Although negligible at large scales, capillary forces may become dominant for submillimetric objects. Surface tension is usually associated with the spherical shape of small droplets and bubbles, wetting phenomena, imbibition, or the motion of insects at the surface of water. However, beyond liquid interfaces, capillary forces can also deform solid bodies in their bulk, as observed in recent experiments with very soft gels. Capillary interactions, which are responsible for the cohesion of sandcastles, can also bend slender structures and induce the bundling of arrays of fibers. Thin sheets can spontaneously wrap liquid droplets within the limit of the constraints dictated by differential geometry. This review aims to describe the different scaling parameters and characteristic lengths involved in elastocapillarity. We focus on three main configurations, each characterized by a specific dimension: three-dimensional (3D), deformations induced in bulk solids; 1D, bending and bundling of rod-like structures; and 2D, bending and stretching of thin sheets. Although each configuration deserves a detailed review, we hope our broad description provides a general view of elastocapillarity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abe T, Reed ML. 1996. Control of liquid bridging induced stiction of micromechanical structures. J. Micromech. Microeng. 6:213–17 [Google Scholar]
  2. Adami N, Caps H. 2015. Surface tension profiles in vertical soap films. Phys. Rev. E 91:013007 [Google Scholar]
  3. Alizadeh A, Bahadur V, Shang W, Zhu Y, Buckley D et al. 2013. Influence of substrate elasticity on droplet impact dynamics. Langmuir 29:4520–24 [Google Scholar]
  4. Andreotti B, Bäumchen O, Boulogne F, Daniels KE, Dufresne ER. 2016. Solid capillarity: When and how does surface tension deform soft solids?. Soft Matter 12:2993–96 [Google Scholar]
  5. Andreotti B, Marchand A, Das S, Snoeijer JH. 2011. Elastocapillary instability under partial wetting conditions: bending versus buckling. Phys. Rev. E 84:061601 [Google Scholar]
  6. Andreotti B, Snoeijer JH. 2016. Soft wetting and the Shuttleworth effect, at the crossroads between thermodynamics and mechanics. Europhys. Lett. 113:66001 [Google Scholar]
  7. Anoop R, Sen AK. 2015. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys. Rev. E 92:013024 [Google Scholar]
  8. Antkowiak A, Audoly B, Josserand C, Neukirch S, Rivetti M. 2011. Instant fabrication and selection of folded structures using drop impact. PNAS 108:10400–4 [Google Scholar]
  9. Aristoff JM, Duprat C, Stone HA. 2011. Elastocapillary imbibition. Int. J. Non-Linear Mech. 46:648–56 [Google Scholar]
  10. Audoly B, Pomeau Y. 2010. Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells Oxford, UK: Oxford Univ. Press [Google Scholar]
  11. Bae J, Ouchi T, Hayward RC. 2015. Measuring the elastic modulus of thin polymer sheets by elastocapillary bending. ACS Appl. Mater. Interfaces 7:14734–42 [Google Scholar]
  12. Barrière B, Sekimoto K, Leibler L. 1996. Peristaltic instability of cylindrical gels. J. Chem. Phys. 105:1735–38 [Google Scholar]
  13. Bernardino NR, Dietrich S. 2012. Complete wetting of elastically responsive substrates. Phys. Rev. E 85:051603 [Google Scholar]
  14. Bico J, Roman B, Moulin L, Boudaoud A. 2004. Adhesion: elastocapillary coalescence in wet hair. Nature 432:690 [Google Scholar]
  15. Bodiguel H. 2006. Propriétés mécaniques de films polymères ultraminces PhD Thesis, Univ. Paris VI [Google Scholar]
  16. Bonaccurso E, Butt HJ. 2005. Microdrops on atomic force microscope cantilevers: evaporation of water and spring constant calibration. J. Phys. Chem. B 109:253–63 [Google Scholar]
  17. Boncheva M, Whitesides GM. 2005. Making things by self-assembly. MRS Bull. 30:736–42 [Google Scholar]
  18. Boudaoud A, Bico J, Roman B. 2007. Elastocapillary coalescence: aggregation and fragmentation with a maximal size. Phys. Rev. E 76:060102 [Google Scholar]
  19. Brubaker ND, Lega J. 2016a. Capillary-induced deformations of a thin elastic sheet. Philos. Trans. R. Soc. A 374:20150169 [Google Scholar]
  20. Brubaker ND, Lega J. 2016b. Two-dimensional capillary origami. Phys. Lett. A 380:83–87 [Google Scholar]
  21. Cambau T, Bico J, Reyssat E. 2011. Capillary rise between flexible walls. Europhys. Lett. 96:24001 [Google Scholar]
  22. Campàs O, Mammoto T, Hasso S, Sperling RA, O'Connell D et al. 2013. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11:183–89 [Google Scholar]
  23. Carré A, Gastel JC, Shanahan MER. 1996. Viscoelastic effects in the spreading of liquids. Nature 379:432–34 [Google Scholar]
  24. Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS. 2004. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. PNAS 101:4009–12 [Google Scholar]
  25. Chandra D, Yang S. 2009. Capillary-force-induced clustering of micropillar arrays: Is it caused by isolated capillary bridges or by the lateral capillary meniscus interaction force?. Langmuir 25:10430–34 [Google Scholar]
  26. Chandra D, Yang S. 2010. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Acc. Chem. Res. 43:1080–91 [Google Scholar]
  27. Chaudhury MK, Weaver T, Hui CY, Kramer EJ. 1996. Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 80:30–37 [Google Scholar]
  28. Chen D, Cai S, Suo Z, Hayward RC. 2012. Surface energy as a barrier to creasing of elastomer films: an elastic analogy to classical nucleation. Phys. Rev. Lett. 109:038001 [Google Scholar]
  29. Chen L, Wang X, Wen W, Li Z. 2010. Critical droplet volume for spontaneous capillary wrapping. Appl. Phys. Lett. 97:124103 [Google Scholar]
  30. Chiodi F, Roman B, Bico J. 2010. Piercing an interface with a brush: collaborative stiffening. Europhys. Lett. 90:44006 [Google Scholar]
  31. Cho J-H, Gracias DH. 2009. Self-assembly of lithographically patterned nanoparticles. Nano Lett. 9:4049–52 [Google Scholar]
  32. Chopin J, Vella D, Boudaoud A. 2008. The liquid blister test. Proc. R. Soc. A 464:2887–906 [Google Scholar]
  33. Cohen AE, Mahadevan L. 2003. Kinks, rings, and rackets in filamentous structures. PNAS 100:12141–46 [Google Scholar]
  34. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M. 2004. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4:2233–36 [Google Scholar]
  35. Crane NB, Onen O, Carballo J, Ni Q, Guldiken R. 2013. Fluidic assembly at the microscale: progress and prospects. Microfluid. Nanofluid. 14:383–419 [Google Scholar]
  36. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B. 2004. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69:165410 [Google Scholar]
  37. Das S, Marchand A, Andreotti B, Snoeijer JH. 2011. Elastic deformation due to tangential capillary forces. Phys. Fluids 23:072006 [Google Scholar]
  38. Davidovitch B, Schroll RD, Vella D, Adda-Bedia M, Cerda EA. 2011. Prototypical model for tensional wrinkling in thin sheets. PNAS 108:18227–32 [Google Scholar]
  39. de Gennes PG, Brochard-Wyart F, Quéré D. 2004. Capillarity and Wetting Phenomena New York: Springer [Google Scholar]
  40. de Langre E, Baroud C, Reverdy P. 2010. Energy criteria for elasto-capillary wrapping. J. Fluids Struct. 26:205–17 [Google Scholar]
  41. De Volder M, Hart AJ. 2013. Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew. Chem. Int. Ed. 52:2412–25 [Google Scholar]
  42. De Volder M, Tawfick SH, Park SJ, Copic D, Zhao Z et al. 2010. Diverse 3D microarchitectures made by capillary forming of carbon nanotubes. Adv. Mater. 22:4384–89 [Google Scholar]
  43. De Volder M, Tawfick SH, Park SJ, Hart AJ. 2011. Corrugated carbon nanotube microstructures with geometrically tunable compliance. ACS Nano 5:7310–17 [Google Scholar]
  44. DelRio FW, de Boer MP, Knapp JA, Reedy ED, Clews PJ, Dunn ML. 2005. The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4:629–34 [Google Scholar]
  45. Duan H, Berggren KK. 2010. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion. Nano Lett. 10:3710–16 [Google Scholar]
  46. Ducloué l, Hazel AL, Thompson AB, Juel A. 2017. Reopening modes of a collapsed elasto-rigid channel. J. Fluid Mech. 819:121–46 [Google Scholar]
  47. Ducloué L, Pitois O, Goyon J, Chateau X, Ovarlez G. 2014. Coupling of elasticity to capillarity in soft aerated materials. Soft Matter 10:5093–98 [Google Scholar]
  48. Duprat C, Aristoff JM, Stone HA. 2011. Dynamics of elastocapillary rise. J. Fluid Mech. 679:641–54 [Google Scholar]
  49. Duprat C, Protière S. 2015. Capillary stretching of fibers. Europhys. Lett. 111:56006 [Google Scholar]
  50. Duprat C, Protière S, Beebe AY, Stone HA. 2012. Wetting of flexible fibre arrays. Nature 482:510–13 [Google Scholar]
  51. Duprat C, Stone H. 2015. Fluid–Structure Interactions in Low-Reynolds-Number Flows Cambridge, UK: R. Soc. Chem. [Google Scholar]
  52. Elettro H, Neukirch S, Vollrath F, Antkowiak A. 2016. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties. PNAS 113:6143–47 [Google Scholar]
  53. Eshelby JD. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241:376–96 [Google Scholar]
  54. Extrand C, Kumagai Y. 1996. Contact angles and hysteresis on soft surfaces. J. Colloid Interface Sci. 184:191–200 [Google Scholar]
  55. Fargette A, Neukirch S, Antkowiak A. 2014. Elastocapillary snapping: Capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett. 112:137802 [Google Scholar]
  56. Fei Y, Maia HT, Batty C, Zheng C, Grinspun E. 2017. A multi-scale model for simulating liquid-hair interactions. ACM Trans. Graph. 36:56 [Google Scholar]
  57. Fernandes R, Gracias DH. 2012. Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug Deliv. Rev. 64:1579–89 [Google Scholar]
  58. Filipiak DJ, Azam A, Leong TG, Gracias DH. 2009. Hierarchical self-assembly of complex polyhedral microcontainers. J. Micromech. Microeng. 19:075012 [Google Scholar]
  59. García EJ, Hart AJ, Wardle BL, Slocum AH. 2007. Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers. Nanotechnology 18:165602 [Google Scholar]
  60. Geraldi NR, Ouali FF, Morris RH, McHale G, Newton MI. 2013. Capillary origami and superhydrophobic membrane surfaces. Appl. Phys. Lett. 102:214104 [Google Scholar]
  61. Gernay S, Federle W, Lambert P, Gilet T. 2016. Elasto-capillarity in insect fibrillar adhesion. J. R. Soc. Interface 13:20160371 [Google Scholar]
  62. Gonzalez-Rodriguez D, Sart S, Babataheri A, Tareste D, Barakat AI et al. 2015. Elastocapillary instability in mitochondrial fission. Phys. Rev. Lett. 115:088102 [Google Scholar]
  63. Grotberg JB, Jensen OE. 2004. Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36:121–47 [Google Scholar]
  64. Guo X, Li H, Ahn BY, Duoss EB, Hsia KJ et al. 2009. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. PNAS 106:20149–54 [Google Scholar]
  65. Hadjittofis A, Lister JR, Singh K, Vella D. 2016. Evaporation effects in elastocapillary aggregation. J. Fluid Mech. 792:168–85 [Google Scholar]
  66. Hazel AL, Heil M. 2003. Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech. 478:47–70 [Google Scholar]
  67. Henann DL, Bertoldi K. 2014. Modeling of elasto-capillary phenomena. Soft Matter 10:709–17 [Google Scholar]
  68. Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM et al. 2016. It's harder to splash on soft solids. Phys. Rev. Lett. 117:184502 [Google Scholar]
  69. Hu M, Ou FS, Wu W, Naumov I, Li X et al. 2010. Gold nanofingers for molecule trapping and detection. J. Am. Chem. Soc. 132:12820–22 [Google Scholar]
  70. Hu Y, Lao Z, Cumming BP, Wu D, Li J et al. 2015. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. PNAS 112:6876–81 [Google Scholar]
  71. Hu Y, Lee KYC, Israelachvili J. 2003. Sealed minitrough for microscopy and long-term stability studies of Langmuir monolayers. Langmuir 19:100–4 [Google Scholar]
  72. Huang J, Davidovitch B, Santangelo CD, Russell TP, Menon N. 2010. Smooth cascade of wrinkles at the edge of a floating elastic film. Phys. Rev. Lett. 105:038302 [Google Scholar]
  73. Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T et al. 2007. Capillary wrinkling of floating thin polymer films. Science 317:650–53 [Google Scholar]
  74. Hui CY, Jagota A, Lin YY, Kramer EJ. 2002. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18:1394–407 [Google Scholar]
  75. Hure J, Roman B, Bico J. 2011. Wrapping an adhesive sphere with an elastic sheet. Phys. Rev. Lett. 106:174301 [Google Scholar]
  76. Jagota A, Paretkar D, Ghatak A. 2012. Surface-tension-induced flattening of a nearly plane elastic solid. Phys. Rev. E 85:051602 [Google Scholar]
  77. Jamin T, Py C, Falcon E. 2011. Instability of the origami of a ferrofluid drop in a magnetic field. Phys. Rev. Lett. 107:204503 [Google Scholar]
  78. Jerison ER, Xu Y, Wilen LA, Dufresne ER. 2011. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106:186103 [Google Scholar]
  79. Kajiya T, Daerr A, Narita T, Royon L, Lequeux F, Limat L. 2013. Advancing liquid contact line on visco-elastic gel substrates: stick-slip versus continuous motions. Soft Matter 9:454–61 [Google Scholar]
  80. Kang SH, Pokroy B, Mahadevan L, Aizenberg J. 2010. Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction. ACS Nano 4:6323–31 [Google Scholar]
  81. Karpitschka S, Das S, van Gorcum M, Perrin H, Andreotti B, Snoeijer JH. 2015. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6:7891 [Google Scholar]
  82. Karpitschka S, Pandey A, Lubbers LA, Wijs JH, Botto L et al. 2016. Liquid drops attract or repel by the inverted Cheerios effect. PNAS 113:7403–7 [Google Scholar]
  83. Kern R, Müller P. 1992. Deformation of an elastic thin solid induced by a liquid droplet. Surf. Sci. 264:467–94 [Google Scholar]
  84. Kim HY, Mahadevan L. 2006. Capillary rise between elastic sheets. J. Fluid Mech. 548:141–50 [Google Scholar]
  85. Kim TH, Kim J, Kim Hy. 2016. Evaporation-driven clustering of microscale pillars and lamellae. Phys. Fluids 28:022003 [Google Scholar]
  86. King H, Schroll RD, Davidovitch B, Menon N. 2012. Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. PNAS 109:9716–20 [Google Scholar]
  87. Kralchevsky PA, Nagayama K. 2000. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85:145–92 [Google Scholar]
  88. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ et al. 2003. Superhydrophobic carbon nanotube forests. Nano Lett. 3:1701–5 [Google Scholar]
  89. Legrain A, Berenschot EJW, Abelmann L, Bico J, Tas NR. 2016. Let's twist again: elasto-capillary assembly of parallel ribbons. Soft Matter 12:7186–94 [Google Scholar]
  90. Legrain A, Janson TG, Berenschot JW, Abelmann L, Tas NR. 2014. Controllable elastocapillary folding of three-dimensional micro-objects by through-wafer filling. J. Appl. Phys. 115:214905 [Google Scholar]
  91. Leong TG, Zarafshar AM, Gracias DH. 2010. Three-dimensional fabrication at small size scales. Small 6:792–806 [Google Scholar]
  92. Lester G. 1961. Contact angles of liquids at deformable solid surfaces. J. Colloid Sci. 16:315–26 [Google Scholar]
  93. Liang H, Cao Z, Dobrynin AV. 2016. Molecular dynamics simulations of the effect of elastocapillarity on reinforcement of soft polymeric materials by liquid inclusions. Macromolecules 49:7108–15 [Google Scholar]
  94. Limat L. 2012. Straight contact lines on a soft, incompressible solid. Eur. Phys. J. E 35:134 [Google Scholar]
  95. Liu T, Xu X, Nadermann N, He Z, Jagota A, Hui CY. 2017. Interaction of droplets separated by an elastic film. Langmuir 33:75–81 [Google Scholar]
  96. Long D, Ajdari A, Leibler L. 1996. Static and dynamic wetting properties of thin rubber films. Langmuir 12:5221–30 [Google Scholar]
  97. Maboudian R. 1997. Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15:1–20 [Google Scholar]
  98. Majidi C, Adams GG. 2009. A simplified formulation of adhesion problems with elastic plates. Proc. R. Soc. A 465:2217–30 [Google Scholar]
  99. Manakasettharn S, Taylor JA, Krupenkin TN. 2011. Bio-inspired artificial iridophores based on capillary origami: fabrication and device characterization. Appl. Phys. Lett. 99:144102 [Google Scholar]
  100. Marchand A, Das S, Snoeijer JH, Andreotti B. 2012. Contact angles on a soft solid: from Young's law to Neumann's law. Phys. Rev. Lett. 109:236101 [Google Scholar]
  101. Martel R, Shea HR, Avouris P. 1999. Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 103:7551–56 [Google Scholar]
  102. Mastrangeli M, Abbasi S, Varel C, Van Hoof C, Celis JP, Böhringer KF. 2009. Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microeng. 19:083001 [Google Scholar]
  103. Matsuo ES, Tanaka T. 1992. Patterns in shrinking gels. Nature 358:482–85 [Google Scholar]
  104. Mehrabian H, Harting J, Snoeijer JH. 2016. Soft particles at a fluid interface. Soft Matter 12:1062–73 [Google Scholar]
  105. Meng Q, Wang Q, Liu H, Jiang L. 2014. A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer. NPG Asia Mater. 6:e125 [Google Scholar]
  106. Mora S, Abkarian M, Tabuteau H, Pomeau Y. 2011. Surface instability of soft solids under strain. Soft Matter 7:10612–19 [Google Scholar]
  107. Mora S, Maurini C, Phou T, Fromental JM, Audoly B, Pomeau Y. 2013. Solid drops: large capillary deformations of immersed elastic rods. Phys. Rev. Lett. 111:114301 [Google Scholar]
  108. Mora S, Phou T, Fromental JM, Pismen LM, Pomeau Y. 2010. Capillarity driven instability of a soft solid. Phys. Rev. Lett. 105:214301 [Google Scholar]
  109. Mora S, Pomeau Y. 2015. Softening of edges of solids by surface tension. J. Phys. Condens. Matter 27:194112 [Google Scholar]
  110. Nadermann N, Hui CY, Jagota A. 2013. Solid surface tension measured by a liquid drop under a solid film. PNAS 110:10541–45 [Google Scholar]
  111. Neukirch S, Roman B, de Gaudemaris B, Bico J. 2007. Piercing a liquid surface with an elastic rod: buckling under capillary forces. J. Mech. Phys. Solids 55:1212–35 [Google Scholar]
  112. Nicolson MM. 1955. Surface tension in ionic crystals. Proc. R. Soc. A 228:490–510 [Google Scholar]
  113. Olives J. 1993. Capillarity and elasticity. The example of the thin plate. J. Phys. Condens. Matter 5:2081–94 [Google Scholar]
  114. Paretkar D, Xu X, Hui CY, Jagota A. 2014. Flattening of a patterned compliant solid by surface stress. Soft Matter 10:4084–90 [Google Scholar]
  115. Park SJ, Schmidt AJ, Tawfick SH, Hart AJ. 2014. Precise control of elastocapillary densification of nanostructures via low-pressure condensation. J. Micromech. Microeng. 24:065019 [Google Scholar]
  116. Patra N, Wang B, Kral P. 2009. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9:3766–71 [Google Scholar]
  117. Paulsen JD, Démery V, Santangelo CD, Russell TP, Davidovitch B, Menon N. 2015. Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater. 14:1206–9 [Google Scholar]
  118. Paulsen JD, Démery V, Toga KB, Qiu Z, Russell TP et al. 2017. Geometry-driven folding of a floating annular sheet. Phys. Rev. Lett. 118:048004 [Google Scholar]
  119. Paulsen JD, Hohlfeld E, King H, Huang J, Qiu Z et al. 2016. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. PNAS 113:1144–49 [Google Scholar]
  120. Péraud JP, Lauga E. 2014. Geometry and wetting of capillary folding. Phys. Rev. E 89:043011 [Google Scholar]
  121. Pericet-Camara R, Best A, Butt HJ, Bonaccurso E. 2008. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24:10565–68 [Google Scholar]
  122. Pham JT, Lawrence J, Lee DY, Grason GM, Emrick T, Crosby AJ. 2013. Highly stretchable nanoparticle helices through geometric asymmetry and surface forces. Adv. Mater. 25:6703–8 [Google Scholar]
  123. Piñeirua M, Bico J, Roman B. 2010. Capillary origami controlled by an electric field. Soft Matter 6:4491–96 [Google Scholar]
  124. Piñeirua M, Tanaka N, Roman B, Bico J. 2013. Capillary buckling of a floating annulus. Soft Matter 9:10985–92 [Google Scholar]
  125. Pokroy B, Kang SH, Mahadevan L, Aizenberg J. 2009. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323:237–40 [Google Scholar]
  126. Py C, Bastien R, Bico J, Roman B, Boudaoud A. 2007a. 3D aggregation of wet fibers. Europhys. Lett. 77:44005 [Google Scholar]
  127. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN. 2007b. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett 98:156103 [Google Scholar]
  128. Reis PM, Hure J, Jung S, Bush JWM, Clanet C. 2010. Grabbing water. Soft Matter 6:5705–8 [Google Scholar]
  129. Rico-Guevara A, Rubega MA. 2011. The hummingbird tongue is a fluid trap, not a capillary tube. PNAS 108:9356–60 [Google Scholar]
  130. Rivetti M, Neukirch S. 2012. Instabilities in a drop-strip system: a simplified model. Proc. R. Soc. A 468:1304–24 [Google Scholar]
  131. Roca-Cusachs P, Rico F, Martínez E, Toset J, Farré R, Navajas D. 2005. Stability of microfabricated high aspect ratio structures in poly(dimethylsiloxane). Langmuir 21:5542–48 [Google Scholar]
  132. Roman B, Bico J. 2010. Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys. Condens. Matter 22:493101 [Google Scholar]
  133. Rusanov A. 1978. On the thermodynamics of deformable solid surfaces. J. Colloid Interface Sci. 63:330–45 [Google Scholar]
  134. Salez T, Benzaquen M, Raphaël E. 2013. From adhesion to wetting of a soft particle. Soft Matter 9:10699–704 [Google Scholar]
  135. Schroll RD, Adda-Bedia M, Cerda E, Huang J, Menon N et al. 2013. Capillary deformations of bendable films. Phys. Rev. Lett. 111:014301 [Google Scholar]
  136. Schulman RD, Dalnoki-Veress K. 2015. Liquid droplets on a highly deformable membrane. Phys. Rev. Lett. 115:206101 [Google Scholar]
  137. Schulman RD, Porat A, Charlesworth K, Fortais A, Salez T et al. 2017. Elastocapillary bending of microfibers around liquid droplets. Soft Matter 13:720–24 [Google Scholar]
  138. Shanahan MER. 1987. The influence of solid micro-deformation on contact angle equilibrium. J. Phys. D Appl. Phys. 20:945–50 [Google Scholar]
  139. Shanahan MER. 1988. The spreading dynamics of a liquid drop on a viscoelastic solid. J. Phys. D Appl. Phys. 21:981–85 [Google Scholar]
  140. Sharp KG, Blackman GS, Glassmaker NJ, Jagota A, Hui CY. 2004. Effect of stamp deformation on the quality of microcontact printing: theory and experiment. Langmuir 20:6430–38 [Google Scholar]
  141. Singh K, Lister JR, Vella D. 2014. A fluid-mechanical model of elastocapillary coalescence. J. Fluid Mech. 745:621–46 [Google Scholar]
  142. Snoeijer JH. 2016. Analogies between elastic and capillary interfaces. Phys. Rev. Fluids 1:060506 [Google Scholar]
  143. Sokuler M, Auernhammer GK, Roth M, Liu C, Bonacurrso E, Butt HJ. 2010. The softer the better: fast condensation on soft surfaces. Langmuir 26:1544–47 [Google Scholar]
  144. Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER. 2013a. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110:066103 [Google Scholar]
  145. Style RW, Che Y, Park SJ, Weon BM, Je JH, et al. 2013b. Patterning droplets with durotaxis. PNAS 110:12541–44 [Google Scholar]
  146. Style RW, Dufresne ER. 2012. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8:7177–84 [Google Scholar]
  147. Style RW, Hyland C, Boltyanskiy R, Wettlaufer JS, Dufresne ER. 2013c. Surface tension and contact with soft elastic solids. Nat. Commun. 4:2728 [Google Scholar]
  148. Style RW, Jagota A, Hui CY, Dufresne ER. 2017. Elastocapillarity: surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 8:99–118 [Google Scholar]
  149. Style RW, Wettlaufer JS, Dufresne ER. 2015. Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter 11:672–79 [Google Scholar]
  150. Syms R, Yeatman E, Bright V, Whitesides G. 2003. Surface tension-powered self-assembly of microstructures—the state-of-the-art. J. Microelectromech. Syst. 12:387–417 [Google Scholar]
  151. Taffetani M, Ciarletta P. 2015. Elastocapillarity can control the formation and the morphology of beads-on-string structures in solid fibers. Phys. Rev. E 91:032413 [Google Scholar]
  152. Taroni M, Vella D. 2012. Multiple equilibria in a simple elastocapillary system. J. Fluid Mech. 712:273–94 [Google Scholar]
  153. Tas N, Sonnenberg T, Jansen H, Legtenberg R, Elwenspoek M. 1996. Stiction in surface micromachining. J. Micromech. Microeng. 6:385–97 [Google Scholar]
  154. Tawfick SH, Bico J, Barcelo S. 2016. Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bull. 41:108–14 [Google Scholar]
  155. Taylor G. 1963. On the shapes of parachutes. The Scientific Papers of Sir Geoffrey Ingram Taylor 3 GK Batchelor 26–37 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  156. Toga KB, Huang J, Cunningham K, Russell TP, Menon N. 2013. A drop on a floating sheet: boundary conditions, topography and formation of wrinkles. Soft Matter 9:8289–96 [Google Scholar]
  157. Vollrath F, Edmonds DT. 1989. Modulation of the mechanical properties of spider silk by coating with water. Nature 340:305–7 [Google Scholar]
  158. Wang K-Y, Chou C-H, Liao C-Y, Li Y-R, Cheng H-C. 2016. Densification effects of the carbon nanotube pillar array on field-emission properties. Jpn. J. Appl. Phys. 55:06GF12 [Google Scholar]
  159. Wei Z, Mahadevan L. 2014. Continuum dynamics of elastocapillary coalescence and arrest. Europhys. Lett. 106:14002 [Google Scholar]
  160. Weijs JH, Andreotti B, Snoeijer JH. 2013. Elasto-capillarity at the nanoscale: on the coupling between elasticity and surface energy in soft solids. Soft Matter 9:8494–503 [Google Scholar]
  161. Weijs JH, Snoeijer JH, Andreotti B. 2014. Capillarity of soft amorphous solids: a microscopic model for surface stress. Phys. Rev. E 89:042408 [Google Scholar]
  162. Wexler JS, Heard TM, Stone HA. 2014. Capillary bridges between soft substrates. Phys. Rev. Lett. 112:066102 [Google Scholar]
  163. Xuan C, Biggins J. 2016. Finite-wavelength surface-tension-driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid. Phys. Rev. E 94:023107 [Google Scholar]
  164. Zell ZA, Choi SQ, Leal LG, Squires TM. 2010. Microfabricated deflection tensiometers for insoluble surfactants. Appl. Phys. Lett. 97:133505 [Google Scholar]
  165. Zhao YP, Fan JG. 2006. Clusters of bundled nanorods in nanocarpet effect. Appl. Phys. Lett. 88:103123 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error