1932

Abstract

The 1969 review by J.R. Melcher and G.I. Taylor defined the field of electrohydrodynamics. Fifty years on, the interaction of weakly conducting (leaky dielectric) fluids with electric fields continues to yield intriguing phenomena. The prototypical system of a drop in a uniform electric field has revealed remarkable dynamics in strong electric fields such as symmetry-breaking instabilities (e.g., Quincke rotation) and streaming from the drop equator. This review summarizes recent experimental and theoretical studies in the area of fluid particles (drop and vesicles) in electric fields, with a focus on the transient dynamics and extreme deformations. A theoretical framework to treat the time evolution of nearly spherical shapes is provided. The model has been successful in describing the dynamics of vesicles (closed lipid membranes) in an electric field, highlighting the broader range of applicability of the leaky dielectric approach.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-050120
2019-01-05
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-122316-050120.html?itemId=/content/journals/10.1146/annurev-fluid-122316-050120&mimeType=html&fmt=ahah

Literature Cited

  1. Anna SL 2016. Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48:285–309
    [Google Scholar]
  2. Aranda S, Riske KA, Lipowsky R, Dimova R 2008. Morphological transitions of vesicles induced by AC electric fields. Biophys. J. 95:L19–21
    [Google Scholar]
  3. Bharti B, Velev OD 2015. Assembly of reconfigurable colloidal structures by multidirectional field-induced interactions. Langmuir 31:7897–908
    [Google Scholar]
  4. Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D 2013. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503:95–98
    [Google Scholar]
  5. Brochard F, Lennon JF 1975. Frequency spectrum of the flicker phenomenon in erythrocytes. J. Phys. 36:1035–47
    [Google Scholar]
  6. Brosseau Q, Hickey G, Vlahovska PM 2017. Electrohydrodynamic Quincke rotation of an ellipsoid. Phys. Rev. Fluids 2:014101
    [Google Scholar]
  7. Brosseau Q, Vlahovska PM 2017. Streaming from the equator of a drop in an external electric field. Phys. Rev. Lett. 119:034501
    [Google Scholar]
  8. Castro-Hernandez E, Campo-Cortes F, Manuel Gordillo J 2012. Slender-body theory for the generation of micrometre-sized emulsions through tip streaming. J. Fluid Mech. 698:423–45
    [Google Scholar]
  9. Cebers A, Lemaire E, Lobry L 2000. Electrohydrodynamic instabilities and orientation of dielectric ellipsoids in low-conducting fluids. Phys. Rev. E 63:016301
    [Google Scholar]
  10. Collins RT, Jones JJ, Harris MT, Basaran OA 2008. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4:149–54
    [Google Scholar]
  11. Collins RT, Sambath K, Harris MT, Basaran OA 2013. Universal scaling laws for the disintegration of electrified drops. PNAS 110:4905–10
    [Google Scholar]
  12. Danov KD, Kralchevsky PA 2013. Forces acting on dielectric colloidal spheres at a water/nonpolar-fluid interface in an external electric field. 1. Uncharged particles. J. Colloid Interface Sci. 405:278–90
    [Google Scholar]
  13. Das D, Saintillan D 2013. Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87:043014
    [Google Scholar]
  14. Das D, Saintillan D 2017.a A nonlinear small-deformation theory for transient droplet electrohydrodynamics. J. Fluid Mech. 810:225–53
    [Google Scholar]
  15. Das D, Saintillan D 2017.b Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations. J. Fluid Mech. 829:127–52
    [Google Scholar]
  16. de la Mora JF 2007. The fluid dynamics of Taylor cones. Annu. Rev. Fluid. Mech. 39:217–43
    [Google Scholar]
  17. DeBruin KA, Krassowska W 1999. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77:1213–24
    [Google Scholar]
  18. Deshmukh SD, Thaokar RM 2013. Deformation and breakup of a leaky dielectric drop in a quadrupole electric field. J. Fluid Mech. 731:713–33
    [Google Scholar]
  19. Dimova R, Bezlyepkina N, Jordo MD, Knorr RL, Riske KA et al. 2009. Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5:3201–12
    [Google Scholar]
  20. Dobnikar J, Snezhko A, Yethiraj A 2013. Emergent colloidal dynamics in electromagnetic fields. Soft Matter 9:3693–704
    [Google Scholar]
  21. Doerr A, Hardt S 2015. Driven particles at fluid interfaces acting as capillary dipoles. J. Fluid Mech. 770:5–26
    [Google Scholar]
  22. Dolinsky Y, Elperin T 2009. Electrorotation of a leaky dielectric spheroid immersed in a viscous fluid. Phys. Rev. E 80:066607
    [Google Scholar]
  23. Dommersnes P, Rozynek Z, Mikkelsen A, Castberg R, Kjerstad K et al. 2013. Active structuring of colloidal armor on liquid drops. Nat. Commun. 4:2066
    [Google Scholar]
  24. Dubash N, Mestel AJ 2007. Behaviour of a conducting drop in a highly viscous fluid subject to an electric field. J. Fluid Mech. 581:469–93
    [Google Scholar]
  25. Esmaeeli A, Sharifi P 2011. Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84:036308
    [Google Scholar]
  26. Evans E, Rawicz W 1990. Entropy driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64:2094–97
    [Google Scholar]
  27. Feng JQ 1996. Dielectrophoresis of a deformable fluid particle in a non-uniform electric field. Phys. Rev. E 54:4438–41
    [Google Scholar]
  28. Fernandez A 2008.a Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: drops less conductive than the suspending fluid. Phys. Fluids 20:043304
    [Google Scholar]
  29. Fernandez A 2008.b Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: drops more conductive than the suspending fluid. Phys. Fluids 20:043303
    [Google Scholar]
  30. Gañán-Calvo AM, López-Herrera JM, Herrada MA, Ramos A, Montanero JM 2018. Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aerosol Sci. 125:32–56
    [Google Scholar]
  31. Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM 2016. The onset of electrospray: the universal scaling laws of the first ejection. Sci. Rep. 6:32357
    [Google Scholar]
  32. Ghazian O, Adamiak K, Castle GSP, Higashiyama Y 2014. Oscillation, pseudo-rotation and coalescence of sessile droplets in a rotating electric field. Colloids Surf. A 441:346–53
    [Google Scholar]
  33. Grosse C, Schwan HP 1992. Cellular membrane potentials induced by alternating fields. Biophys. J. 63:1632–42
    [Google Scholar]
  34. Ha JW, Yang SM 1995. Effects of surfactant on the deformation and stability of a drop in a viscous fluid in an electric field. J. Colloid Interface Sci. 175:369–85
    [Google Scholar]
  35. Ha JW, Yang SM 1998. Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field. J. Colloid Interface Sci. 206:195–204
    [Google Scholar]
  36. Ha JW, Yang SM 2000.a Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys. Fluids 12:764–72
    [Google Scholar]
  37. Ha JW, Yang SM 2000.b Rheological responses of oil-in-oil emulsions in an electric field. J. Rheol. 44:235–56
    [Google Scholar]
  38. Haluska C, Marchi-Artzner V, Brienne J, Lehn L, Lipowsky R, Dimova R 2004. Fusion of giant vesicles observed with time resolution below millisecond. Biophys. J. 86:519A
    [Google Scholar]
  39. He H, Salipante PF, Vlahovska PM 2013. Electrorotation of a viscous droplet in a uniform direct current electric field. Phys. Fluids 25:032106
    [Google Scholar]
  40. Huang HF, Zahn M, Lemaire E 2011. Negative electrorheological responses of micro-polar fluids in the finite spin viscosity small spin velocity limit. I. Couette flow geometries. J. Electrost. 69:442–55
    [Google Scholar]
  41. Jones TB 1984. Quincke rotation of spheres. IEEE Trans. Ind. Appl. 20:845–49
    [Google Scholar]
  42. Karyappa RB, Deshmukh SD, Thaokar RM 2014. Breakup of a conducting drop in a uniform electric field. J. Fluid Mech. 754:550–89
    [Google Scholar]
  43. Kim S, Karrila SJ 1991. Microhydrodynamics: Principles and Selected Applications Boston: Butterworth-Heinemann
    [Google Scholar]
  44. Knorr RL, Staykova M, Gracia RS, Dimova R 2010. Wrinkling and electroporation of giant vesicles in the gel phase. Soft Matter 6:1990–96
    [Google Scholar]
  45. Kokot G, Das S, Winkler RG, Gompper G, Aranson IS, Snezhko A 2017. Active turbulence in a gas of self-assembled spinners. PNAS 114:12870–75
    [Google Scholar]
  46. Kolahdouz EM, Salac D 2015.a Dynamics of three-dimensional vesicles in DC electric fields. Phys. Rev. E 92:012302
    [Google Scholar]
  47. Kolahdouz EM, Salac D 2015.b Electrohydrodynamics of three-dimensional vesicles: a numerical approach. SIAM J. Sci. Comput. 37:B473–94
    [Google Scholar]
  48. Lac E, Homsy GM 2007. Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid. Mech. 590:239–64
    [Google Scholar]
  49. Lacoste D, Lagomarsino M, Joanny J 2007. Fluctuations of a driven membrane in an electrolyte. Europhys. Lett. 77:18006
    [Google Scholar]
  50. Lacoste D, Menon GI, Bazant MZ, Joanny JF 2009. Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane. Eur. Phys. J. E 28:243–64
    [Google Scholar]
  51. Lanauze JA, Walker LM, Khair AS 2013. The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25:112101
    [Google Scholar]
  52. Lanauze JA, Walker LM, Khair AS 2015. Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774:245–66
    [Google Scholar]
  53. Larson RG 1999. The Structure and Rheology of Complex Fluids Oxford: Oxford Univ. Press
    [Google Scholar]
  54. Lavrentovich OD 2016. Active colloids in liquid crystals. Curr. Opin. Colloid Interface Sci. 21:97–109
    [Google Scholar]
  55. Lemaire E, Lobry L 2002. Chaotic behavior in electro-rotation. Physica A 314:663–71
    [Google Scholar]
  56. Lemaire E, Lobry L, Pannacci NA 2008. Viscosity of an electro-rheological suspension with internal rotations. J. Rheology 52:769–83
    [Google Scholar]
  57. Loubet B, Hansen PL, Lomholt MA 2013. Electromechanics of a membrane with spatially distributed fixed charges: flexoelectricity and elastic parameters. Phys. Rev. E 88:062715
    [Google Scholar]
  58. Malkus WVR, Veronis G 1961. Surface electroconvection. Phys. Fluids 4:13–23
    [Google Scholar]
  59. Mandal S, Chakraborty S 2017.a Effect of nonuniform electric field on the electrohydrodynamic motion of a drop in Poiseuille flow. Phys. Fluids 29:052006
    [Google Scholar]
  60. Mandal S, Chakraborty S 2017.b Influence of interfacial viscosity on the dialectrophoresis of drops. Phys. Fluids 29:052002
    [Google Scholar]
  61. Mandal S, Chakraborty S 2017.c Uniform electric-field-induced non-Newtonian rheology of a dilute suspension of deformable Newtonian drops. Phys. Rev. Fluids 2:093602
    [Google Scholar]
  62. McConnell LC, Miksis MJ, Vlahovska PM 2013. Vesicle electrohydrodynamics in DC electric fields. IMA J. Appl. Math. 78:797–817
    [Google Scholar]
  63. McConnell LC, Miksis MJ, Vlahovska PM 2015.a Continuum modeling of the electric-field-induced tension in deforming lipid vesicles. J. Chem. Phys. 143:243132
    [Google Scholar]
  64. McConnell LC, Miksis MJ, Vlahovska PM 2015.b Vesicle dynamics in uniform electric fields: squaring and breathing. Soft Matter 11:4840–46
    [Google Scholar]
  65. Melcher JR, Taylor GI 1969. Electrohydrodynamics—a review of role of interfacial shear stress. Annu. Rev. Fluid Mech. 1:111–46
    [Google Scholar]
  66. Mikkelsen A, Rozynek Z, Khobaib K, Dommersnes P, Fossum JO 2017. Transient deformation dynamics of particle laden droplets in electric field. Colloids Surf. A 532:252–56
    [Google Scholar]
  67. Mori Y, Young YN 2018. Electrohydrodynamics of leaky dielectrics as the weak electrolyte limit of an electrodiffusion model. arXiv:1709.02321 [physics.flu-dyn]
  68. Nganguia H, Young YN, Layton AT, Hu WF, Lai MC 2015. An immersed interface method for axisymmetric electrohydrodynamic simulations in Stokes flow. Commun. Comput. Phys. 18:429–49
    [Google Scholar]
  69. Nganguia H, Young YN, Vlahovska PM, Blawzdziewcz J, Zhang J, Lin H 2013. Equilibrium electro-deformation of a surfactant-laden viscous drop. Phys. Fluids 25:092106
    [Google Scholar]
  70. Ouriemi M, Vlahovska PM 2014. Electrohydrodynamics of particle-covered drops. J. Fluid Mech. 751:106–20
    [Google Scholar]
  71. Ouriemi M, Vlahovska PM 2015. Electrohydrodynamic deformation and rotation of a particle-coated drop. Langmuir 31:6298–305
    [Google Scholar]
  72. Pairam E, Fernández-Nieves A 2009. Generation and stability of toroidal droplets in a viscous liquid. Phys. Rev. Lett. 102:234501
    [Google Scholar]
  73. Pan XD, McKinley GH 1997. Characteristics of electrorheological responses in an emulsion system. J. Colloid Interface Sci. 195:101–13
    [Google Scholar]
  74. Pascall AJ, Squires TM 2011. Electrokinetics at liquid/liquid interfaces. J. Fluid Mech. 684:163–91
    [Google Scholar]
  75. Perrier DL, Rems L, Boukany PE 2017. Lipid vesicles in pulsed electric fields: fundamental principles of the membrane response and its biomedical applications. Adv. Colloid Interface Sci. 249:248–71
    [Google Scholar]
  76. Pillai R, Berry JD, Harvie DJE, Davidson MR 2016. Electrokinetics of isolated electrified drops. Soft Matter 12:3310–25
    [Google Scholar]
  77. Portet T, Dimova R 2010. A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys. J. 99:3264–73
    [Google Scholar]
  78. Portet T, Mauroy C, Demery V, Houles T, Escoffre JM et al. 2012. Destabilizing giant vesicles with electric fields: an overview of current applications. J. Membr. Biol. 245:555–64
    [Google Scholar]
  79. Riske KA, Dimova R 2005. Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys. J. 88:1143–55
    [Google Scholar]
  80. Riske KA, Dimova R 2006. Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys. J. 91:1778–86
    [Google Scholar]
  81. Riske KA, Knorr RL, Dimova R 2009. Bursting of charged multicomponent vesicles subjected to electric pulses. Soft Matter 5:1983–86
    [Google Scholar]
  82. Rozynek Z, Castberg R, Kalicka A, Jankowski P, Garstecki P 2015. Electric field manipulation of particles in leaky dielectric liquids. Arch. Mech. 67:385–99
    [Google Scholar]
  83. Rozynek Z, Mikkelsen A, Dommersnes P, Fossum JO 2014. Electroformation of Janus and patchy capsules. Nat. Commun. 5:3945
    [Google Scholar]
  84. Salipante PF, Knorr R, Dimova R, Vlahovska PM 2012. Electrodeformation method for measuring the capacitance of bilayer membranes. Soft Matter 8:3810–16
    [Google Scholar]
  85. Salipante PF, Shapiro ML, Vlahovska PM 2015. Electric field induced deformations of biomimetic fluid membranes. Procedia IUTAM 16:60–69
    [Google Scholar]
  86. Salipante PF, Vlahovska PM 2010. Electrohydrodynamics of drops in strong uniform DC electric fields. Phys. Fluids 22:112110
    [Google Scholar]
  87. Salipante PF, Vlahovska PM 2013. Electrohydrodynamic rotations of a viscous droplet. Phys. Rev. E 88:043003
    [Google Scholar]
  88. Salipante PF, Vlahovska PM 2014. Vesicle deformation in DC electric pulses. Soft Matter 10:3386–93
    [Google Scholar]
  89. Sato H, Kaji N, Mochizuki T, Mori YH 2006. Behavior of oblately deformed droplets in an immiscible dielectric liquid under a steady and uniform electric field. Phys. Fluids 18:127101
    [Google Scholar]
  90. Saville DA 1997. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29:27–64
    [Google Scholar]
  91. Schnitzer O, Frankel I, Yariv E 2013.a Deformation of leaky-dielectric fluid globules under strong electric fields: boundary layers and jets at large Reynolds numbers. J. Fluid Mech. 734:R3
    [Google Scholar]
  92. Schnitzer O, Frankel I, Yariv E 2013.b Electrokinetic flows about conducting drops. J. Fluid Mech. 722:394–423
    [Google Scholar]
  93. Schnitzer O, Yariv E 2013. Nonlinear electrokinetic flow about a polarized conducting drop. Phys. Rev. E 87:041002. Erratum. 2013. Phys. Rev. E 87:059901
    [Google Scholar]
  94. Schnitzer O, Yariv E 2015. The Taylor–Melcher leaky dialectric model as a macroscale electrokinetic description. J. Fluid Mech. 773:1–33
    [Google Scholar]
  95. Schwalbe J, Vlahovska PM, Miksis MJ 2011.a Lipid membrane instability driven by capacitive charging. Phys. Fluids 23:041701
    [Google Scholar]
  96. Schwalbe J, Vlahovska PM, Miksis MJ 2011.b Vesicle electrohydrodynamics. Phys. Rev. E 83:046309
    [Google Scholar]
  97. Seifert U 1997. Configurations of fluid membranes and vesicles. Adv. Phys. 46:13–137
    [Google Scholar]
  98. Seifert U 1999. Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles. Eur. Phys. J. B 8:405–15
    [Google Scholar]
  99. Seifert U, Langer S 1993. Viscous modes of fluid bilayer membranes. Europhys. Lett. 23:71–76
    [Google Scholar]
  100. Seiwert J, Miksis MJ, Vlahovska PM 2012. Stability of biomimetic membranes in DC electric fields. J. Fluid Mech. 706:58–70
    [Google Scholar]
  101. Seiwert J, Vlahovska PM 2012. Instability of a fluctuating membrane driven by an AC electric field. Phys. Rev. E 87:022713
    [Google Scholar]
  102. Sengupta R, Walker LM, Khair AS 2017. The role of surface charge convection in the electrohydrodynamics and breakup of prolate drops. J. Fluid Mech. 833:29–53
    [Google Scholar]
  103. Sens P, Isambert H 2002. Undulation instability of lipid membranes under an electric field. Phys. Rev. Lett. 88:128102
    [Google Scholar]
  104. Sheng P, Wen W 2012. Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annu. Rev. Fluid Mech. 44:143–74
    [Google Scholar]
  105. Sinha KP, Gadkari S, Thaokar RM 2013. Electric field induced pearling instability in cylindrical vesicles. Soft Matter 9:7274–93
    [Google Scholar]
  106. Snezhko A 2016. Complex collective dynamics of active torque-driven colloids at interfaces. Curr. Opin. Colloid Interface Sci. 21:65–75
    [Google Scholar]
  107. Staykova M, Lipowsky R, Dimova R 2008. Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields. Soft Matter 4:2168–71
    [Google Scholar]
  108. Suryo R, Basaran OA 2006. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18:082102
    [Google Scholar]
  109. Tadavani SK, Munroe JR, Yethiraj A 2016. The effect of confinement on the electrohydrodynamic behavior of droplets in a microfluidic oil-in-oil emulsion. Soft Matter 12:9246–55
    [Google Scholar]
  110. Taylor GI 1932. The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. A 138:41–48
    [Google Scholar]
  111. Taylor GI 1966. Studies in electrohydrodynamics. I. Circulation produced in a drop by an electric field. Proc. R. Soc. A 291:159–66
    [Google Scholar]
  112. Torza S, Cox R, Mason S 1971. Electrohydrodynamic deformation and burst of liquid drops. Philos. Trans. R. Soc. A 269:295–319
    [Google Scholar]
  113. Tseng YH, Prosperetti A 2015. Local interfacial stability near a zero vorticity point. J. Fluid Mech. 776:5–36
    [Google Scholar]
  114. Turcu I 1987. Electric field induced rotation of spheres. J. Phys. A 20:3301–7
    [Google Scholar]
  115. Tyatyushkin AN 2017. Unsteady electrorotation of a drop in a constant electric field. Phys. Fluids 29:097101
    [Google Scholar]
  116. van Blaaderen A, Dijkstra M, van Roij R, Imhof A, Kamp M et al. 2013. Manipulating the self assembly of colloids in electric fields. Eur. Phys. J. Spec. Top. 222:2895–909
    [Google Scholar]
  117. Varshney A, Gohil S, Sathe M, Yethiraj A 2016. Multiscale flow in an electro-hydrodynamically driven oil-in-oil emulsion. Soft Matter 12:1759–64
    [Google Scholar]
  118. Veerapaneni S 2016. Integral equation methods for vesicle electrohydrodynamics in three dimensions. J. Comput. Phys. 326:278–89
    [Google Scholar]
  119. Vlahovska PM 2010. Non-equilibrium dynamics of lipid membranes: deformation and stability in electric fields. Advances in Planar Lipid Bilayers and Liposomes 12 A Iglič103–46 Oxford: Academic
    [Google Scholar]
  120. Vlahovska PM 2011. On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670:481–503
    [Google Scholar]
  121. Vlahovska PM 2015. Voltage-morphology coupling in biomimetic membranes: dynamics of giant vesicles in applied electric fields. Soft Matter 11:7232–36
    [Google Scholar]
  122. Vlahovska PM 2016.a Dynamics of membrane-bound particles: capsules and vesicles. Low-Reynolds-Number Flows: Fluid–Structure Interactions C Duprat, H Stone313–46 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  123. Vlahovska PM 2016.b Electrohydrodynamic instabilities of viscous drops. Phys. Rev. Fluids 1:060504
    [Google Scholar]
  124. Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R 2009. Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys. J. 96:4789–803
    [Google Scholar]
  125. Weaver JC, Chizmadzhev YA 1996. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:135–60
    [Google Scholar]
  126. Yamamoto T, Aranda-Espinoza S, Dimova R, Lipowsky R 2010. Stability of spherical vesicles in electric fields. Langmuir 26:12390–407
    [Google Scholar]
  127. Yariv E, Frankel I 2016. Electrohydrodynamic rotation of drops at large electric Reynolds numbers. J. Fluid Mech. 788:R2
    [Google Scholar]
  128. Yariv E, Rhodes D 2013. Electrohydrodynamic drop deformation by strong electric fields: slender body analysis. SIAM J. Appl. Math. 73:2143–61
    [Google Scholar]
  129. Yeo K, Lushi E, Vlahovska PM 2015. Collective dynamics in a binary mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114:188301
    [Google Scholar]
  130. Young YN, Miksis M 2015. Electrohydrodynamic instability of a capacitive elastic membrane. Phys. Fluids 27:022102
    [Google Scholar]
  131. Young YN, Veerapaneni S, Miksis M 2014. Long-wave dynamics of an inextensible planar membrane in an electric field. J. Fluid Mech. 751:406–31
    [Google Scholar]
  132. Yu M, Lira RB, Riske KA, Dimova R, Lin H 2015. Ellipsoidal relaxation of deformed vesicles. Phys. Rev. Lett. 115:128303
    [Google Scholar]
  133. Zabarankin M 2013. A liquid spheroidal drop in a viscous incompressible fluid under a steady electric field. SIAM J. Appl. Math. 73:677–99
    [Google Scholar]
  134. Zabarankin M, Smagin I, Lavrenteva OM, Nir A 2013. Viscous drop in compressional Stokes flow. J. Fluid. Mech. 720:169–91
    [Google Scholar]
  135. Zhang J, Song Y, Li D 2018. Electrokinetic motion of a spherical polystyrene particle at a liquid-fluid interface. J. Colloid Interface Sci. 509:432–39
    [Google Scholar]
  136. Zhang J, Zahn JD, Lin H 2013.a Transient solution for droplet deformation under electric fields. Phys. Rev. E 87:043008
    [Google Scholar]
  137. Zhang J, Zahn JD, Tan W, Lin H 2013.b A transient solution for vesicle electrodeformation and relaxation. Phys. Fluids 25:071903
    [Google Scholar]
  138. Zholkovskij EK, Masilyah JH, Czarnecki J 2002. An electrokinetic model of drop deformation in an electric field. J. Fluid Mech. 472:1–27
    [Google Scholar]
  139. Ziebert F, Bazant MZ, Lacoste D 2010. Effective zero-thickness model for a conductive membrane driven by an electric field. Phys. Rev. E 81:031912
    [Google Scholar]
  140. Ziebert F, Lacoste D 2010. A Poisson–Boltzmann approach for a lipid membrane in an electric field. New J. Phys. 12:095002
    [Google Scholar]
  141. Ziebert F, Lacoste D 2011. A planar lipid bilayer in an electric field: membrane instability, flow field and electrical impedance. Advances in Planar Lipid Bilayers and Liposomes 14 A Iglič73–95 Oxford: Academic
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-050120
Loading
/content/journals/10.1146/annurev-fluid-122316-050120
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error