Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abu-Ghannam BJ, Shaw R. 1980. Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22:213–28 [Google Scholar]
  2. Arolla SK, Durbin PA. 2013. Modeling rotation and curvature effects within scalar eddy viscosity model framework. Int. J. Heat Fluid Flow 39:78–89 [Google Scholar]
  3. Ashton N, Revell A, Prosser R, Uribe J. 2012. Development of an alternative delayed detached-eddy simulation formulation based on elliptic relaxation. AIAA J. 51:513–19 [Google Scholar]
  4. Bhushan S, Walters DK. 2012. A dynamic hybrid Reynolds-averaged Navier Stokes–large eddy simulation modeling framework. Phys. Fluids 24:015103 [Google Scholar]
  5. Billard F, Laurence D. 2012. A robust elliptic blending turbulence model applied to near-wall, separated and buoyant flows. Int. J. Heat Fluid Flow 33:45–58 [Google Scholar]
  6. Billard F, Revell A, Craft T. 2012. Application of recently developed elliptic blending based models to separated flows. Int. J. Heat Fluid Flow 35:141–51 [Google Scholar]
  7. Bose S, Park GI. 2018. Wall-modeled LES for complex turbulent flows. Annu. Rev. Fluid Mech. 50:535–61 [Google Scholar]
  8. Canuto VM, Howard A, Cheng Y, Dubovikov MS. 2001. Ocean turbulence. Part I: one-point closure model—momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31:1413–26 [Google Scholar]
  9. Chaouat B, Schiestel R. 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17:065106 [Google Scholar]
  10. Chaouat B, Schiestel R. 2012. Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows. Phys. Fluids 24:085106 [Google Scholar]
  11. Choi SK, Kim SO. 2006. Computation of a turbulent natural convection in a rectangular cavity with the elliptic-blending second-moment closure. Int. Commun. Heat Mass Transf. 33:1217–24 [Google Scholar]
  12. Choi SK, Kim SO. 2008. Treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for turbulent natural convection flows. Int. Commun. Heat Mass Transf. 51:2377–88 [Google Scholar]
  13. Dassler P, Kožulović D, Fiala A. 2010. Modelling of roughness-induced transition using local variables. Proc. ECCOMAS Eur. Conf. Comput. Fluid Dyn., 5th, JCF Pereira, A Sequeira, JMC Pereira, Pap. 01811 [Google Scholar]
  14. Dehoux F, Benhamadouche S, Manceau R. 2017. An elliptic blending differential flux model for natural, mixed and forced convection. Int. J. Heat Fluid Flow. 63190–204 [Google Scholar]
  15. Dehoux F, Lecocq Y, Benhamadouche S, Manceau R, Brizzi LE. 2011. Algebraic modeling of the turbulent heat fluxes using the elliptic blending approach—application to forced and mixed convection regimes. Flow Turbul. Combust. 88:77–100 [Google Scholar]
  16. Dhawan S, Narasimha R. 1958. Some properties of boundary layer during the transition from laminar to turbulent flow motion. J. Fluid Mech. 3:418–36 [Google Scholar]
  17. Dow E, Wang Q. 2010. Quantification of structural uncertainties in the k−ω turbulence model. Proc. Summer Program 201041–51 Stanford, CA: Cent. Turb. Res. [Google Scholar]
  18. Dow E, Wang Q. 2011. Uncertainty quantification of structural uncertainties in RANS simulations of complex flows Presented at AIAA Comput. Fluid Dyn. Conf., 20th, June 27–30, Honolulu, HI, AIAA Pap. 2011-3865 [Google Scholar]
  19. Duraisamy K, Durbin PA. 2014. Transition modeling using data driven approaches. Proc. Summer Program 2014427–34 Stanford, CA: Cent. Turb. Res. [Google Scholar]
  20. Duraisamy K, Zhang Z, Singh AP. 2015. New approaches in turbulence and transition modeling using data-driven techniques Presented at AIAA Aerosp. Sci. Meet., 53rd, Jan. 5–9, Kissimmee, FL, AIAA Pap. 2015-1284 [Google Scholar]
  21. Durbin PA. 1993. A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249:465–98 [Google Scholar]
  22. Durbin PA. 2011. Review: adapting scalar turbulence closure models for rotation and curvature. J. Fluids Eng. 133:061205 [Google Scholar]
  23. Durbin PA. 2012. An intermittency model for bypass transition. Int. J. Heat Fluid Flow 36:1–6 [Google Scholar]
  24. Durbin PA, Pettersson-Reif BA. 2010. Statistical Theory and Modeling for Turbulent Flow New York: Wiley, 2nd ed.. [Google Scholar]
  25. Fadai-Ghotbi A, Friess C, Manceau R, Borée J. 2010. A seamless hybrid RANS-LES model based on transport equations for the subgrid stresses and elliptic blending. Phys. Fluids 22:055104 [Google Scholar]
  26. Fasel HF, Seidel J, Wernz S. 2002. A methodology for simulations of complex turbulent flows. J. Fluids Eng. 124:933–42 [Google Scholar]
  27. Franke M, Wallin S, Thiele F. 2005. Assessment of explicit algebraic Reynolds-stress turbulence models in aerodynamic computations. Aerosp. Sci. Technol. 9:573–81 [Google Scholar]
  28. Fröhlich J, Von Terzi D. 2008. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44:349–77 [Google Scholar]
  29. Gatski TB, Jongen T. 2000. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog. Aerosp. Sci. 36:655–82 [Google Scholar]
  30. Gatski TB, Rumsey CL. 2002. Linear and nonlinear eddy viscosity models. Closure Strategies for Turbulent and Transitional Flows B Launder, N Sandham 9–46 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  31. Gatski TB, Speziale CG. 1993. On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254:59–78 [Google Scholar]
  32. Ge X, Arolla S, Durbin PA. 2014. A bypass transition model based on the intermittency function. Flow Turbul. Combust. 93:37–61 [Google Scholar]
  33. Ge X, Durbin PA. 2015. An intermittency model for predicting roughness induced transition. Int. J. Heat Fluid Flow 54:55–64 [Google Scholar]
  34. Giles MB, Pierce NA. 2000. An introduction to the adjoint approach to design. Flow Turbul. Combust. 65:393–415 [Google Scholar]
  35. Girimaji S, Abdol-Hamid K. 2005. Partially-averaged Navier Stokes model for turbulence: implementation and validation Presented at AIAA Aerosp. Sci. Meet., 43rd, Jan. 10–13, Reno, NV, AIAA Pap. 2005-502 [Google Scholar]
  36. Gritskevich MS, Garbaruk AV, Schultze J, Menter FR. 2012. Development of DDES and IDDES formulations for the k−ω shear stress transport model. Flow Turbul. Combust. 88431–49 [Google Scholar]
  37. Hadžiabdić M. 2005. LES, RANS and combined simulation of impinging flows and heat transfer PhD Thesis, Delft Univ. Technol. [Google Scholar]
  38. Hanjalić K. 2005. Will RANS survive LES? A view of perspectives. J. Fluids Eng. 127:831–39 [Google Scholar]
  39. Hanjalić K, Kenjereš S. 2008. Some developments in turbulence modeling for wind and environmental engineering. J. Wind Eng. Ind. Aerodyn. 96:1537–70 [Google Scholar]
  40. Hanjalić K, Launder BE. 2011. Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  41. Hanjalić K, Popovac M, Hadziabdic M. 2004. A robust near-wall elliptic relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25:1047–51 [Google Scholar]
  42. Hellsten A. 1998. Some improvements in Menter'sk−ω SST turbulence model Presented at AIAA Fluid Dyn. Conf., 29th, June 15–18, Albuquerque, NM, AIAA Pap. 98-2554 [Google Scholar]
  43. Hodson HP, Howell RJ. 2005. Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines. Annu. Rev. Fluid Mech. 37:71–98 [Google Scholar]
  44. Jee S, Shariff K. 2014. Detached-eddy simulation based on the v2f model.. Int. J. Heat Fluid Flow 46:84–101 [Google Scholar]
  45. Ji M, Durbin PA. 2004. On the equilibrium states predicted by second moment models in rotating, stably stratified homogeneous shear flow. Phys. Fluids 16:3540–56 [Google Scholar]
  46. Kenjereš S, Gunarjo S, Hanjalić K. 2005. Contribution to elliptic relaxation modelling of turbulent natural and mixed convection. Int. J. Heat Fluid Flow 26:569–86 [Google Scholar]
  47. Khodak A, Hirsch C. 1996. Second order non-linear k−ε models with explicit effect of curvature and rotation. Proc. ECCOMAS Eur. Conf. Comput. Fluid Dyn., 3rd, 1996 J-A Désidéri 690–96 Chichester, NY: Wiley [Google Scholar]
  48. Kubacki S, Dick E. 2016. An algebraic model for bypass transition in turbomachinery boundary layer flows. Int. J. Heat Fluid Flow 58:68–83 [Google Scholar]
  49. Langtry RB, Menter FR. 2005. Transition modeling for general CFD applications in aeronautics Presented at AIAA Aerosp. Sci. Meet., 43rd, Jan. 10–13, Reno, NV, AIAA Pap. 2005-522 [Google Scholar]
  50. Lardeau S, Billard F. 2016. Development of an elliptic-blending lag model for industrial applications Presented at AIAA Aerosp. Sci. Meet., 54th, Jan. 4–8, San Diego, CA, AIAA Pap. 2016-1600 [Google Scholar]
  51. Lardeau S, Leschziner M, Li N. 2004. Modelling bypass transition with low-Reynolds-number nonlinear eddy-viscosity closure. Flow Turbul. Combust. 73:49–76 [Google Scholar]
  52. Launder BE. 1989. Second-moment closure: present …and future?. Int. J. Heat Fluid Flow 10:282–300 [Google Scholar]
  53. Laurence D. 2002. Large eddy simulation of industrial flows?. Closure Strategies for Turbulent and Transitional Flows BE Launder, ND Sandham 392–406 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  54. Laurence D, Uribe J, Utyuzhnikov S. 2004. A robust formulation of the v2f model. Flow Turbul. Combust. 73169–85 [Google Scholar]
  55. Leschziner M. 2016. Statistical Turbulence Modelling for Fluid Dynamics—Demystified: An Introductory Text for Graduate Engineering Students London: Imperial Coll. Press [Google Scholar]
  56. Lilly DK. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4:633–45 [Google Scholar]
  57. Ling J, Coletti F, Yapa SD, Eaton JK. 2013. Experimentally informed optimization of turbulent diffusivity for a discrete hole film cooling geometry. Int. J. Heat Fluid Flow 44:348–57 [Google Scholar]
  58. Liu Y, Zaki TA, Durbin PA. 2008. Boundary layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604:199–233 [Google Scholar]
  59. Lodefier K, Merci B, De Langhe C, Dick E. 2004. Transition modelling with the k−ω turbulence model and an intermittency transport equation. J. Therm. Sci. 13:220–25 [Google Scholar]
  60. Lopez M, Walters DK. 2016. Prediction of transitional and fully turbulent flow using an alternative to the laminar kinetic energy approach. J. Turbul. 17:253–73 [Google Scholar]
  61. Manceau R. 2005. An improved version of the elliptic blending model. Application to non-rotating and rotating channel flows. Proc. Int. Symp. Turbul. Shear Flow Phenom., 4th,259–64 http://www.tsfp-conference.org/proceedings/2005/tsfp4-ca-2.pdf [Google Scholar]
  62. Manceau R. 2015. Recent progress in the development of the elliptic blending Reynolds-stress model. Int. J. Heat Fluid Flow 51:195–220 [Google Scholar]
  63. Manceau R, Hanjalić K. 2002. Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14:744–54 [Google Scholar]
  64. Manceau R, Wang M, Laurence D. 2001. Inhomogeneity and anisotropy effects on the redistribution term in Reynolds-averaged Navier-Stokes modelling. J. Fluid Mech. 438:307–38 [Google Scholar]
  65. Mayle RE. 1991. The 1991 IGTI scholar lecture: the role of laminar-turbulent transition in gas turbine engines. J. Turbomach. 113:509–36 [Google Scholar]
  66. Medida S, Baeder J. 2011. Numerical prediction of static and dynamic stall phenomena using the γ−Rθ transition model. Am. Helicopter Soc. Annu. Forum, 67th, 3–5 May, Virgina Beach, Va.431–54 Redhook, NY: Curran http://toc.proceedings.com/11701webtoc.pdf [Google Scholar]
  67. Mellor GL, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20:851–75 [Google Scholar]
  68. Menter FR, Langtry RB, Völker S. 2006. Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 77:277–303 [Google Scholar]
  69. Menter FR, Smirnov PE, Liu T, Avancha R. 2015. A one-equation local correlation-based transition model. Flow Turbul. Combust. 95:583–619 [Google Scholar]
  70. Parish EJ, Duraisamy K. 2016. A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305:758–74 [Google Scholar]
  71. Parneix S, Laurence D, Durbin PA. 1998. A procedure for using DNS databases. J. Fluids Eng. 120:40–47 [Google Scholar]
  72. Pecnik R, Pieringer P, Sanz W. 2005. Numerical investigation of the secondary flow of a transonic turbine stage using various turbulence closures. ASME Turbo Expo 2005: Power Land Sea Air, June 6–9, Reno, NV 61185–93 New York: Am. Soc. Mech. Eng. [Google Scholar]
  73. Piomelli U, Balaras E, Pasinato H, Squires KD, Spalart PR. 2003. The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24:538–50 [Google Scholar]
  74. Pope SB. 1975. A more general effective-viscosity hypothesis. J. Fluid Mech. 72:331–40 [Google Scholar]
  75. Pope SB. 2001. Turbulent Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  76. Raiesi H, Piomelli U, Pollard A. 2011. Evaluation of turbulence models using direct numerical and large-eddy simulation data. J. Fluids Eng. 133:021203 [Google Scholar]
  77. Reddy KR, Ryon JA, Durbin PA. 2014. A DDES model with a Smagorinsky-type eddy viscosity formulation and log-layer mismatch correction. Int. J. Heat Fluid Flow 50:103–13 [Google Scholar]
  78. Rodi W. 1976. A new algebraic relation for calculating the Reynolds stresses. Z. Angew. Math. Mech. 56:T219–21 [Google Scholar]
  79. Rumsey CL, Gatski TB, Morrison JH. 2000. Turbulence model predictions of strongly curved flow in a U-duct. AIAA J. 38:1394–402 [Google Scholar]
  80. Ryon J. 2016. Analysis and design of lean direct injection fuel nozzles by eddy resolved turbulence simulation PhD Thesis, Iowa State Univ. [Google Scholar]
  81. Savill AM. 1999. One point closures applied to transition. Turbulence and Transition M Hallbäck, DS Henningson, AV Johansson, PH Alfredson 233–68 Dordrecht, Neth.: Kluwer Acad. [Google Scholar]
  82. Schumann U. 1975. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18:376–404 [Google Scholar]
  83. Shin JK, An JS, Choi YD, Kim YC, Kim MS. 2008. Elliptic relaxation second moment closure for the turbulent heat fluxes. J. Turbul. 9:N3 [Google Scholar]
  84. Shur ML, Spalart PR, Strelets MK, Travin AK. 2015. An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow Turbul. Combust. 95:709–37 [Google Scholar]
  85. Shur ML, Strelets MK, Travin AK, Spalart PR. 2000. Turbulence modeling in rotating and curved channels: assessing the Spalart-Shur correction. AIAA J. 38:784–92 [Google Scholar]
  86. Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W. et al. 2014. CFD Vision 2030 study: a path to revolutionary computational aerosciences NASA Tech. Rep. CR-2014-218178 Langley Res. Cent Hampton, VA: [Google Scholar]
  87. Spalart PR. 2000. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21:252–63 [Google Scholar]
  88. Spalart PR. 2009. Detached eddy simulation. Annu. Rev. Fluid Mech. 41:181–202 [Google Scholar]
  89. Spalart PR. 2010. Reflections on RANS modelling. Progress in Hybrid RANS-LES Modelling: Papers Contributed to the 3rd Symposium on Hybrid RANS-LES Methods, Gdansk, Poland, June 2009 SH Peng, P Doerffer, W Haase 7–24 Berlin: Springer-Verlag [Google Scholar]
  90. Spalart PR, Deck S, Shur ML, Squires KD, Strelets MK, Travin AK. 2006. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20:181–95 [Google Scholar]
  91. Spalart PR, Shur ML. 1997. On the sensitization of turbulence models to rotation and curvature. Aerosp. Sci. Technol. 1:297–302 [Google Scholar]
  92. Speziale CG. 1991. Analytic methods for the development of Reynolds stress closures in turbulence. Annu. Rev. Fluid Mech. 23:107–57 [Google Scholar]
  93. Speziale CG. 1998. Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36:173–84 [Google Scholar]
  94. Speziale CG, Sarkar S, Gatski TB. 1991. Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227:245–72 [Google Scholar]
  95. Strelets M. 2001. Detached eddy simulation of massively separated flows Presented at AIAA Aerosp. Sci. Meet., 39th, Jan. 8–11, Reno, NV, AIAA Pap. 2001-0879 [Google Scholar]
  96. Suga K, Abe K. 2000. Nonlinear eddy viscosity modelling for turbulence and heat transfer near wall and shear-free boundaries. Int. J. Heat Fluid Flow 21:37–48 [Google Scholar]
  97. Suluksna K, Dechaumphai P, Juntasaro E. 2009. Correlations for modeling transitional boundary layers under influences of free stream turbulence and pressure gradient. Int. J. Heat Fluid Flow 30:66–72 [Google Scholar]
  98. Suzen YB, Huang PG. 1999. Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122:273–84 [Google Scholar]
  99. Taulbee DB. 1992. An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids A 4:2555–61 [Google Scholar]
  100. Tracey B, Duraisamy K, Alonso JJ. 2013. Application of supervised learning to quantify uncertainties in turbulence and combustion modeling Presented at AIAA Aerosp. Sci. Meet., 51st, Jan. 7–10, Grapevine, TX, AIAA Pap. 2013-0259 [Google Scholar]
  101. Uribe JC, Jarrin N, Prosser R, Laurence D. 2010. Development of a two-velocities hybrid RANS-LES model and its application to a trailing edge flow. Flow Turbul. Combust. 85:181–97 [Google Scholar]
  102. Wallin S, Johansson AV. 2000. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403:89–132 [Google Scholar]
  103. Wallin S, Johansson AV. 2002. Modelling streamline curvature effects in explicit algebraic Reynolds stress turbulence models. Int. J. Heat Fluid Flow 23:721–30 [Google Scholar]
  104. Walters DK, Bhushan S, Alam MF, Thompson DS. 2013. Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations. Flow Turbul. Combust. 91:643–67 [Google Scholar]
  105. Walters DK, Cokljat D. 2008. A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow. J. Fluids Eng. 130:121401 [Google Scholar]
  106. Walters DK, Leylek JH. 2004. A new model for boundary layer transition using a single-point RANS approach. J. Turbomach. 126:193–202 [Google Scholar]
  107. Wang L, Fu S. 2011. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition. Flow Turbul. Combust. 87:165–87 [Google Scholar]
  108. Weinmann M, Sandberg R. 2009. Suitability of explicit algebraic stress models for predicting complex three-dimensional flows Presented at AIAA Comput. Fluid Dyn. Conf., 19th, June 22–25, San Antonio, TX, AIAA Pap. 2009-3663 [Google Scholar]
  109. Westin KJA, Henkes RAWM. 1997. Application of turbulence models to bypass transition. J. Fluids Eng. 119:859–66 [Google Scholar]
  110. Wilcox DC. 1994. Simulation of transition with a two-equation turbulence model. AIAA J. 32:247–55 [Google Scholar]
  111. Wilcox DC. 1998. Turbulence Modeling for CFD Lake Arrowhead, CA: DCW Ind, 2nd ed.. [Google Scholar]
  112. Wu X, Durbin PA. 2000. Boundary layer transition induced by periodic wakes. J. Turbomach. 122:442–49 [Google Scholar]
  113. Xiao H, Jenny P. 2012. A consistent dual-mesh framework for hybrid LES/RANS modeling. J. Comput. Phys. 231:1848–65 [Google Scholar]
  114. Yin Z, Durbin PA. 2016. An adaptive DES model that allows wall-resolved eddy simulation. Int. J. Heat Fluid Flow 62:499–509 [Google Scholar]
  115. Yin Z, Reddy KR, Durbin PA. 2015. On the dynamic computation of the model constant in delayed detached eddy simulation. Phys. Fluids 27:025105 [Google Scholar]
  116. Zaki TA. 2013. From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91:451–73 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error