The primary purpose of a detonation in a high explosive (HE) is to provide the energy to drive a surrounding confiner, typically for mining or munitions applications. The details of the interaction between an HE detonation and its confinement are essential to achieving the objectives of the explosive device. For the high pressures induced by detonation loading, both the solid HE and confiner materials will flow. The structure and speed of a propagating detonation, and ultimately the pressures generated in the reaction zone to drive the confiner, depend on the induced flow both within the confiner and along the HE–confiner material interface. The detonation–confiner interactions are heavily influenced by the material properties and, in some cases, the thickness of the confiner. This review discusses the use of oblique shock polar analysis as a means of characterizing the possible range of detonation–confiner interactions. Computations that reveal the fluid mechanics of HE detonation–confiner interactions for finite reaction-zone length detonations are discussed and compared with the polar analysis. This includes cases of supersonic confiner flow; subsonic, shock-driven confiner flow; subsonic, but shockless confiner flow; and sonic flow at the intersection of the detonation shock and confiner material interface. We also summarize recent developments, including the effects of geometry and porous material confinement, on detonation–confiner interactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arai H, Ogata Y, Wada Y, Miyake A, Jung W. et al. 2004. Detonation behaviour of ANFO in resin tubes. Sci. Technol. Energ. Mater. 65:201–5 [Google Scholar]
  2. Aslam T, Bdzil J. 2002. Numerical and theoretical investigations on detonation-inert confinement interactions. Proc. Int. Detonation Symp., 12th, 11–16 Aug., San Diego, Calif.483–88 Arlington, VA: Off. Nav. Res. [Google Scholar]
  3. Aslam T, Bdzil J. 2006. Numerical and theoretical investigations on detonation confinement sandwich tests. Proc. Int. Detonation Symp., 13th, 23–28 July, Norfolk, Va.761–69 Arlington, VA: Off. Nav. Res. [Google Scholar]
  4. Aslam T, Bdzil J, Stewart D. 1996. Level set methods applied to modeling detonation shock dynamics. J. Comput. Phys. 126:390–409 [Google Scholar]
  5. Aslam T, Jackson S, Morris J. 2009. Proton radiography of PBX 9502 detonation shock dynamics confinement sandwich test. AIP Conf. Proc. 1195:241–43 [Google Scholar]
  6. Banks J, Henshaw W, Schwendeman D, Kapila A. 2008. A study of detonation propagation and diffraction with compliant confinement. Combust. Theory Model. 12:769–808 [Google Scholar]
  7. Bdzil J. 1981. Steady-state two-dimensional detonation. J. Fluid Mech. 108:195–226 [Google Scholar]
  8. Bdzil J, Aslam T, Henninger R, Quirk J. 2003. High-explosives performance: understanding the effects of a finite-length reaction zone. Los Alamos Sci 28:96–110 [Google Scholar]
  9. Bdzil J, Fickett W, Stewart D. 1989. Detonation shock dynamics: a new approach to modeling multi-dimensional detonation waves. Proc. Int. Detonation Symp., 9th, 27 Aug.–1 Sept., Portland, Or.730–42 Arlington, VA: Off. Nav. Res. [Google Scholar]
  10. Bdzil J, Menikoff R, Son S, Kapila A, Stewart D. 1999. Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11:378–402 [Google Scholar]
  11. Bdzil J, Short M. 2017. Theory of Mach reflection of detonation at glancing incidence. J. Fluid Mech. 811:269–314 [Google Scholar]
  12. Bdzil J, Stewart D. 1986. Time-dependent two-dimensional detonation: the interaction of edge rarefactions with finite-length reaction zones. J. Fluid Mech. 171:1–26 [Google Scholar]
  13. Bdzil J, Stewart D. 2007. The dynamics of detonation in explosive systems. Annu. Rev. Fluid Mech. 39:263–92 [Google Scholar]
  14. Bdzil J, Stewart D. 2011. Theory of detonation shock dynamics. Detonation Dynamics F Zhang 373–453 Berlin: Springer-Verlag [Google Scholar]
  15. Blazynski T. 1983. Explosive Welding, Forming and Compaction London: Appl. Sci. [Google Scholar]
  16. Braithwaite M, Sharpe G. 2013. Non-ideal behavior in commercial explosives. Performance of Explosives and New Developments B Mohanty, V Singh 11–16 New York: Taylor & Francis [Google Scholar]
  17. Davis W. 1997. Shock waves; rarefaction waves; equations of state. Explosive Effects and Applications J Zukas, W Walters 47–113 New York: Springer-Verlag [Google Scholar]
  18. Döring W. 1943. On detonation processes in gases. Ann. Phys. 43:421–36 [Google Scholar]
  19. Eden G, Belcher R. 1989. The effects of inert walls on the velocity of detonation in EDC35, an insensitive high explosive. Proc. Int. Detonation Symp., 9th, 27 Aug.–1 Sept., Portland, Or.831–41 Arlington, VA: Off. Nav. Res. [Google Scholar]
  20. Fedkiw R, Aslam T, Merriman B, Osher S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152:457–92 [Google Scholar]
  21. Fickett W, Davis W. 1979. Detonation Berkeley: Univ. Calif. Press [Google Scholar]
  22. Fredenburg D, Chisolm E. 2014. Equation of state and compaction modeling for CeO2 Tech. Rep. LA-UR-14-28164, Los Alamos Natl. Lab Los Alamos, NM: [Google Scholar]
  23. Fredenburg D, Koller D, Coe J, Kiyanda C. 2014. The influence of morphology on the low- and high-strain-rate compaction response of CeO2 powders. J. Appl. Phys. 115:123511 [Google Scholar]
  24. Fredenburg D, Lang J, Coe J, Chisolm E, Scharff R, Dattelbaum D. 2017. Systematics of compaction for porous metal and metal-oxide systems. AIP Conf. Proc 1793:120018 [Google Scholar]
  25. Gourdin W. 1986. Dynamic consolidation of metal powders. Prog. Mater. Sci. 30:39–80 [Google Scholar]
  26. Henrick A. 2008. Shock-fitted numerical solutions of one-and two-dimensional detonation PhD Thesis, Univ. Notre Dame [Google Scholar]
  27. Hill L. 2011. Detonation confinement sandwich tests: the effect of single and multiple confining layers on PBX 9502 detonation Tech. Rep. LA-UR-11-05298, Los Alamos Natl. Lab Los Alamos, NM: [Google Scholar]
  28. Hill L, Aslam T. 2014. The detonation confinement effect: theory, observations and experiments. Proc. Int. Detonation Symp., 15th, 13–18 July, San Francisco, Calif.504–13 Arlington, VA: Off. Nav. Res. [Google Scholar]
  29. Jackson S, Kiyanda C, Short M. 2010. Precursor detonation wave development in ANFO due to aluminum confinement. Proc. Int. Detonation Symp., 14th, 11–16 April, Coeur d'Alene, Ida.740–49 Arlington, VA: Off. Nav. Res. [Google Scholar]
  30. Jackson S, Kiyanda C, Short M. 2011. Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound-speed, shockless, aluminum confiner. Proc. Combust. Inst. 33:2219–26 [Google Scholar]
  31. Lee E, Tarver C. 1980. Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids 23:2362–72 [Google Scholar]
  32. Lubyatinsky S, Batalov S, Garmashev A, Israelyan V, Kostitsyn O. et al. 2004. Detonation propagation in 180° ribs of an insensitive high explosive. AIP Conf. Proc. 706:859–62 [Google Scholar]
  33. Luheshi M. 2009. Interactions of detonation and inert confiners PhD Thesis, Univ. Leeds [Google Scholar]
  34. Mamalis A, Vottea I, Manolakos D. 2001. On the modelling of the compaction mechanism of shock compacted powders. J. Mater. Process. Technol. 108:165–78 [Google Scholar]
  35. Marsh S. 1980. LASL Shock Hugoniot Data Berkeley: Univ. Calif. Press [Google Scholar]
  36. Maruta K. 2011. Micro and mesoscale combustion. Proc. Combust. Inst. 33:125–50 [Google Scholar]
  37. Menikoff R. 2007. Empirical equations of state for solids. Solids IY Horie143–88 Berlin: Springer-Verlag [Google Scholar]
  38. Menikoff R, Kober E. 2000. Equation of state and Hugoniot locus for porous materials: P-α model revisited. AIP Conf. Proc. 505:129–32 [Google Scholar]
  39. Menikoff R, Plohr B. 1989. The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61:75–130 [Google Scholar]
  40. Morris C, Hopson J, Goldstone P. 2006. Proton radiography. Los Alamos Sci 30:32–45 [Google Scholar]
  41. Murphy M, Weimann K, Doeringsfeld K, Speck J. 1992. The effect of explosive detonation wave shaping on EFP shape and performance. Int. Symp. Ballist., 13th, 1–3 June, Stockholm, Swed. Stockholm: Försvarets Forsk. [Google Scholar]
  42. Powers J, Stewart D, Krier H. 1989. Analysis of steady compaction waves in porous materials. J. Appl. Mech. 56:15–24 [Google Scholar]
  43. Prümmer R. 1983. Powder compaction. See Blazynski 1983 369–95
  44. Quirk J. 1998a. Amrita: a computational facility (for CFD modelling). 29th Computational Fluid Dynamics H Deconinck Sint-Genesius-Rode, Belg: von Karman Inst. [Google Scholar]
  45. Quirk J. 1998b. Amr_sol: design principles and practice. 29th Computational Fluid Dynamics H Deconinck Sint-Genesius-Rode, Belg: von Karman Inst. [Google Scholar]
  46. Quirk J. 2007. amr_sol::multimat. Tech. Rep. LA-UR-07-0539, Los Alamos Natl. Lab Los Alamos, NM:
  47. Romick C, Aslam T. 2014. Two-dimensional detonation propagation using shock-fitting. Proc. Int. Detonation Symp., 15th, 13–18 July, San Francisco, Calif.380–89 Arlington, VA: Off. Nav. Res. [Google Scholar]
  48. Salyer T, Hill L. 2006. The dynamics of detonation failure in conical PBX 9502 charges. Proc. Int. Detonation Symp., 13th, 23–28 July, Norfolk, Va.24–34 Arlington, VA: Off. Nav. Res. [Google Scholar]
  49. Schoch S, Nikiforakis N, Lee B. 2013. The propagation of detonation waves in non-ideal condensed-phase explosives confined by high sound-speed materials. Phys. Fluids 25:086102 [Google Scholar]
  50. Sharpe G. 2006. Shock polar analysis for porous ANFO explosives and rocks Tech. Rep., Univ. Leeds [Google Scholar]
  51. Sharpe G, Bdzil J. 2006. Interactions of inert confiners with explosives. J. Eng. Math. 54:273–98 [Google Scholar]
  52. Sharpe G, Braithwaite M. 2005. Steady non-ideal detonations in cylindrical sticks of explosives. J. Eng. Math. 53:39–58 [Google Scholar]
  53. Sharpe G, Luheshi M, Braithwaite M, Falle S. 2009. Steady non-ideal detonation. AIP Conf. Proc. 1195:452–57 [Google Scholar]
  54. Short M. 2009. Detonation of ammonium nitrate/fuel oil (ANFO) Tech. Rep. LA-UR 09-00362 Los Alamos Natl. Lab Los Alamos, NM: [Google Scholar]
  55. Short M, Anguelova I, Aslam T, Bdzil J, Henrick A, Sharpe G. 2008. Stability of detonations for an idealized condensed-phase model. J. Fluid Mech. 595:45–82 [Google Scholar]
  56. Short M, Jackson S. 2015. Dynamics of high sound-speed metal confiners driven by non-ideal high-explosive detonation. Combust. Flame 162:1857–67 [Google Scholar]
  57. Short M, Quirk J, Kiyanda C, Jackson S, Briggs M, Shinas M. 2010. Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD. Proc. Int. Detonation Symp., 14th, 11–16 April, Coeur d'Alene, Ida.769–78 Arlington, VA: Off. Nav. Res. [Google Scholar]
  58. Short M, Quirk J, Meyer C, Chiquete C. 2016. Steady detonation propagation in a circular arc: a detonation shock dynamics model. J. Fluid Mech. 807:87–134 [Google Scholar]
  59. Souers P, Anderson S, Hayes B, Lyle J, Lee E. et al. 1998. Corner turning rib tests on LX-17. Propellants Explos. Pyrotech. 23:200–7 [Google Scholar]
  60. Stewart D, Bdzil J. 1989. Examples of detonation shock dynamics for detonation wave spread applications. Proc. Int. Detonation Symp., 9th, 27 Aug.–1 Sept., Portland, Or.773–83 Arlington, VA: Off. Nav. Res. [Google Scholar]
  61. Tarver C, Chidester S. 2007. Ignition and Growth modeling of detonating TATB cones and arcs. AIP Conf. Proc. 955:429–32 [Google Scholar]
  62. von Neumann J. 1942. Theory of detonation waves. John von Neumann Collected Works 6 Theory of Games, Astrophysics, Hydrodynamics and Meteorology AJ Taub New York: Macmillan [Google Scholar]
  63. Wescott B, Stewart D, Davis W. 2005. Equation of state and reaction rate for condensed-phase explosives. J. Appl. Phys. 98:053514 [Google Scholar]
  64. Whitworth N, Childs M. 2017. Determination of detonation wave boundary angles via hydrocode simulations using CREST. AIP Conf. Proc. 1793:040028 [Google Scholar]
  65. Whitworth N, Handley C, Lambourn B. 2010. Modelling detonation propagation and failure in PBX 9502 using CREST. Proc. Int. Detonation Symp., 14th, 11–16 April, Coeur d'Alene, Ida.61–70 Arlington, VA: Off. Nav. Res. [Google Scholar]
  66. Zel'dovich Y. 1940. On the theory of the propagation of detonation in gaseous systems. Zh. Eksp. Teor. Fiz. 10:542–68 [Google Scholar]
  67. Zel'dovich Y, Raizer Y. 2002. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena Mineola, NY: Dover [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error