1932

Abstract

Conventional mineral waste disposal involves pumping dilute concentration suspensions of tailings to large catchment areas, where the solids settle to form a consolidated base while the excess water is evaporated. Unfortunately, this often takes years, if ever, to occur, and the interim period poses a severe threat to the surrounding countryside and water table. A worldwide movement to increase the concentration of these tailings to pastes for disposal above and below ground, obviating some of these issues, has led to the development of new technologies. Increasing the solids concentrations invariably produces non-Newtonian effects that can mask the underlying nature of the suspension mechanics, resulting in the use of poor pipeline and disposal methods. Combining rheological characterization and analysis with non-Newtonian suspension fluid mechanics provides insight into these flows, both laminar and turbulent. These findings provide the necessary basis for successful engineering designs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045027
2018-01-05
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-045027.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045027&mimeType=html&fmt=ahah

Literature Cited

  1. Abulnaga B. 2002. Slurry Systems Handbook New York: McGraw-Hill. [Google Scholar]
  2. Ansley RW, Smith TN. 1967. Motion of spherical particles in a Bingham plastic. AIChE J 13:1193–96 [Google Scholar]
  3. Atapattu DD, Chhabra RP, Uhlherr PHT. 1995. Creeping sphere motion in Herschel–Bulkley fluids: flow field and drag. J. Non-Newton. Fluid Mech. 59:245–65 [Google Scholar]
  4. Bagnold RA. 1956. The flow of cohesionless grains in fluids. Philos. Trans. R. Soc. A 249:235–97 [Google Scholar]
  5. Bedell D, Slottee S, Shoenbrunn F, Fawell P. 2015. Thickening. Paste and Thickened Tailings: A Guide RJ Jewell, A Fourie 113–36 Perth, Aust.: Aust. Cent. Geomech, 3rd ed.. [Google Scholar]
  6. Boger DV. 2009. Rheology and the resource industries. Chem. Eng. Sci. 64:4525–36 [Google Scholar]
  7. Boger DV, Scales PJ, Sofra F. 2006. Rheological concepts. See Jewell & Fourie 2006 21–46
  8. Brookes DA, Snoek PE. 1986. Stabflow slurry development. Proc. Int. Conf. Hydrotransp. Solids Pipes, 10th, Innsbruck, Austria, 29–31 Oct.89–100 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  9. Brown NP. 1988. Three scale-up techniques for stabilized coal-water slurries. Proc. Int. Conf. Hydrotransp. Solids Pipes, 11th, Stratford-upon-Avon, Engl., 19–21 Oct.267–83 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  10. Carrière P. 2007. On a three-dimensional implementation of the baker's transformation. Phys. Fluids 19:118110 [Google Scholar]
  11. Castelain C, Mokrani A, Le Guer Y, Peerhossaini H. 2001. Experimental study of chaotic advection regime in a twisted duct flow. Eur. J. Mech. B 20:205–32 [Google Scholar]
  12. Chhabra RP. 1993. Bubbles, Drops, and Particles in Non-Newtonian Fluids Boca Raton, FL: CRC, 1st ed.. [Google Scholar]
  13. Chhabra RP, Richardson JF. 1999. Non-Newtonian Flow in the Process Industries Oxford: Butterworth-Heinemann [Google Scholar]
  14. Clarke PF, Charles ME. 1993. A flow-sedimentation model for the laminar pipeline transport of slowly settling concentrated suspension. Proc. Int. Conf. Hydrotransp. Solids Pipes, 12th, Brugge, Belg., 28–30 Sept CA Shook 615–28 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  15. Clift R, Wilson KC, Addie GR. 1982. A mechanistically-based method for scaling pipeline tests for settling slurries. Proc. Int. Conf. Hydrotransp. Solids Pipes, 8th, Johannesburg, S. Afr., 25–27 Aug JF Richardson 91–101 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  16. Cochard S, Ancey C. 2009. Experimental investigation of the spreading of viscoplastic fluids on inclined planes. J. Non-Newton. Fluid Mech. 158:73–84 [Google Scholar]
  17. Coghill M, Jarvie N, Tinto R, Pullum L. 2014. Characterisation of thickened tailings suspensions using a 100NB and 150NB pilot test facility. Proc. Int. Conf. Hydrotransp. Solids Pipes, 19th, Golden, Colo., U.S.A., 24–26 Sept.421–35 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  18. Cooke R. 2002. Laminar flow settling: the potential for unexpected problems. Proc. Int. Conf. Hydrotransp. Solids Pipes, 15th, Banff, Can., 3–5 June121–33 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  19. Cooling D. 2006. Case study: Alcoa World Alumina, Australia. See Jewell & Fourie 2006, pp. 203–5 [Google Scholar]
  20. Darby R, Melson JD. 1982. Direct determinations of optimum economic pipe diameter for non-Newtonian fluids. J. Pipelines 2:11–21 [Google Scholar]
  21. Darby R, Mun R, Boger DV. 1992. Predicting friction loss in slurry pipes. Chem. Eng. 99:116–19 [Google Scholar]
  22. Dodge DW, Metzner AB. 1959. Turbulent flow of non-Newtonian systems. AIChE J 5:189–204 [Google Scholar]
  23. Doron P, Barnea D. 1993. A three-layer model for solid-liquid flow in horizontal pipes. Int. J. Multiph. Flow 19:1029–43 [Google Scholar]
  24. Doron P, Grancia D, Barnea D. 1987. Slurry flow in horizontal pipes—experimental and modeling. Int. J. Multiph. Flow 4:535–47 [Google Scholar]
  25. Duckworth RA, Addie GR, Maffett JR. 1986a. Mine waste disposal by pipeline using a fine slurry carrier. Proc. Int. Conf. Slurry Technol., 11th, Hilton Head, S.C., U.S.A., 16–18 March187–94 Washington, DC: Slurry Technol. Assoc. [Google Scholar]
  26. Duckworth RA, Pullum L, Lockyear CF. 1983. The hydraulic transport of coarse coal at high concentration. J. Pipelines 3:251–65 [Google Scholar]
  27. Duckworth RA, Pullum L, Lockyear CF, Addie GR. 1986b. The pipeline transport of coarse materials in a non-Newtonian carrier fluid. Proc. Int. Conf. Hydrotransp. Solids Pipes, 10th, Innsbruck, Austria, 29–31 Oct.69–88. Cranfield, UK: Br. Hydromech. Res. Assoc. Fluid Eng. [Google Scholar]
  28. Durand R, Condolios E. 1952. Experimental study of the hydraulic transport of coal and solid materials in pipes. Proc. Colloq. Hydraul. Transp. Coal, London, Engl., 5–6 Nov.39–55 London: Natl. Coal Board [Google Scholar]
  29. Elliot DE, Gliddon BJ. 1970. Hydraulic transport of coal at high concentrations. Proc. Int. Conf. Hydrotransp. Solids Pipes, 1st, Coventry, UK, 1–4 Sept AL King, MJ Rowat, HS Stephens G2–2556 Cranfield, UK: Br. Hydromech. Res. Assoc. Fluid Eng. [Google Scholar]
  30. Engels J. 2006. Tailings storage guidelines and standards Tailings.info, accessed on Nov. 11, 2016. http://www.tailings.info/knowledge/guidelines.htm [Google Scholar]
  31. Eskin D. 2005. An engineering model of solids diffusivity in hydraulic conveying. Powder Technol 159:78–86 [Google Scholar]
  32. Eskin D. 2012. A simple model of particle diffusivity in horizontal hydrotransport pipelines. Chem. Eng. Sci. 82:84–94 [Google Scholar]
  33. Eyler LL, Lombardo NJ, Barnhart JS. 1982. Hydrotransport plugging study: FY 1980–1981 progress report Tech. Rep. PNL-3621, Pac. Northwest Lab Richland, WA: [Google Scholar]
  34. Fourie A. 2012. Above ground disposal. Paste and Thickened Tailings: A Guide RJ Jewell, A Fourie Nedlands, Aust.: Aust. Cent. Geomech, 3rd ed.. [Google Scholar]
  35. Furstenau DW. 2001. Challenges in energy, environment and minerals Presented at Luleå Univ Tech., Luleå, Swed.: [Google Scholar]
  36. Gillies RG. 1993. Pipeline flow of coarse particle slurries PhD Thesis, Univ. Sask Saskat.: [Google Scholar]
  37. Gillies RG, Shook CA. 1994. Concentration distributions of sand in slurries in horizontal pipe flow. Part. Sci. Technol. 12:45–69 [Google Scholar]
  38. Gillies RG, Shook CA, Wilson KC. 1991. An improved two layer model for horizontal slurry pipeline flow. Can. J. Chem. Eng. 69:173–78 [Google Scholar]
  39. Gnambode PS, Orlandi P, Ould-Rouiss M, Nicolas X. 2015. Large-eddy simulation of turbulent pipe flow of power-law fluids. Int. J. Heat Fluid Flow 54:196–210 [Google Scholar]
  40. Hanks RW, Dadia BH. 1971. Theoretical analysis of the turbulent flow of non-Newtonian slurries in pipes. AIChE J 17:554–57 [Google Scholar]
  41. Hanks RW, Ricks BL. 1974. Laminar-turbulent transition in flow of pseudoplastic fluids with yield stresses. J. Hydronaut. 8:163–66 [Google Scholar]
  42. Heath AR, Bahri PA, Fawell PD, Farrow JB. 2006. Polymer flocculation of calcite: experimental results from turbulent pipe flow. AIChE J 52:1284–93 [Google Scholar]
  43. Highgate DJ, Whorlow RW. 1967. Viscous resistance to motion of a sphere falling through a sheared non-Newtonian liquid. Br. J. Appl. Phys. 18:1019–22 [Google Scholar]
  44. Jewell RJ, Fourie AB. 2006. Paste and Thickened Tailings: A Guide Nedlands, Aust.: Aust. Cent. Geomech, 2nd ed.. [Google Scholar]
  45. Jones H, Boger DV. 2012. Sustainability and waste management in the resource industries. Ind. Eng. Chem. Res. 51:10057–65 [Google Scholar]
  46. Kaushal DR, Seshadri V, Singh SN. 2002. Prediction of concentration and particle size distribution in the flow of multi-sized particulate slurry through rectangular duct. Appl. Math. Model. 26:941–52 [Google Scholar]
  47. Lawler HL, Cowper NT, Pertuit P, Tennant JD. 1978. Application of stabilised slurry concepts of pipeline transportation of large particle coal. Proc. Int. Conf. Slurry Transp., 3rd, Las Vegas, Nev., U.S.A, 29–31 March164–78 Washington, DC: Slurry Transp. Assoc. [Google Scholar]
  48. Lazarus JH, Cooke R. 1993. Generalised mechanistic model for heterogeneous flow in a non-Newtonian vehicle. Proc. Int. Conf. Hydrotransp. Solids Pipes, 12th, Brugge, Belg., 28–30 Sept CA Shook 671–90 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  49. Madhav GV, Chhabra RP. 1995. Drag on non-spherical particles in viscous fluids. Int. J. Miner. Proc. 43:15–29 [Google Scholar]
  50. Matoušek V, Krupička J, Chára Z. 2014. Stationary- and sliding beds in pipe flows of settling slurry. Int. Freight Pipeline Soc. Symp., 15th, Prague, Czech Repub., 24–27 June P Vlasák, M Barešová, V Matoušek, Z Chára 172–80 Prague: Ústav Hydrodyn. [Google Scholar]
  51. Meijer HEH, Singh MK, Anderson PD. 2012. On the performance of static mixers: a quantitative comparison. Prog. Polym. Sci. 37:1333–49 [Google Scholar]
  52. Mikula RJ. 2012. Advances in oil sands tailings handling: building the base for reclamation. Restoration and Reclamation of Boreal Ecosystems: Attaining Sustainable Development DH Vitt, JH Bhatti 103–22 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  53. Montserrat G, Tamburriono A, Ihle C. 2017. High concentration particle transport in a laminar pseudo plastic fluid flow: pipeline friction losses. Proc. Int. Conf. Hydrotransp. Solids Pipes, 20th, Melbourne, Aust., 3–5 May457–70 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  54. Newitt RDM, Richardson JF, Abbott M, Turtle RB. 1955. Hydraulic conveying of solids in horizontal pipes. Trans. Inst. Chem. Eng. 33:293–113 [Google Scholar]
  55. Owen AT, Fawell PD, Swift JD, Labbett DM, Benn FA, Farrow JB. 2008. Using turbulent pipe flow to study the factors affecting polymer-bridging flocculation of mineral systems. Int. J. Miner. Proc. 87:90–99 [Google Scholar]
  56. Paterson AJC, Cooke R, Gericke D. 1998. Design of hydraulic backfill distribution systems: lessons from case studies. Minefill '98: Proc. Int. Conf. Miner. Backfill, 6th, Brisbane, Aust., 14–16 April M Bloss 121–27 Carlton, Aust.: Australas. Inst. Miner. Metall. [Google Scholar]
  57. Pěník V, Kesely M, Matoušek V. 2015. Coarse particle support in turbulent flow of visco-plastic carrier. EPJ Web Conf 114:02090 [Google Scholar]
  58. Pirouz B, Seddon K, Pavissich C, Williams P, Echivarria J. 2013. Flow though tilt flume testing for beach slope evaluation at Chuquicamata Mine Codelco, Chile. Paste 2013: Proc. Int. Semin. Paste Thick. Tailings, 16th, Belo Horizonte, Braz., 17–20 June R Jewell, A Fourie, J Caldwell, J Pimenta 457–72 Nedlands, Aust.: Aust. Cent. Geomech. [Google Scholar]
  59. Pullum L. 2011. What's going on in there?. Paste 2011: Proc. Int. Semin. Paste Thick. Tailings, 14th, Perth, Aust., 5–7 April R Jewell, A Fourie 389–404 Perth, Aust.: Aust. Cent. Geomech. [Google Scholar]
  60. Pullum L. 2015. Non-Newtonian laboratory analysis Data Anal., Ga. Iron Works Augusta, GA: [Google Scholar]
  61. Pullum L, Chryss A, Graham L, Matoušek V, Pěník V. 2014. Modeling thickened tailings transport behaviour. Paste 2014: Proc. Int. Semin. Paste Thick. Tailings, 17th, Vancouver, Can., 8–12 June R Jewell, A Fourie, PS Wells, D van Zyl 539–52 Perth, Aust.: Aust. Cent. Geomech. [Google Scholar]
  62. Pullum L, Chryss A, Graham L, Matoušek V, Pěník V. 2015. Modelling turbulent transport of solids in non-Newtonian carrier fluids applicable to tailings disposal. Proc. Int. Conf. Transp. Sediment. Solid Part., 17th, 22–25 Sept., Delft, Neth.229–40 Delft, Neth.: Delft. Univ. Technol. [Google Scholar]
  63. Pullum L, Graham LJW. 1999. A new high concentration pipeline test loop facility. Proc. Int. Conf. Hydrotransp. Solids Pipes, 14th, Maastricht, Neth., 8–10 Sept JF Richardson 505–14 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  64. Pullum L, Graham LJW. 2000. The use of magnetic resonance imaging (MRI) to probe complex hybrid suspension flows. Proc. Int. Conf. Transp. Sediment. Solid Part., 10th, Wrocław, Pol., 4–7 Sept.421–33 Wrocław, Pol: Agric. Univ. Wroc. [Google Scholar]
  65. Pullum L, Graham LJW, Rudman M, Aldham B, Hamilton R. 2006. The ups and downs of paste transport. Paste 2006: Proc. Int. Semin. Paste Thick. Tailings, 9th, Limerick, Irel., 3–7 April R Jewell, S Lawson, P Newman 395–402 Perth, Aust.: Aust. Cent. Geomech. [Google Scholar]
  66. Pullum L, Graham LJW, Slatter P. 2004. A non-Newtonian two layer model and its application to high density hydrotransport. Proc. Int. Conf. Hydrotransp. Solids Pipes, 16th, Santiago, Chile, 26–28 April N Heywood 579–94 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  67. Pullum L, Graham LJW, Wu J. 2010. Bed establishment lengths under laminar flow. Proc. Int. Conf. Hydrotransp. Solids Pipes, 18th, Rio J., Braz., 22–24 Sept S Harrison, A Davies 261–76 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  68. Pullum L, McCarthy DJ, Longworth NJ. 1996. Operating experiences with a rotary ram slurry pump to transport ultra-high concentration coarse suspensions. Proc. Int. Conf. Hydrotransp. Solids Pipes, 13th, Johannesburg, S. Afr, 3–5 Sept JF Richardson 657–71 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  69. Raynal F, Gence J-N. 1997. Energy saving in chaotic laminar mixing. Int. J. Heat Mass Transf. 40:3267–73 [Google Scholar]
  70. Robinsky EI. 1975. Thickened discharge—a new approach to tailings disposal. Can. Inst. Miner. Metall. Pet. Bull. 68:47–53 [Google Scholar]
  71. Robinsky EI. 1978. Tailing disposal by the thickened discharge method for improved economy and environmental control. Tailing Disposal Today 2 Proceedings of the Second International Tailing Symposium, Denver, Colo75–95 San Francisco: Freeman [Google Scholar]
  72. Robinsky EI. 1999. Thickened Tailings Disposal in the Mining Industry Toronto: E.I. Robinsky Assoc. [Google Scholar]
  73. Rojas MR, Saez AE. 2012. Two-layer model for horizontal pipe flow of Newtonian and non-Newtonian settling dense slurries. Ind. Eng. Chem. Res. 51:7095–103 [Google Scholar]
  74. Rudman M, Blackburn HM, Graham LJW, Pullum L. 2004. Turbulent pipe flow of shear-thinning fluids. J. Non-Newton. Fluid Mech. 118:33–48 [Google Scholar]
  75. Ryan NW, Johnson MM. 1959. Transition from laminar to turbulent flow in pipes. AIChE J 5:433–35 [Google Scholar]
  76. Schaflinger U, Acrivos A, Stibi H. 1995. An experimental study of viscous resuspension in a pressure-driven plane channel flow. Int. J. Multiph. Flow 21:693–704 [Google Scholar]
  77. Schaflinger U, Acrivos A, Zhang K. 1990. Viscous resuspension of a sediment within a laminar and stratified flow. Int. J. Multiph. Flow 16:567–78 [Google Scholar]
  78. Sellgren A, Wilson KC. 2007. Validation of a four-component pipeline friction-loss model. Proc. Int. Conf. Hydrotransp. Solids Pipes, 17th, Cape Town, S. Afr., 7–11 May193–204 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  79. Shah SN, Lord DL. 1991. Critical velocity correlations for slurry transport with non-Newtonian fluids. AIChE J 37:863–70 [Google Scholar]
  80. Shauly A, Wachs A, Nir A. 2000. Shear-induced particle resuspension in settling polydisperse concentrated suspension. Int. J. Multiph. Flow 261–15 [Google Scholar]
  81. Shook CA, Roco MC. 1991. Slurry Flow: Principles and Practice Stoneham, MA: Butterworth-Heinemann [Google Scholar]
  82. Simms P, William MPA, Fitton TG, McPhail G. 2012. Beach slope panel discussion Presented at Paste 2012: Int. Semin. Paste Thick. Tailings, April 18, Sun City, S. Afr. [Google Scholar]
  83. Singh J, Rudman M, Blackburn HM, Chryss A, Pullum L. 2014. Turbulent flow of non-Newtonian fluids in a partially blocked pipe. Australas. Fluid Mech. Conf., 19th, Melbourne, Aust., 8–11 Dec Melbourne, Aust.: R. Melbourne Inst. Technol. [Google Scholar]
  84. Singh J, Rudman M, Blackburn HM, Chryss A, Pullum L, Graham LJW. 2016. The importance of rheology characterization in predicting turbulent pipe flow of generalized Newtonian fluids. J. Non-Newton. Fluid Mech. 232:11–21 [Google Scholar]
  85. Slatter PT. 1995. Transitional and turbulent flow of non-Newtonian slurries in pipes PhD Thesis, Univ. Cape Town, Cape Town, S. Afr. [Google Scholar]
  86. Slatter PT. 2000. The role of rheology in the pipelining of mineral slurries. Miner. Proc. Extr. Metall. Rev. 20:281–300 [Google Scholar]
  87. Slatter PT, Wasp EJ. 2000. The laminar/turbulent transition in large pipes. Proc. Int. Conf. Transp. Sediment. Solid Part., 10th, Wrocław, Pol., 4–7 Sept.389–97 Wrocław, Pol.: Agric. Univ. Wroc. [Google Scholar]
  88. Song TC, Chiew YM. 1997. Settling characteristics of sediments in moving Bingham fluid. J. Hydraul. Eng. 123:812–15 [Google Scholar]
  89. Spelay RB. 2007. Solids transport in laminar, open channel flow of non-Newtonian slurries PhD Thesis, Univ. Sask., Saskat. [Google Scholar]
  90. Stainsby R, Chilton RA. 1998. Prediction of frictional pressure losses in laminar and turbulent non-Newtonian pipe flows. Pumping Sludge and Slurry13–30 Bury St. Edmunds, UK: Mech. Eng. Pub. [Google Scholar]
  91. Talmon AM, Huisman M. 2005. Fall velocity of particles in shear flow of drilling fluids. Tunn. Undergr. Space Technol. 20:193–201 [Google Scholar]
  92. Talmon AM, Mastbergen D. 2004. Solids transport by drilling fluids: concentrated bentonite-sand-slurries. Proc. Transp. Sediment. Solid Part., 12th, Prague, Czech Repub., 20–24 Sept.641–49 Prague: Ústav Hydrodyn. [Google Scholar]
  93. Talmon AM, van Kesteren WGM, Mastbergen DR, Pennekamp JGS, Sheets B. 2014. Calculation methodology for segregation of solids in non-Newtonian carrier fluids. Paste 2014: Proc. Int. Semin. Paste Thick. Tailings, 17th, Vancouver, Can., 8–12 June R Jewell, A Fourie, PS Wells, D van Zyl 139–54 Perth, Aust.: Aust. Cent. Geomech. [Google Scholar]
  94. Talmon AM, van Kesteren WGM, Sittoni L, Hedblom E. 2012. Shear cell tests for quantification of tailings segregation. Can. J. Chem. Eng. 92:362–73 [Google Scholar]
  95. Tellevantos Y, Shook C, Carleton A. 1979. Flow of slurries of coarse particles at high solids concentrations. Can. J. Chem. Eng. 57:255–62 [Google Scholar]
  96. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. 2003. Static mixers in the process industries—a review. Chem. Eng. Res. Des. 81:787–826 [Google Scholar]
  97. Thomas AD. 1978. Coarse particles in a heavy medium—turbulent pressure drop reduction and deposition under laminar flow. Proc. Int. Conf. Hydrotransp. Solids Pipes, 5th, Hanover, Ger., 8–11 May HS Stephens, L Gittins D5–6378 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  98. Thomas AD. 1979a. Pipelining of coarse coal as a stabilized slurry: another viewpoint. Proc. Int. Technol. Conf. Slurry Transp., 4th, Las Vegas, Nev., 28–30 March196–205 Las Vegas, Nev: Slurry Transp. Assoc. [Google Scholar]
  99. Thomas AD. 1979b. Settling of particles in a horizontally sheared Bingham plastic. Proc. Natl. Conf. Rheol., 1st, Melbourne, Aust., 30 May–June 1 PHT Uhlherr89–92 Clayton, Aust: Dept. Chem. Eng., Monash Univ. [Google Scholar]
  100. Traynis VV. 1977. Parameters and Flow Regimes for Hydraulic Transport of Coal by Pipeline Rockville, MD: Terraspace [Google Scholar]
  101. Visintainer R, Furlan J, McCall G II, Sellgren A, Matoušek V. 2017. Comprehensive loop testing of a broadly graded (4-component) slurry. Proc. Int. Conf. Hydrotransp. Solids Pipes, 20th, Melbourne, Aust., 3–5 May307–323 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  102. Wasp EJ, Kenny JP, Gandhi RL. 1977. Solid-Liquid Flow: Slurry Pipeline Transportation Clausthal, Ger.: Trans Tech [Google Scholar]
  103. Wells PS, Revington A, Omotoso O. 2011. Mature fine tailings drying—technology update. Paste 2011: Proc. Int. Semin. Paste Thick. Tailings, 14th, Perth, Aust., 5–7 April R Jewell, A Fourie 155–66 Perth, Aust.: Aust. Cent. Geomech. [Google Scholar]
  104. Wildemuth CR, Williams MC. 1984. Viscosity of suspensions modelled with a shear-dependent maximum packing fraction. Rheol. Acta 23:627–35 [Google Scholar]
  105. Wilson KC. 1976. A unified physically-based analysis of solid-liquid pipeline flow. Proc. Int. Conf. Hydrotransp. Solids Pipes, 4th, Banff, Can., 18–21 May HS Stephens A1–16 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  106. Wilson KC, Addie GR, Clift R. 2006. Slurry Transport Using Centrifugal Pumps New York: Springer, 3rd ed.. [Google Scholar]
  107. Wilson KC, Clift R, Addie GR, Maffett J. 1990. Effect of broad particle grading on slurry stratification ratio and scale-up. Powder Technol 61:165–72 [Google Scholar]
  108. Wilson KC, Horsley RR. 2004. Calculating fall velocities in non-Newtonian (and Newtonian) fluids: a new view. Proc. Int. Conf. Hydrotransp. Solids Pipes, 16th, Santiago, Chile, 26–28 April N Heywood 37–46 Cranfield, UK: Br. Hydromech. Res. Assoc. [Google Scholar]
  109. Wilson KC, Thomas AD. 1985. A new analysis of the turbulent flow of non-Newtonian fluids. Can. J. Chem. Eng. 63:539–46 [Google Scholar]
  110. WISE (World Inf. Serv. Energy). 2016. Chronology of major tailings dam failures WISE Uranium Project. http://www.wise-uranium.org/mdaf.html [Google Scholar]
  111. World Resour. Inst. 2014. Aqueduct water risk atlas Aqueduct Global Maps 2. 1 World Resour. Inst Washington, DC: http://bit.ly/2tUM0wc [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045027
Loading
/content/journals/10.1146/annurev-fluid-122316-045027
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error