It is well-known that micro- and nanoparticles can move by phoretic effects in response to externally imposed gradients of scalar quantities such as chemical concentration or electric potential. A class of active colloids can propel themselves through aqueous media by generating local gradients of concentration and electrical potential via surface reactions. Phoretic active colloids can be controlled using external stimuli and can mimic collective behaviors exhibited by many biological swimmers. Low–Reynolds number physicochemical hydrodynamics imposes unique challenges and constraints that must be understood for the practical potential of active colloids to be realized. Here, we review the rich physics underlying the operation of phoretic active colloids, describe their interactions and collective behaviors, and discuss promising directions for future research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson JL. 1989. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21:61–99 [Google Scholar]
  2. Anderson JL, Lowell M, Prieve D. 1982. Motion of a particle generated by chemical gradients. 1. Non-electrolytes. J. Fluid Mech. 117:107–21 [Google Scholar]
  3. Attard P. 2012. Design of chemotaxis devices using nano-motors. arXiv:1209.1448 [cond-mat.soft]
  4. Balasubramanian S, Kagan D, Manesh KM, Calvo-Marzal P, Flechsig G-U, Wang J. 2009. Thermal modulation of nanomotor movement. Small 5:1569–74 [Google Scholar]
  5. Baraban L, Harazim SM, Sanchez S, Schmidt OG. 2013. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52:5552–56 [Google Scholar]
  6. Baraban L, Tasinkevych M, Popescu MN, Sanchez S, Dietrich S, Schmidt OG. 2012. Transport of cargo by catalytic Janus micro-motors. Soft Matter 8:48–52 [Google Scholar]
  7. Bard AJ, Faulkner LR. 2001. Electrochemical Methods New York: Wiley, 2nd ed..
  8. Bazant MZ, Chu KT, Bayly BJ. 2005. Current-voltage relations for electrochemical thin films. SIAM J. Appl. Math. 65:1463–84 [Google Scholar]
  9. Bazant MZ, Thornton K, Ajdari A. 2004. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70:021506 [Google Scholar]
  10. Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4 [Google Scholar]
  11. Biesheuvel PM, van Soestbergen M, Bazant MZ. 2009. Imposed currents in galvanic cells. Electrochim. Acta 54:4857–71 [Google Scholar]
  12. Bikerman JJ. 1933. Ionentheorie der Elektrosmose, der Strömungsströme und der Oberflächenleitfähigkeit. Z. Phys. Chem. A 163:378–94 [Google Scholar]
  13. Brady JF. 2011. Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667:216–59 [Google Scholar]
  14. Brady JF, Bossis G. 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–57 [Google Scholar]
  15. Bray D. 2001. Cell Movements: From Molecules to Motility New York: Garland
  16. Brenner H. 1964. The Stokes resistance of an arbitrary particle—IV. Arbitrary fields of flow. Chem. Eng. Sci. 19:703–27 [Google Scholar]
  17. Bretherton FP, Rothschild L. 1961. Rheotaxis of spermatozoa. Proc. R. Soc. Lond. B 153:490–502 [Google Scholar]
  18. Brown A, Poon W. 2014. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 10:4016–27 [Google Scholar]
  19. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J. 2008. Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc. 130:8164–65 [Google Scholar]
  20. Calvo-Marzal P, Manesh KM, Kagan D, Balasubramanian S, Cardona M. et al. 2009. Electrochemically-triggered motion of catalytic nanomotors. Chem. Commun. 2009:4509–11 [Google Scholar]
  21. Campbell AI, Ebbens SJ. 2013. Gravitaxis in spherical Janus swimming devices. Langmuir 29:14066–73 [Google Scholar]
  22. Chen J-X, Chen Y-G, Ma Y-Q. 2016. Chemotactic dynamics of catalytic dimer nanomotors. Soft Matter 12:1876–83 [Google Scholar]
  23. Chiang T-Y, Velegol D. 2014. Localized electroosmosis (LEO) induced by spherical colloidal motors. Langmuir 30:2600–7 [Google Scholar]
  24. Chu KT. 2005. Asymptotic analysis of extreme electrochemical transport PhD Thesis, Mass. Inst. Technol., Cambridge, MA
  25. Condeelis J. 1993. Life at the leading edge: the formation of cell protrusions. Annu. Rev. Cell Biol. 9:411–44 [Google Scholar]
  26. Córdova-Figueroa UM, Brady JF. 2008. Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100:158303 [Google Scholar]
  27. Córdova-Figueroa UM, Brady JF, Shklyaev S. 2013. Osmotic propulsion of colloidal particles via constant surface flux. Soft Matter 9:6382–90 [Google Scholar]
  28. Das S, Garg A, Campbell AI, Howse J, Sen A. et al. 2015. Boundaries can steer active Janus spheres. Nat. Commun. 6:8999 [Google Scholar]
  29. Demirok UK, Laocharoensuk R, Manesh KM, Wang J. 2008. Ultrafast catalytic alloy nanomotors. Angew. Chem. Int. Ed. 47:9349–51 [Google Scholar]
  30. de Graaf J, Rempfer G, Holm C. 2015. Diffusiophoretic self-propulsion for partially catalytic spherical colloids. IEEE Trans. NanoBiosci. 14:272–88 [Google Scholar]
  31. Derjaguin B, Dukhin S, Korotkova A. 1961. Diffusiophoresis in electrolyte solutions and its role in mechanism of film formation from rubber latexes by method of ionic deposition. Kolloidn. Z. 23:53 [Google Scholar]
  32. Derjaguin B, Sidorenkov G, Zubashchenkov E, Kiseleva E. 1947. Kinetic phenomena in boundary films of liquids. Kolloidn. Z. 9:335–47 [Google Scholar]
  33. Dey KK, Wong F, Altemose A, Sen A. 2016. Catalytic motors—Quo vadimus?. Curr. Opin. Colloid Interface Sci. 21:4–13 [Google Scholar]
  34. Dhar P, Fischer TM, Wang Y, Mallouk TE, Paxton WF, Sen A. 2006. Autonomously moving nanorods at a viscous interface. Nano Lett. 6:66–72 [Google Scholar]
  35. Dougherty GM, Rose KA, Tok JB-H, Pannu SS, Chuang FYS. et al. 2008. The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis 29:1131–39 [Google Scholar]
  36. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. 2005. Microscopic artificial swimmers. Nature 437:862–65 [Google Scholar]
  37. Dukhin S, Derjaguin B. 1974. Electrokinetic Phenomena New York: Wiley
  38. Dunn GA. 1981. Chemotaxis as a form of directed cell behaviour: some theoretical considerations. Biology of the Chemotactic Response PC Wilkinson, JM Lackie 1–26 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  39. Ebbens S, Gregory DA, Dunderdale G, Howse JR, Ibrahim Y. et al. 2014. Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Europhys. Lett. 106:58003 [Google Scholar]
  40. Ebbens S, Jones R, Ryan A, Golestanian R, Howse J. 2010. Self-assembled autonomous runners and tumblers. Phys. Rev. E 82:015304 [Google Scholar]
  41. Ebbens S, Tu M-H, Howse JR, Golestanian R. 2012. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E 85:020401 [Google Scholar]
  42. Ebbens SJ. 2016. Active colloids: progress and challenges towards realising autonomous applications. Curr. Opin. Colloid Interface Sci. 21:14–23 [Google Scholar]
  43. Evans AA, Ishikawa T, Yamaguchi T, Lauga E. 2011. Orientational order in concentrated suspensions of spherical microswimmers. Phys. Fluids 23:111702 [Google Scholar]
  44. Ezhilan B, Gao W, Pei A, Rozen I, Dong R. et al. 2015. Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale 7:7833–40 [Google Scholar]
  45. Frankel AE, Khair AS. 2014. Dynamics of a self-diffusiophoretic particle in shear flow. Phys. Rev. E 90:013030 [Google Scholar]
  46. Frumkin A. 1933. Wasserstoffüberspannung und struktur der doppelschict. Z. Phys. Chem. 164A:121–33 [Google Scholar]
  47. Gao W, Allen P, Wang J. 2012. Water-driven micromotors. ACS Nano 6:8432–38 [Google Scholar]
  48. Gao W, Dong R, Thamphiwatana S, Li J, Gao W. et al. 2015. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors. ACS Nano 9:117–23 [Google Scholar]
  49. Gao W, Wang J. 2014. Synthetic micro/nanomotors in drug delivery. Nanoscale 6:1048–94 [Google Scholar]
  50. Ghosh A, Fischer P. 2009. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9:2243–45 [Google Scholar]
  51. Golestanian R, Liverpool TB, Ajdari A. 2005. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94:220801 [Google Scholar]
  52. Golestanian R, Liverpool TB, Ajdari A. 2007. Designing phoretic micro- and nano-swimmers. New J. Phys. 9:126 [Google Scholar]
  53. Götze IO, Gompper G. 2010. Mesoscale simulations of hydrodynamic squirmer interactions. Phys. Rev. E 82:041921 [Google Scholar]
  54. Henry DC. 1931. The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc. R. Soc. Lond. A 133:106–29 [Google Scholar]
  55. Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D. 2007. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99:178103 [Google Scholar]
  56. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. 2007. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99:048102 [Google Scholar]
  57. Hunter RJ. 1981. Zeta Potential in Colloid Science: Principles and Applications New York: Academic
  58. Ibrahim Y, Liverpool TB. 2015. The dynamics of a self-phoretic Janus swimmer near a wall. Europhys. Lett. 111:48008 [Google Scholar]
  59. Israelachvili JN. 2011. Intermolecular and Surface Forces New York: Academic, 3rd ed..
  60. Jiang H-R, Yoshinaga N, Sano M. 2010. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105:268302 [Google Scholar]
  61. Jülicher F, Prost J. 2009. Generic theory of colloidal transport. Eur. Phys. J. E 29:27–36 [Google Scholar]
  62. Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM. et al. 2009. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131:12082–83 [Google Scholar]
  63. Kantsler V, Dunkel J, Blayney M, Goldstein RE. 2014. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3:e02403 [Google Scholar]
  64. Khair AS. 2013. Diffusiophoresis of colloidal particles in neutral solute gradients at finite Péclet number. J. Fluid Mech. 731:64–94 [Google Scholar]
  65. Kline TR, Iwata J, Lammert PE, Mallouk TE, Sen A, Velegol D. 2006. Catalytically driven colloidal patterning and transport. J. Phys. Chem. B 110:24513–21 [Google Scholar]
  66. Kümmel F, ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R. et al. 2013. Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 110:198302 [Google Scholar]
  67. Lammert PE, Prost J, Bruinsma R. 1996. Ion drive for vesicles and cells. J. Theor. Biol. 178:387–91 [Google Scholar]
  68. Laocharoensuk R, Burdick J, Wang J. 2008. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2:1069–75 [Google Scholar]
  69. Lauga E. 2016. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48:105–30 [Google Scholar]
  70. Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601 [Google Scholar]
  71. Lee K-C, Liu AJ. 2008. New proposed mechanism of actin-polymerization-driven motility. Biophys. J. 95:4529–39 [Google Scholar]
  72. Leikin S, Parsegian V, Rau D, Rand R. 1993. Hydration forces. Annu. Rev. Phys. Chem. 44:369–95 [Google Scholar]
  73. Liu R, Sen A. 2011. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133:20064–67 [Google Scholar]
  74. Lyklema J, Minor M. 1998. On surface conduction and its role in electrokinetics. Colloids Surf. A 140:33–41 [Google Scholar]
  75. Mano N, Heller A. 2005. Bioelectrochemical propulsion. J. Am. Chem. Soc. 127:11574–75 [Google Scholar]
  76. Marine NA, Wheat PM, Ault J, Posner JD. 2013. Diffusive behaviors of circle-swimming motors. Phys. Rev. E 87:052305 [Google Scholar]
  77. Michelin S, Lauga E. 2014. Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747:572–604 [Google Scholar]
  78. Michelin S, Lauga E, Bartolo D. 2013. Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25:061701 [Google Scholar]
  79. Mitchell P. 1956. Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in micro-organisms. Proc. R. Phys. Soc. Edinb. 25:32–34 [Google Scholar]
  80. Mitchell P. 1972. Self-electrophoretic locomotion in microorganisms: bacterial flagella as giant ionophores. FEBS Lett. 28:1–4 [Google Scholar]
  81. Molina JJ, Nakayama Y, Yamamoto R. 2013. Hydrodynamic interactions of self-propelled swimmers. Soft Matter 9:4923–36 [Google Scholar]
  82. Moran JL, Posner JD. 2011. Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech. 680:31–66 [Google Scholar]
  83. Moran JL, Posner JD. 2014. Role of solution conductivity in reaction induced charge auto-electrophoresis. Phys. Fluids 26:042001 [Google Scholar]
  84. Moran JL, Wheat PM, Posner JD. 2010. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Phys. Rev. E 81:065302 [Google Scholar]
  85. Nourhani A, Crespi VH, Lammert PE, Borhan A. 2015a. Self-electrophoresis of spheroidal electrocatalytic swimmers. Phys. Fluids 27:092002 [Google Scholar]
  86. Nourhani A, Lammert PE, Crespi VH, Borhan A. 2015b. A general flux-based analysis for spherical electrocatalytic nanomotors. Phys. Fluids 27:012001 [Google Scholar]
  87. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 2013. Living crystals of light-activated colloidal surfers. Science 339:936–40 [Google Scholar]
  88. Pavlick RA, Sengupta S, McFadden T, Zhang H, Sen A. 2011. A polymerization-powered motor. Angew. Chem. Int. Ed. 50:9374–77 [Google Scholar]
  89. Parsegian VA, Zemb T. 2011. Hydration forces: observations, explanations, expectations, questions. Curr. Opin. Colloid Interface Sci. 16:618–24 [Google Scholar]
  90. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A. 2006. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128:14881–88 [Google Scholar]
  91. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK. et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31 [Google Scholar]
  92. Paxton WF, Sen A, Mallouk TE. 2005. Motility of catalytic nanoparticles through self-generated forces. Chemistry 11:6462–70 [Google Scholar]
  93. Pitta TP, Berg HC. 1995. Self-electrophoresis is not the mechanism for motility in swimming cyanobacteria. J. Bacteriol. 177:5701–3 [Google Scholar]
  94. Popescu MN, Dietrich S, Tasinkevych M, Ralston J. 2010. Phoretic motion of spheroidal particles due to self-generated solute gradients. Eur. Phys. J. E 31:351–67 [Google Scholar]
  95. Popescu MN, Tasinkevych M, Dietrich S. 2011. Pulling and pushing a cargo with a catalytically active carrier. Europhys. Lett. 95:28004 [Google Scholar]
  96. Prieve D, Anderson J, Ebel J, Lowell M. 1984. Motion of a particle generated by chemical gradients. 2. Electrolytes. J. Fluid Mech. 148:247–69 [Google Scholar]
  97. Purcell E. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  98. Quemada D, Berli C. 2002. Energy of interaction in colloids and its implications in rheological modeling. Adv. Colloid Interface Sci. 98:51–85 [Google Scholar]
  99. Ralt D, Manor M, Cohendayag A, Turkaspa I, Benshlomo I. et al. 1994. Chemotaxis and chemokinesis of human spermatozoa to follicular factors. Biol. Reprod. 50:774–85 [Google Scholar]
  100. Richards GR, Millard RM, Leveridge M, Kerby J, Simpson PB. 2004. Quantitative assays of chemotaxis and chemokinesis for human neural cells. Assay Drug Dev. Technol. 2:465–72 [Google Scholar]
  101. Sabass B, Seifert U. 2012a. Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. J. Chem. Phys. 136:064508 [Google Scholar]
  102. Sabass B, Seifert U. 2012b. Nonlinear, electrocatalytic swimming in the presence of salt. J. Chem. Phys. 136:214507 [Google Scholar]
  103. Sanchez T, Welch D, Nicastro D, Dogic Z. 2011. Cilia-like beating of active microtubule bundles. Science 333:456–59 [Google Scholar]
  104. Schmitt M, Stark H. 2013. Swimming active droplet: a theoretical analysis. Europhys. Lett. 101:44008 [Google Scholar]
  105. Sharifi-Mood N, Koplik J, Maldarelli C. 2013. Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys. Fluids 25:012001 [Google Scholar]
  106. Shklyaev S, Brady JF, Córdova-Figueroa UM. 2014. Non-spherical osmotic motor: chemical sailing. J. Fluid Mech. 748:488–520 [Google Scholar]
  107. Simmchen J, Katuri J, Uspal WE, Popescu MN, Tasinkevych M, Sánchez S. 2016. Topographical pathways guide chemical microswimmers. Nat. Commun. 7:10598 [Google Scholar]
  108. Soler L, Sánchez S. 2014. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 6:7175–82 [Google Scholar]
  109. Spagnolie SE, Lauga E. 2012. Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700:105–47 [Google Scholar]
  110. Staffeld PO, Quinn JA. 1989a. Diffusion-induced banding of colloid particles via diffusiophoresis: 1. Electrolytes.. J. Colloid Interface Sci. 130:69–87 [Google Scholar]
  111. Staffeld PO, Quinn JA. 1989b. Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolytes. J. Colloid Interface Sci. 130:88–100 [Google Scholar]
  112. Stern O. 1924. Zur Theorie der Elektrolytischen Doppelschicht. Z. Electrochem. Angew. Phys. Chem. 30:508–16 [Google Scholar]
  113. Stone HA, Samuel ADT. 1996. Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77:4102–4 [Google Scholar]
  114. Takagi D, Braunschweig AB, Zhang J, Shelley MJ. 2013. Dispersion of self-propelled rods undergoing fluctuation-driven flips. Phys. Rev. Lett. 110:038301 [Google Scholar]
  115. Takagi D, Palacci J, Braunschweig AB, Shelley MJ, Zhang J. 2014. Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matter 10:1784 [Google Scholar]
  116. ten Hagen B, Kümmel F, Wittkowski R, Takagi D, Löwen H, Bechinger C. 2014. Gravitaxis of asymmetric self-propelled colloidal particles. Nat. Commun. 5:4829 [Google Scholar]
  117. Teo WZ, Zboril R, Medrik I, Pumera M. 2016. Fe0 nanomotors in ton quantities (1020 units) for environmental remediation. Chemistry 22:4789–93 [Google Scholar]
  118. Thutupalli S, Seemann R, Herminghaus S. 2011. Swarming behavior of simple model squirmers. New J. Phys. 13:073021 [Google Scholar]
  119. Tilney LG, Portnoy DA. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 109:1597–608 [Google Scholar]
  120. Wang J. 2009. Can man-made nanomachines compete with nature biomotors?. ACS Nano. 3:4–9 [Google Scholar]
  121. Wang S, Wu N. 2014. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30:3477–86 [Google Scholar]
  122. Wang W, Castro LA, Hoyos M, Mallouk TE. 2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–32 [Google Scholar]
  123. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. 2013a. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–54 [Google Scholar]
  124. Wang W, Duan W, Sen A, Mallouk TE. 2013b. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. PNAS 110:17744–49 [Google Scholar]
  125. Wang Y, Hernandez RM, Bartlett DJ Jr., Bingham JM, Kline TR. et al. 2006. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22:10451–56 [Google Scholar]
  126. Waterbury JB, Willey JM, Franks DG, Valois FW, Watson SW. 1985. A cyanobacterium capable of swimming motility. Science 230:74–76 [Google Scholar]
  127. Wheat PM. 2011. Collective behavior of swimming bimetallic motors in chemical concentration gradients. PhD Thesis, Arizona State Univ., Tempe
  128. Wheat PM, Marine NA, Moran JL, Posner JD. 2010. Rapid fabrication of bimetallic spherical motors. Langmuir 26:13052–55 [Google Scholar]
  129. Wilkinson PC. 1998. Assays of leukocyte locomotion and chemotaxis. J. Immunol. Methods 216:139–53 [Google Scholar]
  130. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. 2010. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1:36 [Google Scholar]
  131. Yang M, Ripoll M. 2011. Simulations of thermophoretic nanoswimmers. Phys. Rev. E 84:061401 [Google Scholar]
  132. Yariv E. 2011. Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. A 467:1645–64 [Google Scholar]
  133. Yariv E, Michelin S. 2015. Phoretic self-propulsion at large Péclet numbers. J. Fluid Mech. 768:R1 [Google Scholar]
  134. Yoshinaga N, Nagai KH, Sumino Y, Kitahata H. 2012. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. Phys. Rev. E 86:016108 [Google Scholar]
  135. Yoshizumi Y, Date Y, Ohkubo K, Yokokawa M, Suzuki H. 2013. Bimetallic micromotor autonomously movable in biofuels. Proc. IEEE 26th Int. Conf. Micro Electro Mech. Syst.540–43 New York: IEEE [Google Scholar]
  136. Zhang L, Peyer KE, Nelson BJ. 2010. Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–15 [Google Scholar]
  137. Zigmond SH, Hirsch JG. 1973. Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137:387–410 [Google Scholar]
  138. Zöttl A, Stark H. 2014. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112:118101 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error