Blistering occurs when a thin solid layer locally separates from an underlying substrate through cracking of a bulk material, delamination of a composite material, or peeling of a membrane adhered to the substrate by a thin layer of viscous fluid. In this last scenario, the expansion of the newly formed blister by fluid injection occurs via a displacement flow, which peels apart the adhered surfaces through a two-way interaction between flow and deformation. Such blisters are prone to fluid and solid mechanical instabilities. If the injected fluid is less viscous than the fluid already occupying the gap, patterns of short and stubby fingers form on the propagating fluid interface. This process is regulated by membrane compliance, which if increased delays the onset of fingering to higher flow rates and reduces finger amplitude. Suppression is mediated by the locally tapered geometry of the blister near the fluid interface, which is imposed by the underlying blistering flow. Buckling/wrinkling instabilities of the delaminated layer arise for sufficiently thin membranes and can interact with the fluid mechanical fingering instability.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adda-Bedia M, Mahadevan L. 2006. Crack-front instability in a confined elastic film. Proc. R. Soc. A 462:3233–51 [Google Scholar]
  2. Al-Housseiny TT, Christov IC, Stone HA. 2013. Two-phase fluid displacement and interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111:034502 [Google Scholar]
  3. Al-Housseiny TT, Stone HA. 2013. Controlling viscous fingering in tapered Hele-Shaw cells. Phys. Fluids 25:092102 [Google Scholar]
  4. Al-Housseiny TT, Tsai PA, Stone HA. 2012. Control of interfacial instabilities using flow geometry. Nat. Phys. 8:747–50 [Google Scholar]
  5. Ben Amar M, Combescot R, Couder Y. 1993. Viscous fingering with adverse anisotropy: a new Saffman-Taylor finger. Phys. Rev. Lett. 70:3047–50 [Google Scholar]
  6. Ben-Jacob E, Godbey R, Goldenfeld ND, Koplik J, Levine H. et al. 1985. Experimental demonstration of the role of anisotropy in interfacial pattern formation. Phys. Rev. Lett. 55:1315–18 [Google Scholar]
  7. Biggins JS, Saintyves B, Wei Z, Bouchaud E, Mahadevan L. 2013. Digital instability of a confined elastic meniscus. PNAS 110:12545–48 [Google Scholar]
  8. Chaudhury MK, Chakrabarti A, Ghatak A. 2015. Adhesion-induced instabilities and pattern formation in thin films of elastomers and gels. Eur. Phys. J. E 38:82 [Google Scholar]
  9. Chen C, Huang CW, Wang LC, Miranda JA. 2010. Controlling radial fingering patterns in miscible confined flows. Phys. Rev. E 82:056308 [Google Scholar]
  10. Chen JD. 1989. Growth of radial viscous fingers in a Hele-Shaw cell. J. Fluid Mech. 201:223–42 [Google Scholar]
  11. Chopin J, Vella D, Boudaoud A. 2008. The liquid blister test. Proc. R. Soc. A 464:2887–906 [Google Scholar]
  12. Chou T, Siegel M. 2010. A mechanical model of retinal detachment. Phys. Biol. 9:046001 [Google Scholar]
  13. Couder Y. 2000. Viscous fingering as an archetype for growth patterns. Perspectives in Fluid Dynamics GK Batchelor, HK Moffatt, MG Worster 53–104 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  14. Couder Y, Cardoso O, Dupuy D, Tavernier P, Thom W. 1986a. Dendritic growth in the Saffman-Taylor experiment. Europhys. Lett. 2:437–43 [Google Scholar]
  15. Couder Y, Gérard N, Rabaud M. 1986b. Narrow fingers in the Saffman-Taylor instability. Phys. Rev. A 34:5175–78 [Google Scholar]
  16. Dannenberg H. 1961. Measurement of adhesion by a blister method. J. Appl. Polym. Sci. 5:125–34 [Google Scholar]
  17. Dias EO, Alvarez-Lacalle E, Carvalho MS, Miranda JA. 2012. Minimization of viscous fluid fingering: a variational scheme for optimal flow rates. Phys. Rev. Lett. 109:144502 [Google Scholar]
  18. Dias EO, Miranda JA. 2010. Control of radial fingering patterns: a weakly nonlinear approach. Phys. Rev. E 81:016312 [Google Scholar]
  19. Dias EO, Miranda JA. 2013. Taper-induced control of viscous fingering in variable-gap Hele-Shaw flows. Phys. Rev. E 87:053015 [Google Scholar]
  20. Ducloué L, Hazel AL, Pihler-Puzović D, Juel A. 2017a. Viscous fingering and dendritic growth under an elastic membrane. J. Fluid Mech. 826:R2 [Google Scholar]
  21. Ducloué L, Hazel AL, Thompson AB, Juel A. 2017b. Reopening modes of a collapsed elasto-rigid channel. J. Fluid Mech. 819:121–46 [Google Scholar]
  22. Franco-Gómez A, Thompson AB, Hazel AL, Juel A. 2016. Sensitivity of Saffman-Taylor fingers to channel-depth perturbations. J. Fluid Mech. 794:343–68 [Google Scholar]
  23. Gadêlha H, Miranda J. 2009. Effects of normal viscous stresses on radial viscous fingering. Phys. Rev. E 79:066312 [Google Scholar]
  24. Gaver DP, Halpern D, Jensen OE, Grotberg JB. 1996. The steady motion of a semi-infinite bubble through a flexible walled channel. J. Fluid Mech. 319:25–56 [Google Scholar]
  25. Ghatak A, Chaudhury MK, Shenoy V, Sharma A. 2000. Meniscus instability in a thin elastic film. Phys. Rev. Lett. 85:4329–32 [Google Scholar]
  26. Gioia G, Ortiz M. 1997. Delamination of compressed thin films. Adv. Appl. Mech. 33:119–92 [Google Scholar]
  27. Hakim V, Rabaud M, Thomé H, Couder Y. 1990. Directional growth in viscous fingering. New Trends in Nonlinear Dynamics and Pattern Forming Phenomena P Coullet, P Huerre 327–37 New York: Springer [Google Scholar]
  28. Heil M, Hazel AL. 2011. Fluid-structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43:141–62 [Google Scholar]
  29. Hewitt IJ, Balmforth NJ, de Bruyn JR. 2015. Elastic-plated gravity currents. Eur. J. Appl. Math. 26:1–31 [Google Scholar]
  30. Holmes DP, Crosby AJ. 2010. Draping films: a wrinkle to fold transition. Phys. Rev. Lett. 105:038303 [Google Scholar]
  31. Huang J, Davidovitch B, Santangelo CD, Russell TP, Menon N. 2010. Smooth cascade of wrinkles at the edge of a floating elastic film. Phys. Rev. Lett. 105:038302 [Google Scholar]
  32. Huang R, Suo Z. 2002. Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 91:1135–42 [Google Scholar]
  33. Hutchinson JW, Suo Z. 1991. Mixed mode cracking in layered materials. Adv. Appl. Mech. 29:63–191 [Google Scholar]
  34. Hutchinson JW, Thouless MD, Liniger EG. 1992. Growth and configurational stability of circular, buckling-driven film delaminations. Acta Metall. Mater. 40:295–308 [Google Scholar]
  35. Jensen HM, Thouless MD. 1993. Effects of residual stresses in the blister test. Int. J. Solids Struct. 30:779–95 [Google Scholar]
  36. Jensen OE, Horsburgh MK, Halpern D, Gaver DPI. 2002. The steady propagation of a bubble in a flexible-walled channel: asymptotic and computational models. Phys. Fluids 14:443–57 [Google Scholar]
  37. Lajeunesse E, Couder Y. 2000. On the tip-splitting instability of viscous fingers. J. Fluid Mech. 419:125–49 [Google Scholar]
  38. Landau LD, Lifshitz EM. 1970. Theory of Elasticity Oxford: Pergamon:, 2nd ed..
  39. Li S, Lowengrub JS, Fontana J, Palffy-Muhoray P. 2009. Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys. Rev. Lett. 102:174501 [Google Scholar]
  40. Lister JR, Kerr RC. 1991. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. Solid Earth 96:10049–77 [Google Scholar]
  41. Lister JR, Peng GG, Neufeld JA. 2013. Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111:154501 [Google Scholar]
  42. Maleki M, Reyssat M, Restagno F, Quéré D, Clanet C. 2011. Landau–Levich menisci. J. Colloid Interface Sci. 354:359–63 [Google Scholar]
  43. McCloud KV, Maher JV. 1995. Experimental perturbations to Saffman-Taylor flow. Phys. Rep. 260:139–85 [Google Scholar]
  44. McEwan AD, Taylor GI. 1966. The peeling of a flexible strip attached by a viscous adhesive. J. Fluid Mech. 26:1–15 [Google Scholar]
  45. Michalland S, Rabaud M, Couder Y. 1993. Directional viscous fingering. Europhys. Lett. 22:117–22 [Google Scholar]
  46. Michaut C. 2011. Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. 116:B05205 [Google Scholar]
  47. Mönch W, Herminghaus S. 2001. Elastic instability of rubber films between solid bodies. Europhys. Lett. 53:525 [Google Scholar]
  48. Pailha M, Hazel AL, Glendinning PA, Juel A. 2012. Oscillatory bubbles induced by geometrical constraint. Phys. Fluids 24:021702 [Google Scholar]
  49. Paterson L. 1981. Radial fingering in a Hele-Shaw cell. J. Fluid Mech. 113:513–29 [Google Scholar]
  50. Pearson JR. 1960. The instability of uniform viscous flow under rollers and spreaders. J. Fluid Mech. 7:481–500 [Google Scholar]
  51. Peng GG. 2017. Viscous flows under elastic sheets PhD Thesis, Univ. Cambridge
  52. Peng GG, Pihler-Puzović D, Juel A, Heil M, Lister J. 2015. Displacement flows under elastic membranes. Part 2: analysis of interfacial effects. J. Fluid Mech. 784:512–47 [Google Scholar]
  53. Pihler-Puzović D, Illien P, Heil M, Juel A. 2012. Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108:074502 [Google Scholar]
  54. Pihler-Puzović D, Juel A, Heil M. 2014. The interaction between viscous fingering and wrinkling in elastic-walled Hele-Shaw cells. Phys. Fluids 26:022102 [Google Scholar]
  55. Pihler-Puzović D, Juel A, Peng GG, Lister JR, Heil M. 2015. Displacement flows under elastic membranes. Part 1: experiments and direct numerical simulations. J. Fluid Mech. 784:487–511 [Google Scholar]
  56. Pihler-Puzović D, Périllat R, Russell M, Juel A, Heil M. 2013. Modelling the suppression of viscous fingering in elastic-walled Hele-Shaw cells. J. Fluid Mech. 731:162–83 [Google Scholar]
  57. Pitts E, Greiller J. 1961. The flow of thin liquid films between rollers. J. Fluid Mech. 11:33–50 [Google Scholar]
  58. Pocivavsek L, Dellsy R, Kern A, Johnson S, Lin B. et al. 2008. Stress and fold localization in thin elastic membranes. Science 320:912–16 [Google Scholar]
  59. Rabaud M, Couder Y, Gérard N. 1988. The dynamics and stability of anomalous Saffman-Taylor fingers. Phys. Rev. A 64:935–47 [Google Scholar]
  60. Rabaud M, Couder Y, Michalland S. 1991. Wavelength selection and transients in the one-dimensional array of cells of the printer's instability. Eur. J. Mech. B 10:253–60 [Google Scholar]
  61. Rabaud M, Michalland S, Couder Y. 1990. Dynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagation. Phys. Rev. Lett. 64:184–87 [Google Scholar]
  62. Reinelt DA. 1995. The primary and inverse instabilities of directional viscous fingering. J. Fluid Mech. 285:303–27 [Google Scholar]
  63. Reinelt DA, Saffman PG. 1985. The penetration of a finger into a viscous fluid in a channel and tube. SIAM J. Sci. Stat. Comput. 6:542–61 [Google Scholar]
  64. Rubin AM. 1995. Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23:287–336 [Google Scholar]
  65. Ruschak KJ. 1985. Coating flows. Annu. Rev. Fluid Mech. 17:65–89 [Google Scholar]
  66. Saffman P, Taylor G. 1958. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. A 245:312–29 [Google Scholar]
  67. Saintyves B, Dauchot O, Bouchaud E. 2013. Bulk elastic fingering instability in Hele-Shaw cells. Phys. Rev. Lett. 111:047801 [Google Scholar]
  68. Sulzberger MB, Cortese TA, Fishman L, Wiley HS. 1966. Studies on blisters produced by friction. I. Results of linear rubbing and twisting technics. J. Invest. Dermatol. 47:456–65 [Google Scholar]
  69. Taylor G. 1963. Cavitation of a viscous fluid in narrow passages. J. Fluid Mech. 16:595–619 [Google Scholar]
  70. Thompson AB, Juel A, Hazel AL. 2014. Multiple finger propagation modes in Hele-Shaw channels of variable depth. J. Fluid Mech. 746:123–64 [Google Scholar]
  71. Thouless MD, Jensen HM, Liniger EG. 1994. Delamination from edge flaws. Proc. R. Soc. A 447:271–79 [Google Scholar]
  72. Vandeparre H, Pineirua M, Brau F, Roman B, Bico J. et al. 2011. Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains. Phys. Rev. Lett. 106:224301 [Google Scholar]
  73. Vilmin T, Ziebert F, Raphaël E. 2010. Simple view on fingering instability of debonding soft elastic adhesives. Langmuir 26:3257–60 [Google Scholar]
  74. Wei Z, Mahadevan L. 2016. A geometric model for the periodic undulation of a confined adhesive crack. Soft Matter 12:1778–82 [Google Scholar]
  75. Weinstein SJ, Ruschak KJ. 2004. Coating flows. Annu. Rev. Fluid Mech. 36:29–53 [Google Scholar]
  76. Zheng Z, Kim H, Stone HA. 2015. Controlling viscous fingering using time-dependent strategies. Phys. Rev. Lett. 115:174501 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error