1932

Abstract

Rotating-disk flows were first considered by von Kármán in a seminal paper in 1921, where boundary layers in general were discussed and, in two of the nine sections, results for the laminar and turbulent boundary layers over a rotating disk were presented. It was not until in 1955 that flow visualization discovered the existence of stationary cross-flow vortices on the disk prior to the transition to turbulence. The rotating disk can be seen as a special case of rotating cones, and recent research has shown that broad cones behave similarly to disks, whereas sharp cones are susceptible to a different type of instability. Here, we provide a review of the major developments since von Kármán's work from 100 years ago, regarding instability, transition, and turbulence in the boundary layers, and we include some analysis not previously published.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-043651
2024-01-19
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121021-043651.html?itemId=/content/journals/10.1146/annurev-fluid-121021-043651&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Malki MAS, Fildes MR, Hussain Z. 2022. Competing roughness effects on the nonstationary crossflow instability of the boundary-layer over a rotating broad cone. Phys. Fluids 34:104103
    [Google Scholar]
  2. Appelquist E, Alfredsson PH, Schlatter P, Lingwood RJ. 2016a. On the global nonlinear instability of the rotating-disk flow over a finite domain. J. Fluid Mech. 803:332–55
    [Google Scholar]
  3. Appelquist E, Imayama S, Alfredsson PH, Schlatter P, Lingwood RJ. 2016b. Linear disturbances in the rotating-disk flow: a comparison between results from simulations, experiments and theory. Eur. J. Mech. B 55:170–81
    [Google Scholar]
  4. Appelquist E, Schlatter P, Alfredsson PH, Lingwood RJ. 2015. Global linear instability of the rotating-disk flow investigated through simulations. J. Fluid Mech. 765:612–31
    [Google Scholar]
  5. Appelquist E, Schlatter P, Alfredsson PH, Lingwood RJ. 2018a. Turbulence in the rotating-disk boundary layer investigated through direct numerical simulations. Eur. J. Mech. B 70:6–18
    [Google Scholar]
  6. Appelquist E, Schlatter P, Alfredsson PH, Lingwood RJ. 2018b. Transition to turbulence in the rotating-disk boundary-layer flow with stationary vortices. J. Fluid Mech. 836:43–71
    [Google Scholar]
  7. Benton ER. 1966. On the flow due to a rotating disk. J. Fluid Mech. 24:781–800
    [Google Scholar]
  8. Bödewadt UT. 1940. Die Drehströmung über festem Grund. Z. Angew. Math. Mech. 20:241–53
    [Google Scholar]
  9. Carpenter PW, Thomas PJ. 2007. Flow over compliant rotating disks. J. Eng. Math. 57:303–15
    [Google Scholar]
  10. Cham TS, Head MR. 1969. Turbulent boundary-layer flow on a rotating disk. J. Fluid Mech. 37:129–47
    [Google Scholar]
  11. Chiang C, Eaton JK. 1996. An experimental study of the effects of three-dimensionality on the near wall turbulence structures using flow visualization. Exp. Fluids 20:266–72
    [Google Scholar]
  12. Chicchiero C, Segalini A, Camarri S. 2021. Triple-deck analysis of the steady flow over a rotating disk with surface roughness. Phys. Rev. Fluids 6:014103
    [Google Scholar]
  13. Cooper AJ, Harris JH, Garrett SJ, Özkan M, Thomas PJ. 2015. The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer. Phys. Fluids 27:014107
    [Google Scholar]
  14. Corke TC, Knasiak KF. 1998. Stationary travelling cross-flow mode interactions on a rotating disk. J. Fluid Mech. 355:285–315
    [Google Scholar]
  15. Crespo del Arco E, Serre E, Bontoux P, Launder BE. 2005. Stability, transition and turbulence in rotating cavities. Instability of Flows M Rahman 141–95. Adv. Fluid Mech. 41 Southampton, UK: WIT Press
    [Google Scholar]
  16. Ekman VW. 1905. On the influence of the earth's rotation on ocean currents. Ark. Mat. Astron. Fys. 2:1–52
    [Google Scholar]
  17. Erian FF, Tong YH. 1971. Turbulent flow due to a rotating disk. Phys. Fluids 14:2588–91
    [Google Scholar]
  18. Garrett SJ, Cooper AJ, Harris JH, Özkan M, Segalini A, Thomas PJ. 2016. On the stability of von Kármán rotating-disk boundary layers with radial anisotropic surface roughness. Phys. Fluids 28:014104
    [Google Scholar]
  19. Garrett SJ, Hussain Z, Stephen SO. 2009. The cross-flow instability of the boundary layer on a rotating cone. J. Fluid Mech. 622:209–32
    [Google Scholar]
  20. Garrett SJ, Peake N. 2007. The absolute instability of the boundary layer on a rotating cone. Eur. J. Mech. B 26:344–53
    [Google Scholar]
  21. Gregory N, Stuart JT, Walker WS. 1955. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Philos. Trans. R. Soc. A 248:155–99
    [Google Scholar]
  22. Harris J, Thomas P, Garrett S. 2012. On the stability of flows over rough rotating disks. Paper presented at AIAA Fluid Dynamics Conference and Exhibit, 42nd, New Orleans, La., AIAA Pap. 2012-3075
    [Google Scholar]
  23. Healey JJ. 2010. Model for unstable global modes in the rotating-disk boundary layer. J. Fluid Mech. 663:148–59
    [Google Scholar]
  24. Huerre P, Monkewitz PA. 1990. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22:473–537
    [Google Scholar]
  25. Hussain Z, Garrett SJ, Stephen SO. 2014. The centrifugal instability of the boundary-layer flow over slender rotating cones. J. Fluid Mech. 755:274–93
    [Google Scholar]
  26. Imayama S, Alfredsson PH, Lingwood RJ. 2012. A new way to describe the transition characteristics of a rotating-disk boundary-layer flow. Phys. Fluids 24:031701
    [Google Scholar]
  27. Imayama S, Alfredsson PH, Lingwood RJ. 2013. An experimental study of edge effects on rotating-disk transition. J. Fluid Mech. 716:638–57
    [Google Scholar]
  28. Imayama S, Alfredsson PH, Lingwood RJ. 2014a. On the laminar–turbulent transition of the rotating-disk flow: the role of absolute instability. J. Fluid Mech. 745:132–63
    [Google Scholar]
  29. Imayama S, Lingwood RJ, Alfredsson PH. 2014b. The turbulent rotating-disk boundary layer. Eur. J. Mech. B 48:245–53
    [Google Scholar]
  30. Imayama S, Alfredsson PH, Lingwood RJ. 2016. Experimental study of rotating-disk boundary-layer flow with surface roughness. J. Fluid Mech. 786:5–28
    [Google Scholar]
  31. Itoh M, Hasegawa I. 1994. Turbulent boundary layer on a rotating disk in infinite quiescent fluid. JSME Int. J. B 37:449–56
    [Google Scholar]
  32. Jarre S, Le Gal P, Chauve MP 1996. Experimental study of rotating disk flow instability. II. Forced flow. Phys. Fluids 8:2985–94
    [Google Scholar]
  33. Kato K, Alfredsson PH, Lingwood RJ. 2019a. Boundary-layer transition over a rotating broad cone. Phys. Rev. Fluids 4:071902
    [Google Scholar]
  34. Kato K, Alfredsson PH, Lingwood RJ. 2023. Rotating disks and cones—a centennial of von Kármán's 1921 paper. J. Fluid Sci. Technol. 18:1JFST0003
    [Google Scholar]
  35. Kato K, Kawata T, Alfredsson PH, Lingwood RJ. 2019b. Investigation of the structures in the unstable rotating-cone boundary layer. Phys. Rev. Fluids 4:053903
    [Google Scholar]
  36. Kato K, Segalini A, Alfredsson PH, Lingwood RJ. 2021. Instability and transition in the boundary layer driven by a rotating slender cone. J. Fluid Mech. 915:R4
    [Google Scholar]
  37. Kato K, Segalini A, Alfredsson PH, Lingwood RJ. 2022. Instabilities and transition on a rotating cone—old problems and new challenges. IUTAM Laminar-Turbulent Transition: 9th IUTAM Symposium, London, UK, Sept. 2–6, 2019 S Sherwin, P Schmid, X Wu 203–13. Cham, Switz.: Springer
    [Google Scholar]
  38. Kirchner RP, Chen CF. 1970. Stability of time-dependent rotational Couette flow. Part 1. Experimental investigation.. J. Fluid Mech. 40:39–47
    [Google Scholar]
  39. Kobayashi R. 1994. Review: laminar-to-turbulent transition of three-dimensional boundary layers on rotating bodies. J. Fluid. Eng. 116:200–11
    [Google Scholar]
  40. Kobayashi R, Izumi H. 1983. Boundary-layer transition on a rotating cone in still fluid. J. Fluid Mech. 127:353–64
    [Google Scholar]
  41. Kobayashi R, Kohama Y, Takamadate C. 1980. Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mech. 35:71–82
    [Google Scholar]
  42. Kohama YP. 2000. Three-dimensional boundary layer transition study. Curr. Sci. India 79:800–7
    [Google Scholar]
  43. Lee K, Nishio Y, Izawa S, Fukunishi Y. 2018. The effect of downstream turbulent region on the spiral vortex structures of a rotating-disk flow. J. Fluid Mech. 266:175–207
    [Google Scholar]
  44. Lingwood RJ. 1995. Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299:17–33
    [Google Scholar]
  45. Lingwood RJ. 1996. An experimental study of absolute instability of the rotating-disk boundary-layer flow. J. Fluid Mech. 314:373–405
    [Google Scholar]
  46. Lingwood RJ. 1997. Absolute instability of the Ekman layer and related rotating flows. J. Fluid Mech. 331:405–28
    [Google Scholar]
  47. Lingwood RJ, Alfredsson PH. 2000. Experimental study of the stability of the Bödewadt layer. Laminar-Turbulent Transition: IUTAM Symposium, Sedona/AZ Sept. 13–17, 1999 HF Fasel, WS Saric 553–58. Berlin: Springer
    [Google Scholar]
  48. Lingwood RJ, Alfredsson PH. 2015. Instabilities of the von Kármán boundary layer. Appl. Mech. Rev. 67:030803
    [Google Scholar]
  49. Littell HS, Eaton JK. 1994. Turbulence characteristics of the boundary layer on a rotating disk. J. Fluid Mech. 266:175–207
    [Google Scholar]
  50. Malik MR, Wilkinson SP, Orszag SA. 1981. Instability and transition in rotating disk flow. AIAA J. 19:1131–38
    [Google Scholar]
  51. Martinand D, Serre E, Viaud B. 2023. Instabilities and routes to turbulence in rotating disc boundary layers and cavities. Philos. Trans. R. Soc. A 381:20220135
    [Google Scholar]
  52. Miklavčič M, Wang CY. 2004. The flow due to a rough rotating disk. Z. Angew. Math. Phys. 54:235–46
    [Google Scholar]
  53. Pier B. 2003. Finite-amplitude crossflow vortices, secondary instability and transition in the rotating-disk boundary layer. J. Fluid Mech. 487:315–43
    [Google Scholar]
  54. Pier B. 2007. Primary crossflow vortices, secondary absolute instabilities and their control in the rotating-disk boundary layer. J. Eng. Math. 57:237–51
    [Google Scholar]
  55. Randriamampianina A, Poncet S. 2006. Turbulence characteristics of the Bödewadt layer in a large enclosed rotor-stator system. Phys. Fluids 18:055104
    [Google Scholar]
  56. Saric WS, Reed HL, White EB. 2003. Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35:413–40
    [Google Scholar]
  57. Savaş O. 1987. Stability of the Bödewadt flow. J. Fluid Mech. 183:77–94
    [Google Scholar]
  58. Schlatter P, Örlü R. 2010. Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659:116–26
    [Google Scholar]
  59. Segalini A, Camarri S. 2019. Flow induced by a rotating cone: base flow and convective stability analysis. Phys. Rev. Fluids 4:084801
    [Google Scholar]
  60. Siegmund-Schultze R. 2020. “The joy that engineers and mathematicians have come together.” Richard von Mises’ foundation of ZAMM, and its “Tasks and Goals” (1920/21). Z. Angew. Math. Mech. 100:2e202002017
    [Google Scholar]
  61. Smith NH. 1947. Exploratory investigation of laminar-boundary-layer oscillations on a rotating disk NACA Tech. Note 1227 Natl. Adv. Commit. Aeronaut., Langley Aeronaut. Lab. Langley Field, VA:
    [Google Scholar]
  62. Theodorsen T, Regier A. 1944. Experiments on drag of revolving disks, cylinders, and streamline rods at high speeds NACA Tech. Rep. 793 Natl. Adv. Commit. Aeronaut., Langley Aeronaut. Lab. Langley Field, VA:
    [Google Scholar]
  63. von Kármán T. 1921. Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1:233–52
    [Google Scholar]
  64. von Kármán T. 1946. On laminar and turbulent friction NACA Tech. Mem. 1092 Natl. Adv. Commit. Aeronaut. Washington, DC:
    [Google Scholar]
  65. Watanabe T. 1989. Effect of surface roughness on boundary layer transition in a rotating disk. Trans. Jpn. Soc. Mech. Eng. B 55:1842–46 (In Japanese)
    [Google Scholar]
  66. Watanabe T, Warui HM, Fujisawa N. 1993. Effect of distributed roughness on laminar-turbulent transition in the boundary layer over a rotating cone. Exp. Fluids 14:390–92
    [Google Scholar]
  67. Wimmer M. 1988. Viscous flows and instabilities near rotating bodies. Prog. Aerosp. Sci. 25:43–103
    [Google Scholar]
  68. Wu CS. 1959. The three dimensional incompressible laminar boundary layer on a spinning cone. Appl. Sci. Res. A 8:140–46
    [Google Scholar]
  69. Yoon M, Hyun J, Park J. 2007. Flow and heat transfer over a rotating disk with surface roughness. Int. J. Heat Fluid Flow 28:262–67
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-043651
Loading
/content/journals/10.1146/annurev-fluid-121021-043651
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error