Large-eddy simulation (LES) has proven to be a computationally tractable approach to simulate unsteady turbulent flows. However, prohibitive resolution requirements induced by near-wall eddies in high–Reynolds number boundary layers necessitate the use of wall models or approximate wall boundary conditions. We review recent investigations in wall-modeled LES, including the development of novel approximate boundary conditions and the application of wall models to complex flows (e.g., boundary-layer separation, shock/boundary-layer interactions, transition). We also assess the validity of underlying assumptions in wall-model derivations to elucidate the accuracy of these investigations, and offer suggestions for future studies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alin N, Bensow RE, Fureby C, Huuva T, Svennberg U. 2010. Current capabilities of DES and LES for submarines at straight course. J. Ship Res. 54:184–96 [Google Scholar]
  2. Almeida GP, Duro DFG, Heitor MV. 1993. Wake flows behind two-dimensional model hills. Exp. Therm. Fluid Sci. 7:87–101 [Google Scholar]
  3. Ambo K, Yoshino T, Kawamura T, Teramura M, Philips DA. 2017. Comparison between wall-modeled and wall-resolved large eddy simulations for the prediction of boundary-layer separation around the side mirror of a full-scale vehicle Presented at 55th AIAA Aerosp. Sci. Meet., Jan. 9–13, Grapevine, TX, AIAA Pap. 2017-1661
  4. Avdis A, Lardeau S, Leschziner M. 2009. Large eddy simulation of separated flow over a two-dimensional hump with and without control by means of a synthetic slot-jet. Flow Turbul. Combust. 83:343–70 [Google Scholar]
  5. Bae H, Lozano-Durán A, Moin P. 2016. Investigation of the slip boundary condition in wall-modeled LES. Annual Research Briefs 201675–86 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  6. Balakumar P, Park G, Pierce B. 2014. DNS, LES, and wall-modeled LES of separating flow over periodic hills. Proc. Cent. Turbul. Res. Summer Progr., July 6–Aug. 1407–15 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  7. Balaras E, Benocci C. 1994. Subgrid-scale models in finite-difference simulations of complex wall bounded flows. Application of Direct and Large Eddy Simulation to Transition and Turbulence2–1–2–6 Neuilly-Sur-Seine, Fr.: Advis. Group Aerosp. Res. [Google Scholar]
  8. Balaras E, Benocci C, Piomelli P. 1996. Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34:1111–19 [Google Scholar]
  9. Bermejo-Moreno I, Campo L, Larsson J, Bodart J, Helmer D, Eaton JK. 2014. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758:5–62 [Google Scholar]
  10. Bhattacharya A, Das A, Moser RD. 2008. A filtered-wall formulation for large-eddy simulation of wall-bounded turbulence. Phys. Fluids 20:115104 [Google Scholar]
  11. Bodart J, Larsson J. 2011. Wall-modeled large eddy simulation in complex geometries with application to high-lift devices. Annual Research Briefs 201137–48 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  12. Bodart J, Larsson J. 2012. Sensor-based computation of transitional flows using wall-modeled large eddy simulation. Annual Research Briefs 2012229–40 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  13. Bodart J, Larsson J, Moin P. 2013. Large eddy simulation of high-lift devices Presented at 21st AIAA Comput. Fluid Dyn. Conf., June 24–27, San Diego, CA, AIAA Pap. 2013-2724
  14. Bose S. 2012. Explicitly filtered large-eddy simulation: with application to grid adaptation and wall modeling PhD Thesis, Stanford Univ., Stanford, CA
  15. Bose ST, Moin P. 2014. A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26:015104 [Google Scholar]
  16. Bou-Zeid E, Meneveau C, Parlange MB. 2004. Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res. 40:W02505 [Google Scholar]
  17. Bradshaw P, Huang GP. 1995. The law of the wall in turbulent flow. Proc. R. Soc. Lond. A 451:165–88 [Google Scholar]
  18. Brasseur JG. 2010. Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids 22:021303 [Google Scholar]
  19. Brès GA, Jaunet V, Le Rallic M, Jordan P, Colonius T, Lele SK. 2015. Large eddy simulation for jet noise: the importance of getting the boundary layer right Presented at 21st AIAA/CEAS Aeroacoust. Conf., June 22–26, Dallas, TX, AIAA Pap. 2015-2535
  20. Cabot W. 1996. Near-wall models in large eddy simulations of flow behind a backward-facing step. Annual Research Briefs 1996199–209 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  21. Cabot W, Moin P. 2000. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63:269–91 [Google Scholar]
  22. Catalano P, Wang M, Iaccarino G, Moin P. 2003. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Int. J. Heat Fluid Flow 24:463–69 [Google Scholar]
  23. Chai X, Mahesh K. 2012. Dynamic k-equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699:385–413 [Google Scholar]
  24. Chapman DR. 1979. Computational aerodynamics development and outlook. AIAA J. 17:1293–313 [Google Scholar]
  25. Cheng W, Pullin DI, Samtaney R. 2015. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer. J. Fluid Mech. 785:78–108 [Google Scholar]
  26. Chin V, Peters D, Spaid F, McGhee R. 1993. Flowfield measurements about a multi-element airfoil at high Reynolds numbers Presented at 23rd Fluid Dyn. Plasmadyn. Lasers Conf., July 6–9, Orlando, FL, AIAA Pap. 1993-3137
  27. Choi H, Moin P. 2012. Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Phys. Fluids 24:011702 [Google Scholar]
  28. Chung D, Pullin DI. 2009. Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631:281–309 [Google Scholar]
  29. Clauser F. 1954. Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21:91–108 [Google Scholar]
  30. Davidson L, Cokljat D, Fröhlich J, Leschziner MA, Mellen C, Rodi W. 2003. Task 2: near-wall models. LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil L Davidson, D Cokljat, J Fröhlich, MA Leschziner, C Mellen, W Rodi 22–57 Berlin: Springer [Google Scholar]
  31. Dawson DM, Lele SK, Bodart J. 2013. Assessment of wall-modeled large eddy simulation for supersonic compression ramp flows Presented at 49th AIAA/ASME/SAE/ASEE Joint Propuls. Conf., July 14–17, San Jose, CA, AIAA Pap. 2013-3638
  32. Deardorff JW. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41:453–80 [Google Scholar]
  33. DeGraaff DB, Eaton JK. 2000. Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422:319–46 [Google Scholar]
  34. Deissler RG, Loeffler AL. 1959. Analysis of turbulent flow and heat transfer on a flat plate at high Mach numbers with variable fluid properties Tech. Rep. TR-R-17, Natl. Aeronaut. Space Admin., Washington, DC
  35. Dhamankar NS, Blaisdell GA, Lyrintzis AS. 2016. Implementation of a wall-modeled sharp immersed boundary method in a high-order large eddy simulation tool for jet aeroacoustics Presented at 54th AIAA Aerosp. Sci. Meet., Jan. 4–8, San Diego, CA, AIAA Pap. 2016-0257
  36. Dolling DS. 2001. Fifty years of shock-wave/boundary-layer interaction research: What next?. AIAA J. 39:1517–31 [Google Scholar]
  37. Duprat C, Balarac G, Mtais O, Congedo PM, Brugire O. 2011. A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient. Phys. Fluids 23:015101 [Google Scholar]
  38. Fernholz H, Finley P. 1996. The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32:245–311 [Google Scholar]
  39. Fröhlich J, von Terzi D. 2008. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44:349–77 [Google Scholar]
  40. Fureby C, Alin N, Wikström N, Menon S, Svanstedt N, Persson L. 2004. Large eddy simulation of high-Reynolds-number wall bounded flows. AIAA J. 42:457–68 [Google Scholar]
  41. Ganapathisubramani B, Clemens NT, Dolling DS. 2007. Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585:369–94 [Google Scholar]
  42. Germano M. 1986. Differential filters of elliptic type. Phys. Fluids 29:1757–58 [Google Scholar]
  43. Germano M, Piomelli U, Moin P, Cabot WH. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3:1760–65 [Google Scholar]
  44. Ghosal S, Moin P. 1995. The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118:24–37 [Google Scholar]
  45. Gourdain N, Sicot F, Duchaine F, Gicquel L. 2014. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035. Philos. Trans. R. Soc. Lond. A 372:20130323 [Google Scholar]
  46. Greenblatt D, Paschal KB, Chung-Sheng Y, Harris J. 2006a. Experimental investigation of separation control part 2: zero mass-flux oscillatory blowing. AIAA J. 44:2831–45 [Google Scholar]
  47. Greenblatt D, Paschal KB, Yao CS, Harris J, Schaeffler NW, Washburn AE. 2006b. Experimental investigation of separation control part 1: baseline and steady suction. AIAA J. 44:2820–30 [Google Scholar]
  48. Grötzbach G. 1987. Direct numerical and large eddy simulation of turbulent channel flows. Encyclopedia of Fluid Mechanics 61337–91 Houston: Gulf [Google Scholar]
  49. Hass N, Cabell K, Storch A, Gruber M. 2011. HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA Langley Arc-Heated Scramjet Test Facility Presented at 17th AIAA Int. Space Planes Hypersonic Syst. Technol. Conf., April 11–14, San Francisco, AIAA Pap. 2011-2248
  50. Hickel S, Touber E, Bodart J, Larsson J. 2012. A parametrized non-equilibrium wall-model for large-eddy simulations. Proc. Cent. Turbul. Res. Summer Prog., June 24–July 20127–36 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  51. Hill FK. 1959. Turbulent boundary layer measurements at Mach numbers from 8 to 10. Phys. Fluids 2:668–80 [Google Scholar]
  52. Hoffmann G, Benocci C. 1995. Approximate wall boundary conditions for large eddy simulations. Advances in Turbulence V R Benzi 222–28 Berlin: Springer [Google Scholar]
  53. Huang P, Bradshaw P. 1995. Law of the wall for turbulent flows in pressure gradients. AIAA J. 33:624–32 [Google Scholar]
  54. Hultmark M. 2012. A theory for the streamwise turbulent fluctuations in high Reynolds number pipe flow. J. Fluid Mech. 707:575–84 [Google Scholar]
  55. Hutchins N, Marusic I. 2007. Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. Lond. A 365:647–64 [Google Scholar]
  56. Inoue M, Mathis R, Marusic I, Pullin DI. 2012. Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24:075102 [Google Scholar]
  57. Inoue M, Pullin DI. 2011. Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Reθ=O(1012). J. Fluid Mech. 686:507–33 [Google Scholar]
  58. Iyer P, Park G, Malik M. 2016. A comparative study of wall models for LES of turbulent separated flow. Proc. Cent. Turbul. Res. Summer Prog., June 26–July 22325–34 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  59. Jaegle F, Cabrit O, Mendez S, Poinsot T. 2010. Implementation methods of wall functions in cell-vertex numerical solvers. Flow Turbul. Combust. 85:245–72 [Google Scholar]
  60. Jiménez J. 2012. Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44:27–45 [Google Scholar]
  61. Jiménez J, Moin P. 1991. The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225:213–40 [Google Scholar]
  62. Kamel MS, Wang K, Wang M. 2016. Predictions of aero-optical distortions using LES with wall modeling Presented at 54th AIAA Aerosp. Sci. Meet., Jan. 4–8, San Diego, CA, AIAA Pap. 2016-1462
  63. Kawai S, Asada K. 2013. Wall-modeled large-eddy simulation of high Reynolds number flow around an airfoil near stall condition. Comput. Fluids 85:105–13 [Google Scholar]
  64. Kawai S, Larsson J. 2012. Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24:015105 [Google Scholar]
  65. Kawai S, Larsson J. 2013. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers. Phys. Fluids 25:015105 [Google Scholar]
  66. Klebanoff PS. 1955. Characteristics of turbulence in boundary layer with zero pressure gradient Tech. Rep. TR-1247, Natl. Advis. Comm. Aeronaut., Washington, DC
  67. Kocheemoolayil JG, Lele SK. 2014. Wall modeled large eddy simulation of airfoil trailing edge noise Presented at 20th AIAA/CEAS Aeroacoust. Conf., June 16–20, Atlanta, GA, AIAA Pap. 2014-3304
  68. Langford JA, Moser RD. 1999. Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398:321–46 [Google Scholar]
  69. Larsson J, Kawai S, Bodart J, Bermejo-Moreno I. 2016. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3:15–00418 [Google Scholar]
  70. Larsson J, Laurence S, Bermejo-Moreno I, Bodart J, Karl S, Vicquelin R. 2015. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II: large eddy simulations. Combust. Flame 162:907–20 [Google Scholar]
  71. Lee J, Cho M, Choi H. 2013. Large eddy simulations of turbulent channel and boundary layer flows at high Reynolds number with mean wall shear stress boundary condition. Phys. Fluids 25:110808 [Google Scholar]
  72. Lehmkuhl O, Park G, Moin P. 2016. LES of flow over the NASA Common Research Model with near-wall modeling. Proc. Cent. Turbul. Res. Summer Prog., June 26–July 22335–41 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  73. Lele SK. 1994. Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26:211–54 [Google Scholar]
  74. Lilly DK. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4:633–35 [Google Scholar]
  75. Lodato G, Castonguay P, Jameson A. 2014. Structural wall-modeled LES using a high-order spectral difference scheme for unstructured meshes. Flow Turbul. Combust. 92:579–606 [Google Scholar]
  76. Lozano-Durán A, Bae HJ, Bose ST, Moin P. 2017. Dynamic wall models for the slip boundary condition. Annual Research Briefs 2017 Stanford, CA: Cent. Turbul. Res. In press [Google Scholar]
  77. Lozano-Durán A, Hack M, Park G, Moin P. 2016. Modeling boundary-layer transition in DNS and LES using parabolized stability equations. Annual Research Briefs 201629–37 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  78. Lozano-Durán A, Jiménez J. 2014. Effect of the computational domain on direct simulations of turbulent channels up to Reτ= 4200. Phys. Fluids 26:011702 [Google Scholar]
  79. Lundgren TS. 1982. Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25:2193–203 [Google Scholar]
  80. Maheu N, Moureau V, Domingo P, Duchaine F, Balarac G. 2012. Large-eddy simulations of flow and heat transfer around a low-Mach number turbine blade. Proc. Cent. Turbul. Res. Summer Prog., June 24–July 20pp 137–46 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  81. Malaspinas O, Sagaut P. 2014. Wall model for large-eddy simulation based on the lattice Boltzmann method. J. Comput. Phys. 275:25–40 [Google Scholar]
  82. Manhart M, Peller N, Brun C. 2008. Near-wall scaling for turbulent boundary layers with adverse pressure gradient. Theor. Comput. Fluid Dyn. 22:243–60 [Google Scholar]
  83. Mani A, Wang M, Moin P. 2008. Resolution requirements for aero-optical simulations. J. Comput. Phys. 227:9008–20 [Google Scholar]
  84. Marusic I, Mathis R, Hutchins N. 2010. Predictive model for wall-bounded turbulent flow. Science 329:193–96 [Google Scholar]
  85. Marusic I, Monty JP, Hultmark M, Smits AJ. 2013. On the logarithmic region in wall turbulence. J. Fluid Mech. 716:R3 [Google Scholar]
  86. Mary I, Sagaut P. 2001. Large eddy simulation of flow around a high lift airfoil. Direct and Large-Eddy Simulation IV BJ Geurts, R Friedrich, O Métais 157–64 Berlin: Springer [Google Scholar]
  87. Mathis R, Hutchins N, Marusic I. 2009. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628:311–37 [Google Scholar]
  88. Mathis R, Hutchins N, Marusic I. 2011. A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681:537–66 [Google Scholar]
  89. Mathis R, Marusic I, Chernyshenko SI, Hutchins N. 2013. Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715:163–80 [Google Scholar]
  90. Misra A, Pullin DI. 1997. A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9:2443–54 [Google Scholar]
  91. Mockett C, Fuchs M, Thiele F. 2012. Progress in DES for wall-modelled LES of complex internal flows. Comput. Fluids 65:44–55 [Google Scholar]
  92. Moeng CH. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41:2052–62 [Google Scholar]
  93. Moin P, Bodart J, Bose S, Park GI. 2016. Wall-modeling in complex turbulent flows. Advances in Fluid-Structure Interaction M Braza, A Bottaro, M Thompson 207–19 Berlin: Springer [Google Scholar]
  94. Morkovin MV. 1962. Effects of compressibility on turbulent flows. Colloq. Int. Mec. Turbul.367–80 Paris: Cent. Natl. Res. Sci. [Google Scholar]
  95. Nagarajan S, Lele SK, Ferziger JH. 2003. A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191:392–419 [Google Scholar]
  96. Nakayama A, Noda H, Maeda K. 2004. Similarity of instantaneous and filtered velocity fields in the near wall region of zero-pressure gradient boundary layer. Fluid Dyn. Res. 35:299–321 [Google Scholar]
  97. Nicoud F, Baggett JS, Moin P, Cabot W. 2001. Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Phys. Fluids 13:2968–84 [Google Scholar]
  98. Nikitin NV, Nicoud F, Wasistho B, Squires KD, Spalart PR. 2000. An approach to wall modeling in large-eddy simulations. Phys. Fluids 12:1629–32 [Google Scholar]
  99. Park GI. 2017. Wall-modeled large-eddy simulation of a high Reynolds number separating and reattaching flow. AIAA J. In press
  100. Park GI, Moin P. 2014. An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26:015108 [Google Scholar]
  101. Park GI, Moin P. 2016a. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes. J. Comput. Phys. 305:589–603 [Google Scholar]
  102. Park GI, Moin P. 2016b. Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation. Phys. Rev. Fluids 1:024404 [Google Scholar]
  103. Park GI, Moin P. 2016c. Wall-modeled LES: recent applications to complex flows. Annual Research Briefs 201639–50 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  104. Piomelli U. 2008. Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44:437–46 [Google Scholar]
  105. Piomelli U, Balaras AE. 2002. Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34:349–74 [Google Scholar]
  106. Porté-Agel F, Meneveau C, Parlange MB. 2000. A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415:261–84 [Google Scholar]
  107. Pullin DI, Inoue M, Saito N. 2013. On the asymptotic state of high Reynolds number, smooth-wall turbulent flows. Phys. Fluids 25:015116 [Google Scholar]
  108. Rannie W. 1956. Heat transfer in turbulent shear flow. J. Aeronaut. Sci. 23:485–89 [Google Scholar]
  109. Saghafian A, Shunn L, Philips DA, Ham F. 2015. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst. 35:2163–72 [Google Scholar]
  110. Saito N, Pullin DI, Inoue M. 2012. Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow. Phys. Fluids 24:075103 [Google Scholar]
  111. Sayadi T, Hamman CW, Moin P. 2013. Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724:480–509 [Google Scholar]
  112. Sayadi T, Moin P. 2012. Large eddy simulation of controlled transition to turbulence. Phys. Fluids 24:114103 [Google Scholar]
  113. Schlatter P, Li Q, Brethouwer G, Johansson AV, Henningson DS. 2010. Simulations of spatially evolving turbulent boundary layers up to Reθ= 4300. Int. J. Heat Fluid Flow 31:251–61 [Google Scholar]
  114. Schumann U. 1975. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18:376–404 [Google Scholar]
  115. Sidebottom W, Cabrit O, Marusic I, Meneveau C, Ooi A, Jones D. 2014. Modelling of wall shear-stress fluctuations for large-eddy simulation. Proc. Australas. Fluid Mech. Conf., 19th, Dec. 8–11, Melbourne, Aust. Pap. 224 Melbourne, Aust.: Australas. Fluid Mech. Soc. [Google Scholar]
  116. Sillero JA, Jiménez J, Moser RD. 2014. Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to δ+≈ 2000. Phys. Fluids 26:105109 [Google Scholar]
  117. Simpson RL. 1983. A model for the backflow mean velocity profile. AIAA J. 21:142–43 [Google Scholar]
  118. Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W. 2014. CFD Vision 2030 Study: a path to revolutionary computational aerosciences Tech. Rep. CR-2014-21817, Natl. Aeronaut. Space Admin., Washington, DC
  119. Smits AJ, McKeon BJ, Marusic I. 2011. High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43:353–75 [Google Scholar]
  120. Souverein LJ, Dupont P, Debiève JF, Van Oudheusden BW, Scarano F. 2010. Effect of interaction strength on unsteadiness in shock-wave-induced separations. AIAA J. 48:1480–93 [Google Scholar]
  121. Spalart PR. 1988. Direct simulation of a turbulent boundary layer up to Reθ=1410. J. Fluid Mech. 187:61–98 [Google Scholar]
  122. Spalart PR. 2009. Detached-eddy simulation. Annu. Rev. Fluid Mech. 41:181–202 [Google Scholar]
  123. Spalart PR, Jou W, Strelets M, Allmaras S. 1997. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES: Proc. 1st AFOSR Int. Conf. DNS/LES C Liu, Z Liu 4–8 Columbus, OH: Greyden [Google Scholar]
  124. Spalding D. 1961. A single formula for the law of the wall. J. Appl. Mech. 28:455–58 [Google Scholar]
  125. Templeton JA, Wang M, Moin P. 2006. An efficient wall model for large-eddy simulation based on optimal control theory. Phys. Fluids 18:025101 [Google Scholar]
  126. Templeton JA, Wang M, Moin P. 2008. A predictive wall model for large-eddy simulation based on optimal control techniques. Phys. Fluids 20:065104 [Google Scholar]
  127. Townsend AA. 1956. The properties of equilibrium boundary layers. J. Fluid Mech. 1:561–73 [Google Scholar]
  128. Townsend AA. 1980. The Structure of Turbulent Shear Flow Cambridge, UK: Cambridge Univ. Press
  129. Tyacke JC, Tucker PG. 2015. Future use of large eddy simulation in aero-engines. J. Turbomach. 137:081005 [Google Scholar]
  130. Vane ZP, Bermejo-Moreno I, Lele SK. 2014. Wall-modeled large-eddy simulations of a supersonic turbulent flow in a square duct Presented at 44th AIAA Fluid Dyn. Conf., June 16–20, Atlanta, GA, AIAA Pap. 2014-2209
  131. Völker S, Moser R, Venugopal P. 2002. Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14:3675–91 [Google Scholar]
  132. Wadcock AJ. 1978. Flying-hot-wire study of two-dimensional turbulent separation of an NACA 4412 airfoil at maximum lift PhD Thesis, Calif. Inst. Technol., Pasadena
  133. Wang M, Moin P. 2002. Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14:2043–51 [Google Scholar]
  134. Werner H, Wengle H. 1993. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. Turbulent Shear Flows 8 F Durst, R Friedrich, BE Launder, FW Schmidt, U Schumann, JH Whitelaw 155–68 Berlin: Springer [Google Scholar]
  135. Wu P, Meyers J. 2013. A constraint for the subgrid-scale stresses in the logarithmic region of high Reynolds number turbulent boundary layers: a solution to the log-layer mismatch problem. Phys. Fluids 25:015104 [Google Scholar]
  136. Wu X, Moin P. 2009. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630:5–41 [Google Scholar]
  137. Wu X, Moin P. 2010. Transitional and turbulent boundary layer with heat transfer. Phys. Fluids 22:085105 [Google Scholar]
  138. Yaglom AM. 1979. Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu. Rev. Fluid Mech. 11:505–40 [Google Scholar]
  139. Yang XIA, Bose S, Moin P. 2016. A physics-based interpretation of the slip-wall LES model. Annual Research Briefs 201665–74 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  140. Yang XIA, Park GI, Moin P. 2017. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids 2:104601 [Google Scholar]
  141. Yang XIA, Sadique J, Mittal R, Meneveau C. 2015. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys. Fluids 27:025112 [Google Scholar]
  142. Zhang YF, Vicquelin R, Gicquel O, Taine J. 2013. A wall model for LES accounting for radiation effects. Int. J. Heat Mass Transf. 67:712–23 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error