedley TJ, Goldstein RE. 2015. Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin. J. R. Soc. Interface 12:20141358
    [Google Scholar]
  12. Brumley DR, Wan KY, Polin M, Goldstein RE. 2014. Flagellar synchronization through direct hydrodynamic interactions. eLife 3:e02750
    [Google Scholar]
  13. Chamolly A, Ishikawa T, Lauga E. 2017. Active particles in periodic lattices. New J. Phys. 19:115001
    [Google Scholar]
  14. Choudhary A, Stark H. 2022. On the cross-streamline lift of microswimmers in viscoelastic flows. Soft Matter 18:4852
    [Google Scholar]
  15. Clopés J, Gompper G, Winkler RG. 2020. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Soft Matter 16:1067687
    [Google Scholar]
  16. Clopés J, Gompper G, Winkler RG. 2022. Alignment and propulsion of squirmer pusher–puller dumbbells. J. Chem. Phys. 156:194901
    [Google Scholar]
  17. Corato MD, D'Avino G 2017. Dynamics of a microorganism in a sheared viscoelastic liquid. Soft Matter 13:196211
    [Google Scholar]
  18. Darveniza C, Ishikawa T, Pedley TJ, Brumley DR. 2022. Pairwise scattering and bound states of spherical microorganisms. Phys. Rev. Fluids 7:013104
    [Google Scholar]
  19. Datt C, Elfring GJ. 2019. Active particles in viscosity gradients. Phys. Rev. Lett. 123:158006
    [Google Scholar]
  20. Datt C, Zhu L, Elfring GJ, Pak OS. 2015. Squirming through shear-thinning fluids. J. Fluid Mech. 784:R1
    [Google Scholar]
  21. Delfau J-B, Molina J, Sano M. 2016. Collective behavior of strongly confined suspensions of squirmers. Europhys. Lett. 114:24001
    [Google Scholar]
  22. Dey R, Buness CM, Hokmabad BV, Jin C, Maass CC. 2022. Oscillatory rheotaxis of artificial swimmers in microchannels. Nat. Commun. 13:2952
    [Google Scholar]
  23. Dhar A, Burada PS, Sekhar GPR. 2020. Hydrodynamics of active particles confined in a periodically tapered channel. Phys. Fluids 32:102005
    [Google Scholar]
  24. Doostmohammadi A, Stocker R, Ardekani AM. 2012. Low-Reynolds-number swimming at pycnoclines. PNAS 109:385661
    [Google Scholar]
  25. Drescher K, Goldstein RE, Michel N, Polin M, Tuval I. 2010a. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105:168101
    [Google Scholar]
  26. Drescher K, Goldstein RE, Tuval I. 2010b. Fidelity of adaptive phototaxis. PNAS 107:1117176
    [Google Scholar]
  27. Drescher K, Leptos K, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE. 2009. Dancing Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102:168101
    [Google Scholar]
  28. Durham WM, Kessler JO, Stocker R. 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323:106770
    [Google Scholar]
  29. Echigoya S, Sato K, Kishida O, Nakagaki T, Nishigami Y. 2022. Switching of behavioral modes and their modulation by a geometrical cue in the ciliate Stentor coeruleus. Front. Cell Dev. Biol. 10:1021469
    [Google Scholar]
  30. Elgeti J, Gompper G. 2013. Emergence of metachronal waves in cilia arrays. PNAS 110:447075
    [Google Scholar]
  31. Evans AA, Ishikawa T, Yamaguchi T, Lauga E. 2011. Orientational order in concentrated suspensions of spherical microswimmers. Phys. Fluids 23:111702
    [Google Scholar]
  32. Farutin A, Rafaï S, Dysthe DK, Duperray A, Peyla P, Misbah C. 2013. Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations. Phys. Rev. Lett. 111:228102
    [Google Scholar]
  33. Ferracci J, Ueno H, Numayama-Tsuruta K, Imai Y, Yamaguchi T, Ishikawa T. 2013. Entrapment of ciliates at the water-air interface. PLOS ONE 8:e75238
    [Google Scholar]
  34. Fisch C, Dupuis-Williams P. 2011. Ultrastructure of cilia and flagella – back to the future!. Biol. Cell 103:24970
    [Google Scholar]
  35. Friedrich BM, Julicher F. 2012. Flagellar synchronization independent of hydrodynamic interactions. Phys. Rev. Lett. 109:138102
    [Google Scholar]
  36. Ghose S, Adhikari R. 2014. Irreducible representations of oscillatory and swirling flows in active soft matter. Phys. Rev. Lett. 112:118102
    [Google Scholar]
  37. Gidituri H, Shen Z, Würger A, Lintuvuori JS. 2022. Reorientation dynamics of microswimmers at fluid-fluid interfaces. Phys. Rev. Fluids 7:L042001
    [Google Scholar]
  38. Gilpin W, Bull MS, Prakash M. 2020. The multiscale physics of cilia and flagella. Nat. Rev. Phys. 2:7488
    [Google Scholar]
  39. Goldstein RE. 2015. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47:34375
    [Google Scholar]
  40. Guasto JS, Rusconi R, Stocker R. 2012. Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44:373400
    [Google Scholar]
  41. Hamel A, Fisch C, Combettes L, Dupuis-Williams P, Baroud CN. 2011. Transitions between three swimming gaits in Paramecium escape. PNAS 108:729095
    [Google Scholar]
  42. Hausmann K, Allen RD. 2010. Electron microscopy of Paramecium (Ciliata). Methods Cell Biol 96:14373
    [Google Scholar]
  43. Herminghaus S, Maass CC, Kruger C, Thutupalli S, Goehring L, Bahr C. 2014. Interfacial mechanisms in active emulsions. Soft Matter 10:700822
    [Google Scholar]
  44. Hill NA, Pedley TJ. 2005. Bioconvection. Fluid Dyn. Res. 37:120
    [Google Scholar]
  45. Huang Z, Omori T, Ishikawa T. 2020. Active droplet driven by a collective motion of enclosed microswimmers. Phys. Rev. E 102:022603
    [Google Scholar]
  46. Ingraham JL, Ingraham CA. 2003. Introduction to Microbiology: A Case-History Approach Pacific Grove, CA: Brooks/Cole
  47. Ishikawa T. 2009. Suspension biomechanics of swimming microbes. J. R. Soc. Interface 6:81534
    [Google Scholar]
  48. Ishikawa T. 2012. Vertical dispersion of model microorganisms in horizontal shear flow. J. Fluid Mech. 705:98119
    [Google Scholar]
  49. Ishikawa T. 2019a. Stability of a dumbbell micro-swimmer. Micromachines 10:33
    [Google Scholar]
  50. Ishikawa T. 2019b. Swimming of ciliates under geometric constraints. J. Appl. Phys. 125:200901
    [Google Scholar]
  51. Ishikawa T. 2022. Lubrication theory and boundary element hybrid method for calculating hydrodynamic forces between particles in near contact. J. Comp. Phys. 452:110913
    [Google Scholar]
  52. Ishikawa T, Brumley DR, Pedley TJ. 2021a. Rheology of a concentrated suspension of spherical squirmers: monolayer in simple shear flow. J. Fluid Mech. 914:A26
    [Google Scholar]
  53. Ishikawa T, Dang TN, Lauga E. 2022. Instability of a jet of active fluid. Phys. Rev. Fluids 7:093102
    [Google Scholar]
  54. Ishikawa T, Hota M. 2006. Interaction of two swimming Paramecia. J. Exp. Biol. 209:445263
    [Google Scholar]
  55. Ishikawa T, Kikuchi K. 2018. Biomechanics of Tetrahymena escaping from a dead end. Proc. R. Soc. B 285:20172368
    [Google Scholar]
  56. Ishikawa T, Locsei JT, Pedley TJ. 2008. Development of coherent structures in concentrated suspensions of swimming model micro-organisms. J. Fluid Mech. 615:40131
    [Google Scholar]
  57. Ishikawa T, Locsei JT, Pedley TJ. 2010. Fluid particle diffusion in a semidilute suspension of model micro-organisms. Phys. Rev. E 82:021408
    [Google Scholar]
  58. Ishikawa T, Pedley TJ. 2007a. Diffusion of swimming model micro-organisms in a semi-dilute suspension. J. Fluid Mech. 588:43762
    [Google Scholar]
  59. Ishikawa T, Pedley TJ. 2007b. The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588:399435
    [Google Scholar]
  60. Ishikawa T, Pedley TJ. 2008. Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100:088103
    [Google Scholar]
  61. Ishikawa T, Pedley TJ, Drescher K, Goldstein RE. 2020. Stability of dancing Volvox. J. Fluid Mech. 903:A11
    [Google Scholar]
  62. Ishikawa T, Simmonds MP, Pedley TJ. 2006. Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568:11960
    [Google Scholar]
  63. Ishikawa T, Tanaka T, Imai Y, Omori T, Matsunaga D. 2016. Deformation of a micro torque swimmer. Proc. R. Soc. A 472:20150604
    [Google Scholar]
  64. Ishikawa T, Ueno H, Omori T, Kikuchi K. 2021b. Cilia and centrosomes: ultrastructural and mechanical perspectives. Semin. Cell Dev. Biol. 110:6169
    [Google Scholar]
  65. Ishimoto K. 2017. Guidance of microswimmers by wall and flow: thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions. Phys. Rev. E 96:043103
    [Google Scholar]
  66. Ishimoto K, Gadêlha H, Gaffney EA, Smith DJ, Kirkman-Brown J. 2017. Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118:124501
    [Google Scholar]
  67. Ishimoto K, Gaffney EA. 2013. Squirmer dynamics near a boundary. Phys. Rev. E 88:062702
    [Google Scholar]
  68. Ito H, Omori T, Ishikawa T. 2019. Swimming mediated by ciliary beating: comparison with a squirmer model. J. Fluid Mech. 874:77496
    [Google Scholar]
  69. Jabbarzadeh M, Fu HC. 2018. Viscous constraints on microorganism approach and interaction. J. Fluid Mech. 851:71538
    [Google Scholar]
  70. Jahn TL, Votta JJ. 1972. Locomotion of protozoa. Annu. Rev. Fluid Mech. 4:93116
    [Google Scholar]
  71. Jibuti L, Qi L, Misbah C, Zimmermann W, Rafai S, Peyla P. 2014. Self-focusing and jet instability of a microswimmer suspension. Phys. Rev. E 90:063019
    [Google Scholar]
  72. Kage A, Omori T, Kikuchi K, Ishikawa T. 2020. The shape effect of flagella is more important than bottom-heaviness on passive gravitactic orientation in Chlamydomonas reinhardtii. J. Exp. Biol. 223:jeb205989
    [Google Scholar]
  73. Kantsler V, Dunkel J, Blayney M, Goldstein RE. 2014. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3:e02403
    [Google Scholar]
  74. Keller SR, Wu TY. 1977. A porous prolate-spheroidal model for ciliated micro-organisms. J. Fluid Mech. 80:25978
    [Google Scholar]
  75. Keller SR, Wu TY, Brennen C. 1975. A traction-layer model for ciliary propulsion. Swimming and Flying in Nature TY Wu, C Brennen, CJ Brokaw 25372. New York: Plenum Press
    [Google Scholar]
  76. Kessler JO. 1986. Individual and collective dynamics of swimming cells. J. Fluid Mech. 173:191205
    [Google Scholar]
  77. Khan S, Scholey JM. 2018. Assembly, functions and evolution of archaella, flagella and cilia. Curr. Biol. 28:R27892
    [Google Scholar]
  78. Kim S, Karrila SJ. 1991. Microhydrodynamics: Principles and Selected Applications Boston: Butterworth Heinemann
  79. Kirk DL. 1998. Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  80. Koch DL, Subramanian G. 2011. Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43:63759
    [Google Scholar]
  81. Kogure Y, Omori T, Ishikawa T. 2023. Flow-induced diffusion in a packed lattice of squirmers. J. Fluid Mech. 971:A17
    [Google Scholar]
  82. Kree R, Burada PS, Zippelius A. 2017. From active stresses and forces to self-propulsion of droplets. J. Fluid Mech. 821:595623
    [Google Scholar]
  83. Kree R, Rückert L, Zippelius A. 2021. Dynamics of a droplet driven by an internal active device. Phys. Rev. Fluids 6:034201
    [Google Scholar]
  84. Kunita I, Yamaguchi T, Tero A, Akiyama M, Kuroda S, Nakagaki T. 2016. A ciliate memorizes the geometry of a swimming arena. J. R. Soc. Interface 13:20160155
    [Google Scholar]
  85. Kyoya K, Matsunaga D, Imai Y, Omori T, Ishikawa T. 2015. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers. Phys. Rev. E 92:063027
    [Google Scholar]
  86. Lauga E. 2016. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48:10530
    [Google Scholar]
  87. Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601
    [Google Scholar]
  88. Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE. 2009. Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103:198103
    [Google Scholar]
  89. Li G, Ardekani AM. 2014. Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90:013010
    [Google Scholar]
  90. Li G, Ostace A, Ardekani AM. 2016. Hydrodynamic interaction of swimming organisms in an inertial regime. Phys. Rev. E 94:053104
    [Google Scholar]
  91. Lighthill MJ. 1952. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5:10918
    [Google Scholar]
  92. Lintuvuori JS, Würger A, Stratford K. 2017. Hydrodynamics defines the stable swimming direction of spherical squirmers in a nematic liquid crystal. Phys. Rev. Lett. 119:068001
    [Google Scholar]
  93. Maleprade H, Moisy F, Ishikawa T, Goldstein RE. 2020. Motility and phototaxis of Gonium, the simplest differentiated colonial alga. Phys. Rev. E 101:022416
    [Google Scholar]
  94. Manabe J, Omori T, Ishikawa T. 2020. Shape matters: entrapment of a model ciliate at interfaces. J. Fluid Mech. 892:A15
    [Google Scholar]
  95. Marcos Fu HC, Powers TR, Stocker R 2012. Bacterial rheotaxis. PNAS 109:478085
    [Google Scholar]
  96. Matsui H, Omori T, Ishikawa T. 2020a. Hydrodynamic interaction of two deformable torque swimmers. J. Fluid Mech. 894:A9
    [Google Scholar]
  97. Matsui H, Omori T, Ishikawa T. 2020b. Rheology of a dilute suspension of deformable microswimmers. Phys. Fluids 32:071902
    [Google Scholar]
  98. Milana E, Zhang R, Vetrano MR, Peerlinck S, de Volder M et al. 2020. Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion. Sci. Adv. 6:eabd2508
    [Google Scholar]
  99. Modica KJ, Xi Y, Takatori SC. 2022. Porous media microstructure determines the diffusion of active matter: experiments and simulations. Front. Phys. 10:869175
    [Google Scholar]
  100. Moran JL, Posner JD. 2017. Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49:51140
    [Google Scholar]
  101. More RV, Ardekani AM. 2021. Hydrodynamic interactions between swimming microorganisms in a linearly density stratified fluid. Phys. Rev. E 103:013109
    [Google Scholar]
  102. Moreau C, Ishimoto K. 2021. Driving a microswimmer with wall-induced flow. Micromachines 12:1025
    [Google Scholar]
  103. Morita T, Omori T, Ishikawa T. 2018. Biaxial fluid oscillations can propel a micro-capsule swimmer in an arbitrary direction. Phys. Rev. E 98:063102
    [Google Scholar]
  104. Nagai K, Sumino Y, Kitahata H, Yoshikawa K. 2005. Mode selection in the spontaneous motion of an alcohol droplet. Phys. Rev. E 71:065301(R)
    [Google Scholar]
  105. Naitoh Y, Eckert R. 1969. Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164:96365
    [Google Scholar]
  106. Narematsu N, Quek R, Chiam K-H, Iwadate Y. 2015. Ciliary metachronal wave propagation on the compliant surface of Paramecium cells. Cytoskeleton 72:63346
    [Google Scholar]
  107. Nganguia H, Pietrzyk K, Pak OS. 2017. Swimming efficiency in a shear-thinning fluid. Phys. Rev. E 96:062606
    [Google Scholar]
  108. Nishigami Y, Ohmura T, Taniguchi A, Nonaka S, Manabe J et al. 2018. Influence of cellular shape on sliding behavior of ciliates. Commun. Integr. Biol. 11:e1506666
    [Google Scholar]
  109. Ohmura T, Nishigami Y, Taniguchi A, Nonaka S, Ishikawa T, Ichikawa M. 2021. Near-wall rheotaxis of the ciliate Tetrahymena induced by the kinesthetic sensing of cilia. Sci. Adv. 7:eabi5878
    [Google Scholar]
  110. Ohmura T, Nishigami Y, Taniguchi A, Nonaka S, Manabe J et al. 2018. Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates. PNAS 115:323136
    [Google Scholar]
  111. Okuyama K, Nishigami Y, Ohmura T, Ichikawa M. 2021. Accumulation of Tetrahymena pyriformis on interfaces. Micromachines 12:1339
    [Google Scholar]
  112. Omori T, Ito H, Ishikawa T. 2020. Swimming microorganisms acquire optimal efficiency with multiple cilia. PNAS 117:302017
    [Google Scholar]
  113. Omori T, Kikuchi K, Schmitz M, Pavlovic M, Chuang C-H, Ishikawa T. 2022. Rheotaxis and migration of an unsteady microswimmer. J. Fluid Mech. 930:A30
    [Google Scholar]
  114. Ortlieb L, Rafaï S, Peyla P, Wagner C, John T. 2019. Statistics of colloidal suspensions stirred by microswimmers. Phys. Rev. Lett. 122:148101
    [Google Scholar]
  115. Osterman N, Vilfan A. 2011. Finding the ciliary beating pattern with optimal efficiency. PNAS 108:1572732
    [Google Scholar]
  116. Ouillon R, Houghton IA, Dabiri JO, Meiburg E. 2020. Active swimmers interacting with stratified fluids during collective vertical migration. J. Fluid Mech. 902:A23
    [Google Scholar]
  117. Ouyang Z, Lin J. 2021. The hydrodynamics of an inertial squirmer rod. Phys. Fluids 33:073302
    [Google Scholar]
  118. Ouyang Z, Lin J, Phan-Thien N. 2022a. Swimming of an inertial squirmer array in a Newtonian fluid. Phys. Fluids 34:053303
    [Google Scholar]
  119. Ouyang Z, Lin Z, Yu Z, Lin J, Phan-Thien N. 2022b. Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube. J. Fluid Mech. 939:A32
    [Google Scholar]
  120. Oyama N, Molina JJ, Yamamoto R. 2016. Purely hydrodynamic origin for swarming of swimming particles. Phys. Rev. E 93:043114
    [Google Scholar]
  121. Papavassiliou D, Alexander GP. 2017. Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 813:61846
    [Google Scholar]
  122. Pedley TJ. 2016. Spherical squirmers: models for swimming micro-organisms. IMA J. Appl. Math. 81:488521
    [Google Scholar]
  123. Pedley TJ, Brumley DR, Goldstein RE. 2016. Squirmers with swirl: a model for Volvox swimming. J. Fluid Mech. 798:16586
    [Google Scholar]
  124. Pedley TJ, Kessler JO. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24:31358
    [Google Scholar]
  125. Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A et al. 2015. The mechanical world of bacteria. Cell 161:98897
    [Google Scholar]
  126. Poddar A, Bandopadhyay A, Chakraborty S. 2020. Near-wall hydrodynamic slip triggers swimming state transition of micro-organisms. J. Fluid Mech. 894:A11
    [Google Scholar]
  127. Potomkin M, Gyrya V, Aranson I, Berlyand L. 2013. Collision of microswimmers in a viscous fluid. Phys. Rev. E 87:053005
    [Google Scholar]
  128. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:311
    [Google Scholar]
  129. Qi K, Annepu H, Gompper G, Winkler RG. 2020a. Rheotaxis of spheroidal squirmers in microchannel flow: interplay of shape, hydrodynamics, active stress, and thermal fluctuations. Phys. Rev. Res. 2:033275
    [Google Scholar]
  130. Qi K, Westphal E, Gompper G, Winkler RG. 2020b. Enhanced rotational motion of spherical squirmer in polymer solutions. Phys. Rev. Lett. 124:068001
    [Google Scholar]
  131. Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5:5119
    [Google Scholar]
  132. Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. 2019. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17:28494
    [Google Scholar]
  133. Roberts AM, Deacon FM. 2002. Gravitaxis in motile micro-organisms: the role of fore-aft body asymmetry. J. Fluid Mech. 452:40523
    [Google Scholar]
  134. Rode S, Elgeti J, Gompper G. 2021. Multi-ciliated microswimmers–metachronal coordination and helical swimming. Eur. Phys. J. E 44:76
    [Google Scholar]
  135. Rühlea F, Stark H. 2020. Emergent collective dynamics of bottom-heavy squirmers under gravity. Eur. Phys. J. E 43:26
    [Google Scholar]
  136. Saintillan D. 2018. Rheology of active fluids. Annu. Rev. Fluid Mech. 50:56392
    [Google Scholar]
  137. Schaar K, Zöttl A, Stark H. 2015. Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise. Phys. Rev. Lett. 115:038101
    [Google Scholar]
  138. Seemann R, Fleury J-B, Maass CC. 2016. Self-propelled droplets. Eur. Phys. J. 225:222740
    [Google Scholar]
  139. Shaik VA, Ardekani AM. 2017. Motion of a model swimmer near a weakly deforming interface. J. Fluid Mech. 824:4273
    [Google Scholar]
  140. Shaik VA, Ardekani AM. 2021. Squirming in density-stratified fluids. Phys. Fluids 33:101903
    [Google Scholar]
  141. Shaik VA, Elfring GJ. 2021. Hydrodynamics of active particles in viscosity gradients. Phys. Rev. Fluids 6:103103
    [Google Scholar]
  142. Shen Z, Lintuvuori JS. 2019. Gravity induced formation of spinners and polar order of spherical microswimmers on a surface. Phys. Rev. Fluids 4:123101
    [Google Scholar]
  143. Shikata T, Matsunaga S, Nishide H, Sakamoto S, Onistuka G, Yamaguchi M. 2015. Diurnal vertical migration rhythms and their photoresponse in four phytoflagellates causing harmful algal blooms. Limnol. Oceanogr. 60:125164
    [Google Scholar]
  144. Short MB, Solari CA, Ganguly S, Powers TR, Kessler JO, Goldstein RE. 2006. Flows driven by flagella of multicellular organisms enhance long-range molecular transport. PNAS 103:831519
    [Google Scholar]
  145. Simmchen J, Katuri J, Uspal WE, Popescu1 MN, Tasinkevych M, Sanchez S. 2016. Topographical pathways guide chemical microswimmers. Nat. Commun. 7:10598
    [Google Scholar]
  146. Sleigh MA. 1962. The Biology of Cilia and Flagella Oxford, UK: Pergamon Press
  147. Soni H, Pelcovits RA, Powers TR. 2018. Enhancement of microorganism swimming speed in active matter. Phys. Rev. Lett. 121:178002
    [Google Scholar]
  148. Spagnolie SE, Lauga E. 2012. Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700:10547
    [Google Scholar]
  149. Tarama M. 2017. Dynamics of deformable active particles under external flow field. J. Phys. Soc. Jpn. 86:101011
    [Google Scholar]
  150. Theers M, Westphal E, Gompper G, Winkler RG. 2016. Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matter 12:737285
    [Google Scholar]
  151. Theers M, Westphal E, Winkler RG, Gompper G. 2018. Clustering of microswimmers: interplay of shape and hydrodynamics. Soft Matter 14:8590603
    [Google Scholar]
  152. Thiffeault J-L. 2015. Distribution of particle displacements due to swimming microorganisms. Phys. Rev. E 92:023023
    [Google Scholar]
  153. Thutupalli S, Seemann R, Herminghaus S. 2011. Swarming behavior of simple model squirmers. New J. Phys. 13:073021
    [Google Scholar]
  154. Uspal WE, Popescu MN, Dietrich S, Tasinkevych M. 2015. Rheotaxis of spherical active particles near a planar wall. Soft Matter 11:661332
    [Google Scholar]
  155. van Gogh B, Demir E, Palaniappan D, Pak OS. 2022. The effect of particle geometry on squirming through a shear-thinning fluid. J. Fluid Mech. 938:A3
    [Google Scholar]
  156. Walker BJ, Ishimoto K, Moreau C, Gaffney EA, Dalwadi MP. 2022. Emergent rheotaxis of shape-changing swimmers in Poiseuille flow. J. Fluid Mech. 944:R2
    [Google Scholar]
  157. Wan KY, Goldstein RE. 2016. Coordinated beating of algal flagella is mediated by basal coupling. PNAS 113:E278493
    [Google Scholar]
  158. Wang L, Meng Z, Chen Y, Zheng Y. 2021. Engineering magnetic micro/nanorobots for versatile biomedical applications. Adv. Intell. Syst. 3:2000267
    [Google Scholar]
  159. Wang S, Ardekani AM. 2015. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids. Sci. Rep. 5:17448
    [Google Scholar]
  160. Wang W, Duan W, Ahmed S, Sen A, Mallouk TE. 2015. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48:193846
    [Google Scholar]
  161. Wang W, Liu Q, Tanasijevic I, Reynolds MF, Cortese AJ et al. 2022. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605:68186
    [Google Scholar]
  162. Westwood TA, Keaveny EE. 2021. Coordinated motion of active filaments on spherical surfaces. Phys. Rev. Fluids 6:L121101
    [Google Scholar]
  163. Yoshinaga N, Liverpool TB. 2017. Hydrodynamic interactions in dense active suspensions: from polar order to dynamical clusters. Phys. Rev. E 96:020603(R)
    [Google Scholar]
  164. Yoshinaga N, Liverpool TB. 2018. From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers. Eur. Phys. J. E 41:76
    [Google Scholar]
  165. Zantop AW, Stark H. 2022. Emergent collective dynamics of pusher and puller squirmer rods: swarming, clustering, and turbulence. Soft Matter 18:617991
    [Google Scholar]
  166. Zhu L, Lauga E, Brandt L. 2012. Self-propulsion in viscoelastic fluids: pushers versus pullers. Phys. Fluids 24:051902
    [Google Scholar]
  167. Zöttl A, Stark H. 2012. Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108:218104
    [Google Scholar]
  168. Zöttl A, Stark H. 2014. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112:118101
    [Google Scholar]
  169. Zöttl A, Stark H. 2016. Emergent behavior in active colloids. J. Phys. Condens. Matter 28:253001
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-042929
Loading
/content/journals/10.1146/annurev-fluid-121021-042929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error