Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Barnes FW, Seagal C. 2015. Cavity-based flameholding for chemically-reacting supersonic flows. Prog. Aerosp. Sci. 76:24–41 [Google Scholar]
  2. Berglund M, Fureby C. 2007. LES of supersonic combustion in a scramjet engine model. Proc. Combust. Inst. 31:2497–504 [Google Scholar]
  3. Bermejo-Moreno I, Larsson J, Bodart J, Vicquelin R. 2013. Wall-modeled large-eddy simulations of the HIFiRE-2 scramjet. Annual Research Briefs 20133–19 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  4. Berry S, Daryabeigi K, Wurster K, Bittner R. 2010. Boundary-layer transition on X-43A. J. Spacecr. Rocket. 47:922–44 [Google Scholar]
  5. Bowcutt K, Paull A, Dolvin D, Smart M. 2012. HIFiRE: an international collaboration to advance the science and technology of hypersonic flight Presented at Int. Congr. Aeronaut. Sci , 12th. Leiden, Neth.: [Google Scholar]
  6. Boyce R, McIntyre T, O'Byrne S, Hagenmaier M. 2010. Combustion scaling laws and inlet starting for Mach 8 inlet-injection radical farming scramjets Rep. AOARD-094019, Wright Patterson Airf. Base, OH [Google Scholar]
  7. Brieschenk S, O'Byrne S, Kleine H. 2013. Laser-induced plasma ignition studies in a model scramjet engine. Combust. Flame 160:145–48 [Google Scholar]
  8. Brummund U, Nuding J. 1997. Interaction of a compressible shear layer with shock waves: an experimental study Presented at Aerosp. Sci. Meet, 35th. Reno, NV, AIAA Pap. 1997-0392 [Google Scholar]
  9. Burke SP, Schumann TEW. 1928. Diffusion flames. Ind. Eng. Chem. 20:998–1004 [Google Scholar]
  10. Cabell K, Haas N, Storch A, Gruber M. 2011. HIFiRE Direct-Connect Rig (HDCR) phase I scramjet test results from the NASA Langley Arc-Heated Scramjet Test Facility Presented at Int. Space Planes Hypersonic Syst. Technol. Conf., 17th, San Francisco, CA, AIAA Pap. 2011-248 [Google Scholar]
  11. Cantu LML, Gallo ECA, Cutler AD, Danehy PM, Johansen CT. et al. 2016. OH PLIF visualization of a premixed ethylene-fueled dual-mode scramjet combustor Presented at AIAA Aerosp. Sci. Meet., 54st, San Diego, CA, AIAA Pap. 2016-1763 [Google Scholar]
  12. Chapuis M, Fedina E, Fureby C, Hannemann K, Karl S, Schramm JM. 2013. A computational study of the HyShot II combustor performance. Proc. Combust. Inst. 31:2101–9 [Google Scholar]
  13. Cheng TS, Wehrmeyer JA, Pitz RW, Jarrett O, Northam GB. 1994. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame. Combust. Flame 99:157–73 [Google Scholar]
  14. Curran ET, Heiser WH, Pratt DT. 1996. Fluid phenomena in scramjet combustion systems. Annu. Rev. Fluid Mech. 28:323–60 [Google Scholar]
  15. Curran ET, Murthy SNB. 2000. Scramjet Propulsion Reston, VA: Am. Inst. Aeronaut. Astronaut. [Google Scholar]
  16. Da Riva I, Urrutia JL. 1968. Ignition delay in diffusive supersonic combustion. AIAA J 6:2095–53 [Google Scholar]
  17. Del Álamo G, Williams FA, Sánchez AL. 2004. Hydrogen-oxygen induction times above crossover temperatures. Combust. Sci. Technol. 176:1599–626 [Google Scholar]
  18. Doran EM. 2011. A multi-dimensional flamelet model for ignition in multi-feed combustion systems PhD Thesis, Stanford Univ. [Google Scholar]
  19. Etheridge S, Lee JG, Carter C, Hagenmaier M. 2012. Characterization of supersonic flow interaction with a shockwave using laser-based diagnostics Presented at AIAA/ASME/SAE/ASEE Joint Propuls. Conf. Exhib., 48th, Atlanta, GA, AIAA Pap. 2012-3776 [Google Scholar]
  20. Ferrer PJ, Lehnasch G, Mura A. 2017. Compressibility and heat release effects in high-speed reactive mixing layers II. Structure of the stabilization zone and modeling issues relevant to turbulent combustion in supersonic flows. Combust. Flame 180:304–20 [Google Scholar]
  21. Ferri A. 1973. Mixing-controlled supersonic combustion. Annu. Rev. Fluid Mech. 5:301–38 [Google Scholar]
  22. Fulton J, Edwards J, Hassan H, McDaniel J, Goyne C, Rockwell R. 2013. Continued hybrid LES/RANS simulation of a hypersonic dual-mode scramjet combustor Presented at AIAA Aerosp. Sci. Meet., 51st, Grapevine, TX, AIAA Pap. 2013-0117 [Google Scholar]
  23. Fulton J, Edwards J, Hassan H, Rockwell R, Goyne C. et al. 2012. Large-eddy/Reynolds-averaged Navier-Stokes simulation of a dual-mode scramjet combustor Presented at AIAA Aerosp. Sci. Meet., 50th, Nashville, TN, AIAA Pap. 2012-0115 [Google Scholar]
  24. Fureby C. 2012. LES for supersonic combustion Presented at AIAA Int. Space Planes Hypersonic Syst. Technol. Conf., 18th, Tours, France, AIAA Pap. 2012-5979 [Google Scholar]
  25. Fureby C, Nordin-Bates K, Petterson K, Bresson A, Sabelnikov V. 2015. A computational study of supersonic combustion in strut injector and hypermixer flow fields. Proc. Combust. Inst. 35:2127–35 [Google Scholar]
  26. Gamba M, Mungal GD. 2015. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow. J. Fluid Mech. 780:226–73 [Google Scholar]
  27. Gardner AD, Hannemann K, Pauli A, Steelant J. 2005. Ground testing of the HyShot supersonic combustion flight experiment in HEG. Shock Waves: Proc. Int. Symp. Shock Waves, 24th, 11–16 July, Beijing, China Z Jiang 329–34 Berlin: Springer-Verlag [Google Scholar]
  28. Génin F, Chernyavsky B, Menon S. 2003. Large eddy simulation of scramjet combustion using a subgrid mixing/combustion model Presented at Int. Space Planes Hypersonic Syst. Technol. Conf., 12th, Norfolk, VA, AIAA Pap. 2003-7035 [Google Scholar]
  29. Génin F, Menon S. 2010a. Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J 3:526–39 [Google Scholar]
  30. Génin F, Menon S. 2010b. Studies of shock/turbulent shear layer interaction using large-eddy simulation. Comput. Fluids 39:800–19 [Google Scholar]
  31. Giovangigli V. 1991. Multicomponent Flow Modeling Basel, Switz.: Birkhäuser [Google Scholar]
  32. Gonzalez-Juez ED, Kerstein AR, Ranjan R, Menon S. 2017. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Prog. Energy Combust. Sci. 60:26–67 [Google Scholar]
  33. Goyne CP, Krauss RH, McDaniel JC, Whitehurst WB. 2007. Test gas vitiation effects in a dual-mode scramjet combustor. J. Propuls. Power 31:36–53 [Google Scholar]
  34. Goyne CP, Rodriguez CP, McClinton CR. 2006. Experimental and numerical study of a dual-mode scramjet combustor. J. Propuls. Power 22:481–89 [Google Scholar]
  35. Gradya NR, Pitz RW, Carter CD, Hsu KY. 2016. Raman scattering measurements of mixing and finite-rate chemistry in a supersonic reacting flow over a piloted ramped cavity. Combust. Flame 165:310–20 [Google Scholar]
  36. Gruber MR, Donbar JM, Carter CD, Hsu KY. 2004. Mixing and combustion studies using cavity-based flameholders in a supersonic flow. J. Propuls. Power 20:769–78 [Google Scholar]
  37. Hallion RP. 1987. The Hypersonic Revolution 2 From Scramjet to the National Aero-Space Plane (1964–1986) Wright Patterson Airf Base, OH: Aeronaut. Syst. Div. [Google Scholar]
  38. Hallion RP, Bedke CM, Schanz MV. 2016. Hypersonic Weapons and US National Security: A 21st Century Breakthrough Arlington, VA: Mitchell Inst. Aerosp. Stud. [Google Scholar]
  39. Halls BR, Gord JR, Jiang N, Splichenko M, Roy S, Meyer TR. 2016. High-speed three-dimensional tomographic measurements for combustion systems Presented at AIAA Aerodyn. Meas. Technol. Ground Test. Conf , 32nd. Washington, DC: AIAA Pap 2016-4027 [Google Scholar]
  40. Hank JM, Murphy JS, Murtzman RC. 2008. The X-51A scramjet engine flight demonstration program Presented at AIAA Int. Space Planes Hypersonic Syst. Technol. Conf , 15th. Dayton, OH: AIAA Pap 2008-2540 [Google Scholar]
  41. Heiser WH, Pratt DT. 1994. Hypersonic Airbreathing Propulsion Washington, DC: Am. Inst. Aeronaut. Astronaut. [Google Scholar]
  42. Hermanson JC, Cetegen BM. 2000. Shock-induced mixing of nonhomogeneous density turbulent jets. Phys. Fluids 12:1210–25 [Google Scholar]
  43. Hermanson JC, Dimotakis PE. 1989. Effects of heat release in a turbulent, reacting shear layer. J. Fluid Mech. 199:333–75 [Google Scholar]
  44. Hirschfelder J, Curtiss CF, Bird RB. 1954. Molecular Theory of Gases and Liquids New York: Wiley [Google Scholar]
  45. Hong Z, Davidson DF, Hanson RK. 2011. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158:633–44 [Google Scholar]
  46. Huete C, Sánchez AL, Williams FA. 2017. Diffusion-flame ignition by shock-wave impingement on a hydrogen-air supersonic mixing layer. J. Propuls. Power 33:256–63 [Google Scholar]
  47. Huete C, Sánchez AL, Williams FA, Urzay J. 2015. Diffusion-flame ignition by shock-wave impingement on supersonic mixing layers. J. Fluid Mech. 784:74–108 [Google Scholar]
  48. Huete C, Urzay J, Sánchez AL, Williams FA. 2016. Weak-shock interactions with transonic laminar mixing layers of fuels for high-speed propulsion. AIAA J 54:962–75 [Google Scholar]
  49. Huzel DK. 1962. From Peenemünde to Canaveral Englewood Cliffs, NJ: Prentice-Hall [Google Scholar]
  50. Ihme M, See YC. 2011. Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 157:1850–62 [Google Scholar]
  51. Jackson KR, Gruber MR, Buccellatro S. 2014. Mach 6–8+ hydrocarbon-fueled scramjet flight experiment: the HIFiRE Flight 2 project. J. Propuls. Power 31:36–53 [Google Scholar]
  52. Jackson TL, Kapila AK. 1985. Shock-induced thermal runaway. SIAM J. Appl. Math. 45:130–37 [Google Scholar]
  53. Ju Y, Sun W. 2015. Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48:21–83 [Google Scholar]
  54. Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA. 1986. A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties Tech. Rep. SAND-86-8246, Sandia Natl. Lab Albuquerque, NM: [Google Scholar]
  55. Kirik JW, Goyne CP, Peltier SJ, Carter CD, Hagenmaier MA. 2014. Velocimetry measurements of a scramjet cavity flameholder with inlet distortion. J. Propuls. Power 30:1568–76 [Google Scholar]
  56. Knudsen E, Pitsch H. 2009. A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combust. Flame 156:678–96 [Google Scholar]
  57. Koo H, Donde P, Raman V. 2011. A quadrature-based LES/transported probability density function approach for modeling supersonic combustion. Proc. Combust. Inst. 31:2203–10 [Google Scholar]
  58. Larsson J, Laurence SJ, Bermejo-Moreno I, Bodart J, Karl SK, Vicquelin R. 2015. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II: large-eddy simulations. Combust. Flame 162:907–20 [Google Scholar]
  59. Laurence SJ, Karl S, Martinez-Schramm J, Hannemann K. 2013. Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722:85–120 [Google Scholar]
  60. Laurence SJ, Lieber D, Martinez Schramm J, Hannemann K, Larsson J. 2015. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part I: shock-tunnel experiments. Combust. Flame 161:921–31 [Google Scholar]
  61. Lee S, Lele SK, Moin P. 1991. Eddy shocklets in decaying compressible turbulence. Phys. Fluids 3:657–64 [Google Scholar]
  62. Leyva IA. 2017. The relentless pursuit of hypersonic flight. Phys. Today 70:1130–36 [Google Scholar]
  63. Li C, Kailasanath K, Oran ES. 1994. Detonation structures behind oblique shocks. Phys. Fluids 6:1600–11 [Google Scholar]
  64. Lighthill MJ. 1950. Reflection at a laminar boundary layer of a weak steady disturbance to a supersonic stream, neglecting viscosity and heat conduction. Q. J. Mech. Appl. Math. 54:303–25 [Google Scholar]
  65. Liñán A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut 1:1007–39 [Google Scholar]
  66. Liñán A, Crespo A. 1976. An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Technol. 14:95–117 [Google Scholar]
  67. Liñán A, Urrutia JL, Fraga E. 1966. On diffusive supersonic combustion. Proc. Int. Counc. Aeronaut. Sci. Congr., 4th, London, UK, 12–16 Sept J Bradbrooke, J Bruce, RR Dexter 607–18 London: Macmillan [Google Scholar]
  68. Liñán A, Vera M, Sánchez AL. 2015. Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47:293–314 [Google Scholar]
  69. Liu JT, Rieker GB, Jeffries JB, Gruber MR, Carter CD. et al. 2005. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44:6701–11 [Google Scholar]
  70. Lorrain P, Brieschenk S, Capra B, Boyce R. 2012. A detailed investigation of nominally 2D radical-farming scramjet combustion Presented at AIAA Int. Space Planes Hypersonic Syst. Technol. Conf., 18th, Tours, France, AIAA Pap. 2012-5812 [Google Scholar]
  71. Ma L, Lei Q, Wu Y, Ombrello TM, Carter CD. 2015. 3D measurements of ignition processes at 20 kHz in a supersonic combustor. Appl. Phys. B 119:313–21 [Google Scholar]
  72. Mahle I, Foysi H, Sarkar S, Friedrich R. 2007. On the turbulence structure in inert and reacting compressible mixing layers. J. Fluid Mech. 25:171–80 [Google Scholar]
  73. Mai T, Sakimitsu Y, Nakamura H, Ogami Y, Kudo T, Kobayashi H. 2011. Effect of the incident shock wave interacting with transversal jet flow on the mixing and combustion. Proc. Combust. Inst. 33:2335–42 [Google Scholar]
  74. Marble FE. 1994. Gasdynamic enhancement of nonpremixed combustion. Int. Symp. Combust. 24:1–12 [Google Scholar]
  75. Marshall LA, Bahm C, Corpening GF, Sherrill R. 2005. Overview with results and lessons learned of the X-43A Mach 10 flight Presented at AIAA Int. Space Planes Hypersonic Syst. Technol. Conf , 13th. Capua, Italy: AIAA Pap 2005-3336 [Google Scholar]
  76. Mathur T, Gruber M, Jackson K, Donbar J, Donaldson W, Jackson T. 2001. Supersonic combustion experiments with a cavity-based fuel injector. J. Propuls. Power 17:1305–12 [Google Scholar]
  77. Mathur T, Lin KC, Kennedy P, Gruber M, Donbar J. et al. 2000. Liquid JP-7 combustion in a scramjet combustor. Presented at AIAA/ASME/SAE/ASEE Joint Propuls. Conf. Exhib Las Vegas, NV: AIAA Pap 2000-3581
  78. McBride BJ, Gordon S, Reno MA. 2005. Coefficients for calculating thermodynamic and transport properties of individual species NASA Tech. Memo. 4513 Natl. Aeronaut. Space Admin Washington, DC: [Google Scholar]
  79. McClinton C. 2006. X-43-Scramjet power breaks the hypersonic barrier: Dryden lectureship in research Presented at AIAA Aerosp. Sci. Meet. Exhib , 44th. Reno, NV: AIAA Pap 2006-1 [Google Scholar]
  80. McDaniel J, Goyne C, Edwards JR, Chelliah H, Cutler A, Givi P. 2009. US National Center for Hypersonic Combined Cycle Propulsion: an overview Presented at AIAA Int. Space Planes Hypersonic Syst. Technol. Conf , 16th. Bremen, Germany: AIAA Pap 2009-7280 [Google Scholar]
  81. McGuire J, Boyce R, Mudford N. 2008. Radical farm ignition processes in two-dimensional supersonic combustion. J. Propuls. Power 24:1248–57 [Google Scholar]
  82. McRae CD, Johansen CT, Danehy PM, Gallo ECA, Cantu L. et al. 2013. OH PLIF visualization of the UVa supersonic combustion experiment: configuration C Presented at AIAA Aerosp. Sci. Meet , 51st. Grapevine, TX: AIAA Pap 2013-0034 [Google Scholar]
  83. Mellado JD, Sánchez AL, Kim JS, Liñán A. 2000. Branched-chain ignition in strained mixing layers. Combust. Theor. Model. 4:265–88 [Google Scholar]
  84. Micka DJ, Driscoll JF. 2009. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder. Proc. Combust. Inst. 32:2397–404 [Google Scholar]
  85. Middha P, Yang B, Wang H. 2002. A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of H2/O2/He flames. Proc. Combust. Inst. 29:1361–69 [Google Scholar]
  86. Miller RS, Madnia CK, Givi P. 1994. Structure of a turbulent reacting mixing layer. Combust. Sci. Technol. 99:1–36 [Google Scholar]
  87. Morris CI, Kamel MR, Hanson RK. 1998. Shock-induced combustion in high-speed wedge flows. Int. Symp. Combust. 27:2157–64 [Google Scholar]
  88. Natl. Res. Counc. 2008. U.S. Conventional Prompt Global Strike: Issues for 2008 and Beyond Washington, DC: Natl. Acad. [Google Scholar]
  89. O'Brien J, Urzay J, Ihme M, Moin P, Saghafian A. 2014. Subgrid-scale backscatter in reacting and inert supersonic hydrogen-air turbulent mixing layers. J. Fluid Mech. 743:554–84 [Google Scholar]
  90. Odam J, Paull A. 2007. Radical farming in scramjets. New Results in Numerical and Experimental Fluid Mechanics C Tropea, S Jakirlic, HJ Heinemann, R Henke, H Hönlinger 276–83 Berlin: Springer-Verlag [Google Scholar]
  91. Ombrello T, Blunck DL, Resor M. 2016. Quantified infrared imaging of ignition and combustion in a supersonic flow. Exp. Fluids 57:140–52 [Google Scholar]
  92. Ombrello T, Peltier S, Carter CD. 2015. Effects of inlet distortion on cavity ignition in supersonic flow Presented at AIAA Aerosp. Sci. Meet , 53rd. Kissimmee, FL: AIAA Pap 2015-0082 [Google Scholar]
  93. Papamoschou D, Roshko A. 1988. The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197:453–77 [Google Scholar]
  94. Paull A, Frost M, Alesi H. 2000. HyShot-T4 supersonic combustion experiments NASA Tech. Rep. NAG-1-2113, Univ Queensland, Brisbane, Aust.: [Google Scholar]
  95. Pecnik R, Terrapon VE, Ham F, Iaccarino G, Pitsch H. 2012. Reynolds-averaged Navier–Stokes simulations of the HyShot II scramjet. AIAA J 50:1717–32 [Google Scholar]
  96. Pellett GL, Vaden SN, Wilson LG. 2008. Gaseous surrogate hydrocarbons for a HIFiRE scramjet that mimic opposed jet extinction limits for cracked JP fuels Presented at JANNAF Propuls. Meet , 55th. Boston, MA: [Google Scholar]
  97. Peters N. 2000. Turbulent Combustion Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  98. Pierce CD, Moin P. 1998. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10:3041–44 [Google Scholar]
  99. Pierce CD, Moin P. 2004. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504:73–97 [Google Scholar]
  100. Potturi AS, Edwards JR. 2014. Hybrid large-eddy/Reynolds-averaged Navier–Stokes simulations of flow through a model scramjet. AIAA J 52:1417–29 [Google Scholar]
  101. Pratt DT, Humphrey JW, Glenn DE. 1991. Morphology of standing oblique detonation waves. J. Propuls. Power 7:837–45 [Google Scholar]
  102. Rhodes RP, Rubins PM, Chriss DE. 1962. The effect of heat release on the flow parameters in shock-induced combustion Rep. AEDC-TDR-62-7S Arnold Airf. Base, TN: [Google Scholar]
  103. Riley LP, Hagenmaier MA, Donbar JM, Gaitonde DV. 2016. A computational investigation of unstart in a dual-mode scramjet Presented at AIAA Sci. Technol. Forum Expo., 54th, San Diego, CA, AIAA Pap. 2016-1191 [Google Scholar]
  104. Rubins PM, Bauer RC. 1994. Review of shock-induced supersonic combustion research and hypersonic applications. J. Propuls. Power 10:593–601 [Google Scholar]
  105. Saghafian A. 2014. High-fidelity simulations and modeling of compressible reacting flows PhD Thesis, Stanford Univ.: [Google Scholar]
  106. Saghafian A, Shunn L, Philips DA, Ham F. 2015a. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst. 35:2163–72 [Google Scholar]
  107. Saghafian A, Terrapon VE, Pitsch H. 2015b. An efficient flamelet-based combustion model for compressible flows. Combust. Flame 162:652–67 [Google Scholar]
  108. Samtaney R, Pullin DI, Kosovic B. 2001. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13:1415–30 [Google Scholar]
  109. Sánchez AL, Balakrishnan G, Liñán A, Williams FA. 1996. Relationships between bifurcation and numerical analyses for ignition of hydrogen-air diffusion flames. Combust. Flame 105:569–90 [Google Scholar]
  110. Sánchez AL, Williams FA. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 41:1–55 [Google Scholar]
  111. Scherrer D, Dessornes O, Ferrier M, Vincent-Randonnier A, Sabel'nikov V. 2016. Research on supersonic combustion and scramjet combustors at ONERA. Aerosp. Lab 11:04 [Google Scholar]
  112. Shan F, Hou L, Chen Z, Chen J, Wang L. 2017. Linearized correction to a flamelet-based model for hydrogen-fueled supersonic combustion. Int. J. Hydrogen Energy 42:11937–44 [Google Scholar]
  113. Smart MK, Hass NE, Paull A. 2006. Flight data analysis of the HyShot 2 scramjet flight experiment. AIAA J 44:2366–75 [Google Scholar]
  114. Smart MK, Stalker R, Morgan R, Paull A. 2008. Hypersonics research in Australia. Advances on Propulsion Technology for High-Speed Aircraft RTO-EN-AVT-150, Pap. 11 1–30 Neuilly-sur-Seine, Fr: RTO [Google Scholar]
  115. Stewartson K, Williams PG. 1969. Self-induced separation. Proc. R. Soc. A 312:181–206 [Google Scholar]
  116. Tirtey S, Boyce R, Brown M, Capra B, Creagh M. et al. 2014. SCRAMSPACE: radical-farming scramjet for access to space. Hypersonic Flight Testing STO-EN-AVT-234, Pap. 11 1–31 Rhode Saint Genèse, Belg.: Von Karman Inst. Fluid Dyn. [Google Scholar]
  117. Tuttle SG, Carter CD, Shu KY. 2014. Particle image velocimetry in a non-reacting and reacting high-speed cavity. J. Propuls. Power 30:576–91 [Google Scholar]
  118. Urzay J, Kseib N, Davidson DF, Iaccarino G, Hanson RK. 2014. Uncertainty-quantification analysis of the effects of residual impurities on hydrogen-oxygen ignition in shock tubes. Combust. Flame 161:1–15 [Google Scholar]
  119. Urzay J, Kseib N, Palacios F, Larsson J, Iaccarino G. 2012. A stochastic flamelet progress-variable approach for numerical simulations of high-speed turbulent combustion under chemical-kinetic uncertainties. Annual Research Briefs 201214–27 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  120. USAF (US Airf.). 1986. SR-71A Flight manual Norton Airf. Base, CA: [Google Scholar]
  121. Waidmann W, Alff F, Brummund U, Böhm M, Clauss W, Oschwald M. 1994. Experimental investigation of the combustion process in a supersonic combustion ramjet (scramjet) DGLR Jahrestag. Rep. 94-E3-084 DGLR, Bonn, Ger.: [Google Scholar]
  122. Waidmann W, Brummund U, Nuding J. 1995. Experimental investigation of supersonic ramjet combustion (scramjet). Proc. Int. Symp. Transp. Phenom. Combust., 8th, San Francisco, Calif., 16–20 July SH Chen 1473–84 Washington, DC: Taylor & Francis [Google Scholar]
  123. Walker S, Sherk J, Shell D, Schena R, Bergmann JF, Gladback J. 2008. The DARPA/AF Falcon program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase Presented at AIAA Int. Space Planes Hypersonic Syst. Technol. Conf , 15th. Dayton, OH: AIAA Pap 2008-2539 [Google Scholar]
  124. Wang H, You X, Joshi AV, Davis SG, Laskin A. et al. 2007. USC mech version II. High-temperature combustion reaction model of H2/CO /C1-C4 compounds Combust. Kinet. Lab., Univ. South. Calif Los Angeles, CA: http://ignis.usc.edu/USC_Mech_II.htm [Google Scholar]
  125. Watts JD. 1968. Flight experience with shock impingement and interference heating on the X-15-A2 research airplane NASA Tech. Memo. X–1669 Natl. Aeronaut. Space Admin Washington, DC: [Google Scholar]
  126. Woolf AF. 2016. Conventional prompt global strike and long-range ballistic missiles: background and issues Tech. Rep. R41464, US Congr. Res. Serv Washington, DC: [Google Scholar]
  127. Xu R, Chen D, Wang K, Tao Y, Shao JK. et al. 2017. HyChem model: application to petroleum-derived jet fuels Presented at U.S. Natl. Combust. Meet, 10th. College Park, MD: [Google Scholar]
  128. Zeman O. 1990. Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys. Fluids 2:178–88 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error