1932

Abstract

Stephen H. Davis (1939–2021) was an applied mathematician, fluid dynamicist, and materials scientist who lead the field in his contributions to interfacial dynamics, thermal convection, thin films, and solidification for over 50 years. Here, we briefly review his personal and professional life and some of his most significant contributions to the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121621-034932
2024-01-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-121621-034932.html?itemId=/content/journals/10.1146/annurev-fluid-121621-034932&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson DM, Davis SH. 1995. The spreading of volatile liquid drops on heated surfaces. Phys. Fluids 7:2248–65
    [Google Scholar]
  2. Aziz MJ, Boettinger W. 1994. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall. Mater. 42:2527–37
    [Google Scholar]
  3. Burelbach JP, Bankoff SG, Davis SH. 1988. Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195:463–94
    [Google Scholar]
  4. Culkin JB, Davis SH. 1984. Meandering of water rivulets. AIChE J. 30:263–67
    [Google Scholar]
  5. Davis SH. 1967. Convection in a box: linear theory. J. Fluid Mech. 30:465–78
    [Google Scholar]
  6. Davis SH. 1968. Convection in a box: on the dependence of preferred wave-number upon the Rayleigh number at finite amplitude. J. Fluid Mech. 32:619–24
    [Google Scholar]
  7. Davis SH. 1969. On the principle of exchange of stabilities. Proc. R. Soc. A 310:341–58
    [Google Scholar]
  8. Davis SH. 1976. The stability of time-periodic flows. Annu. Rev. Fluid Mech. 8:57–74
    [Google Scholar]
  9. Davis SH. 1980. Moving contact-lines and rivulet instabilities. Part I. The static rivulet. J. Fluid Mech. 98:2225–42
    [Google Scholar]
  10. Davis SH. 1983a. Contact-line problems in fluid mechanics. J. Appl. Mech. 50:977–82
    [Google Scholar]
  11. Davis SH. 1983b. Rupture of thin liquid films. Waves on Fluid Interfaces RE Meyer 291–302. Dordrecht, Neth: Academic
    [Google Scholar]
  12. Davis SH. 1987. Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19:403–35
    [Google Scholar]
  13. Davis SH. 2001. Theory of Solidification Cambridge, UK: Cambridge Univ. Press
  14. Davis SH. 2017. The importance of being thin. J. Eng. Math. 105:3–30
    [Google Scholar]
  15. Davis SH, Müller U, Dietsche C. 1984. Pattern selection in single-component systems coupling Bénard convection and solidification. J. Fluid Mech. 144:133–51
    [Google Scholar]
  16. Davis SH, Segel LA. 1963. Surface elevation in Bénard cells. Am. Math. Soc. Not. 10:496 (Abstr.)
    [Google Scholar]
  17. Davis SH, Segel LA. 1968. Effects of surface curvature and property variation on cellular convection. Phys. Fluids 11:470–76
    [Google Scholar]
  18. Davis SH, von Kerczek C. 1973. A reformulation of energy stability theory. Arch. Rat. Mech. Anal. 52:3112–17
    [Google Scholar]
  19. de Gennes PG. 1985. Wetting: statics and dynamics. Rev. Mod. Phys. 57:3827–63
    [Google Scholar]
  20. Dudis JJ, Davis SH. 1971a. Energy stability of the buoyancy boundary layer. J. Fluid Mech. 47:381–403
    [Google Scholar]
  21. Dudis JJ, Davis SH. 1971b. Energy stability of the Ekman boundary layer. J. Fluid Mech. 47:405–13
    [Google Scholar]
  22. Dussan V. EB. 1979. On the spreading on solid surfaces: Static and dynamic contact lines. Annu. Rev. Fluid Mech. 11:371–400
    [Google Scholar]
  23. Dussan V. EB, Davis SH 1974. On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65:71–95
    [Google Scholar]
  24. Eaglesham D, Cerullo M. 1990. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64:161943
    [Google Scholar]
  25. Ehrhard P, Davis SH. 1991. Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229:365–88
    [Google Scholar]
  26. Erneux T, Davis SH. 1993. Nonlinear rupture of free films. Phys. Fluids A 5:51117–22
    [Google Scholar]
  27. Gibbs JW. 1876. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 3:108–248
    [Google Scholar]
  28. Golovin A, Davis S, Nepomnyashchy A. 1998. A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth. Physica D 122:1–4202–30
    [Google Scholar]
  29. Golovin A, Davis S, Voorhees P. 2008. Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes. J. Appl. Phys. 104:7074301
    [Google Scholar]
  30. Grotberg JB, Davis SH. 1980. Fluid-dynamic flapping of a collapsible channel: sound generation and flow limitation. J. Biomech. 13:219–30
    [Google Scholar]
  31. Gumerman RJ, Homsy GM. 1974. Convective instabilities in concurrent two phase flow: part I. Linear stability. AIChE J. 20:5981–88
    [Google Scholar]
  32. Herron IH, Davis SH, Bretherton FP. 1975. The slow sedimentation of a sphere in a centrifuge. J. Fluid Mech. 68:2209–34
    [Google Scholar]
  33. Hocking LM, Davis SH. 1999. Spreading and imbibition of a viscous liquid on a porous base. Phys. Fluids 11:48–57
    [Google Scholar]
  34. Hocking LM, Davis SH. 2000. Spreading and imbibition of a viscous liquid on a porous base. Part II. Phys. Fluids 12:71646–55
    [Google Scholar]
  35. Huh C, Scriven LE. 1971. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35:85–101
    [Google Scholar]
  36. Huntley D, Davis S. 1993. Thermal effects in rapid directional solidification: linear theory. Acta Metall. Mater. 41:72025–43
    [Google Scholar]
  37. Ida MP, Miksis MJ. 1998a. The dynamics of thin films I: general theory. SIAM J. Appl. Math. 58:2456–73
    [Google Scholar]
  38. Ida MP, Miksis MJ. 1998b. The dynamics of thin films II: applications. SIAM J. Appl. Math. 58:2474–500
    [Google Scholar]
  39. Jesson D, Pennycook S, Baribeau JM, Houghton D. 1993. Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation. Phys. Rev. Lett. 71:111744–47
    [Google Scholar]
  40. Jiran E, Thompson C. 1992. Capillary instabilities in thin, continuous films. Thin Solid Films 208:23–28
    [Google Scholar]
  41. Karma A, Sarkissian A. 1992. Dynamics of banded structure formation in rapid solidification. Phys. Rev. Lett. 68:172616
    [Google Scholar]
  42. Kirkinis E, Davis SH. 2013. Hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line. Phys. Rev. Lett. 110:234503
    [Google Scholar]
  43. Kowal KN, Davis SH, Voorhees PW. 2018. Thermocapillary instabilities in a horizontal liquid layer under partial basal slip. J. Fluid Mech. 855:839–59
    [Google Scholar]
  44. Liu AK, Davis SH. 1977. Viscous attenuation of mean drift in water waves. J. Fluid Mech. 81:63–84
    [Google Scholar]
  45. Madras P, Dailey E, Drucker J. 2010. Spreading of liquid AuSi on vapor–liquid–solid-grown Si nanowires. Nano Lett. 10:51759–63
    [Google Scholar]
  46. McCallum MS, Voorhees PW, Miksis MJ, Davis SH, Wong H. 1996. Capillary instabilities in solid thin films: lines. J. Appl. Phys. 79:107604–11
    [Google Scholar]
  47. Merchant G, Davis S. 1990. Morphological instability in rapid directional solidification. Acta Metall. Mater. 38:122683–93
    [Google Scholar]
  48. Miksis MJ 2004. Contact lines. A Celebration of Mathematical Modeling D Givoli, M Grote, G Papanicolaou 161–80. Dordrecht, Neth: Kluwer Academic
    [Google Scholar]
  49. Miksis MJ, Davis SH. 1994. Slip over rough and coated surfaces. J. Fluid Mech. 273:125–39
    [Google Scholar]
  50. Moin P. 2021. Introduction. Annu. Rev. Fluid Mech. 53:v
    [Google Scholar]
  51. Mullins WW, Sekerka R. 1964. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35:2444–51
    [Google Scholar]
  52. Muralidharan S, Voorhees PW, Davis SH. 2013. Nonaxisymmetric droplet unpinning in vapor-liquid-solid-grown nanowires. J. Appl. Phys. 114:11114305
    [Google Scholar]
  53. Neitzel GP. 2010. Stephen H Davis—70, and counting. J. Fluid Mech. 647:3–12
    [Google Scholar]
  54. Neitzel GP. 2023. Stephen H. Davis: 7 September 1939–12 November 2021. J. Fluid Mech. 956:E2
    [Google Scholar]
  55. Neitzel GP, Davis SH. 1980. Energy stability theory of decelerating swirl flows. Phys. Fluids 23:3432–37
    [Google Scholar]
  56. Neitzel GP, Davis SH. 1981. Centrifugal instabilities during spin-down to rest in finite cylinders. J. Fluid Mech. 102:329–52
    [Google Scholar]
  57. Oron A, Bankoff SG, Davis SH. 1997. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69:3931–80
    [Google Scholar]
  58. Riley RJ, Neitzel GP. 1998. Instabilty of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. J. Fluid Mech. 359:143–64
    [Google Scholar]
  59. Roper S, Davis S, Voorhees P. 2008. An analysis of convection in a mushy layer with a deformable permeable interface. J. Fluid Mech. 596:333–52
    [Google Scholar]
  60. Roper S, Davis S, Voorhees P. 2011. Localisation of convection in mushy layers by weak background flow. J. Fluid Mech. 675:518–28
    [Google Scholar]
  61. Roper SM, Davis SH, Norris SA, Golovin AA, Voorhees PW, Weiss M. 2007. Steady growth of nanowires via the vapor-liquid-solid method. J. Appl. Phys. 102:3034304
    [Google Scholar]
  62. Rosenblat S, Davis SH 1985. How do liquid drops spread on solids?. Frontiers in Fluid Mechanics SH Davis, JL Lumley 171–83. New York: Springer
    [Google Scholar]
  63. Ruckenstein E, Jain RK. 1974. Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. 2 70:132–47
    [Google Scholar]
  64. Schwalbach EJ, Davis SH, Voorhees PW, Warren JA, Wheeler D. 2012. Stability and topological transformations of liquid droplets on vapor-liquid-solid nanowires. J. Appl. Phys. 111:2024302
    [Google Scholar]
  65. Segel LA. 1965. The nonlinear interaction of a finite number of disturbances to a fluid layer heated from below. J. Fluid Mech. 21:359–84
    [Google Scholar]
  66. Smith MK, Davis SH. 1983a. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132:119–44
    [Google Scholar]
  67. Smith MK, Davis SH. 1983b. Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. J. Fluid Mech. 132:145–62
    [Google Scholar]
  68. Smith MK, McFadden GB, Miksis MJ, Neitzel GP, Canright DR, eds. 2002. Interfaces for the 21st Century: New Research Directions in Fluid Mechanics and Materials Science London: Imperial
  69. Snoeijer JH, Andreotti B. 2013. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45:269–92
    [Google Scholar]
  70. Spencer B, Meiron D. 1994. Nonlinear evolution of the stress-driven morphological instability in a two-dimensional semi-infinite solid. Acta Metall. Mater. 42:113629–41
    [Google Scholar]
  71. Spencer B, Voorhees P, Davis S. 1993. Morphological instability in epitaxially strained dislocation-free solid films: linear stability theory. J. Appl. Phys. 73:104955–70
    [Google Scholar]
  72. Thompson CV. 2012. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42:399–434
    [Google Scholar]
  73. von Kerczek C, Davis SH. 1972. The instability of oscillatory Stokes layers. Stud. Appl. Math. 51:3239–52
    [Google Scholar]
  74. Watson SJ, Otto F, Rubinstein BY, Davis SH. 2003. Coarsening dynamics of the convective Cahn-Hilliard equation. Physica D 178:3–4127–48
    [Google Scholar]
  75. Weiland RH, Davis SH. 1981. Moving contact-lines and rivulet instabilities. Part II. Long waves on a dynamic rivulet. J. Fluid Mech. 107:261–80
    [Google Scholar]
  76. Williams MB, Davis SH. 1982. Nonlinear theory of film rupture. J. Colloid Interface Sci. 90:220–28
    [Google Scholar]
  77. Wong H, Voorhees P, Miksis M, Davis S 2000. Periodic mass shedding of a retracting solid film step. Acta Mater. 48:81719–28
    [Google Scholar]
  78. Yang W, Srolovitz D. 1993. Cracklike surface instabilities in stressed solids. Phys. Rev. Lett. 71:101593–96
    [Google Scholar]
  79. Young G. 1986. Directional solidification with buoyancy in systems with small segregation coefficient. Phys. Rev. B 34:53388–96
    [Google Scholar]
  80. Young GW, Davis SH. 1987a. A plate oscillating across a liquid interface: effects of contact-angle hysteresis. J. Fluid Mech. 174:327–56
    [Google Scholar]
  81. Young GW, Davis SH. 1987b. Rivulet instabilities. J. Fluid Mech. 176:1–31
    [Google Scholar]
  82. Zhang Q, Davis SH, Voorhees PW. 2017. Catalyst-particle configurations: from nanowires to carbon nanotubes. Phys. Rev. E 96:2022802
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-121621-034932
Loading
/content/journals/10.1146/annurev-fluid-121621-034932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error