1932

Abstract

Population-scale single-cell genomics is a transformative approach for unraveling the intricate links between genetic and cellular variation. This approach is facilitated by cutting-edge experimental methodologies, including the development of high-throughput single-cell multiomics and advances in multiplexed environmental and genetic perturbations. Examining the effects of natural or synthetic genetic variants across cellular contexts provides insights into the mutual influence of genetics and the environment in shaping cellular heterogeneity. The development of computational methodologies further enables detailed quantitative analysis of molecular variation, offering an opportunity to examine the respective roles of stochastic, intercellular, and interindividual variation. Future opportunities lie in leveraging long-read sequencing, refining disease-relevant cellular models, and embracing predictive and generative machine learning models. These advancements hold the potential for a deeper understanding of the genetic architecture of human molecular traits, which in turn has important implications for understanding the genetic causes of human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-021623-083207
2024-08-27
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-021623-083207.html?itemId=/content/journals/10.1146/annurev-genom-021623-083207&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    1000 Genomes Proj. Consort. 2015.. A global reference for human genetic variation. . Nature 526:(7571):6874
    [Crossref] [Google Scholar]
  2. 2.
    Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, et al. 2016.. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. . Cell 167:(7):186782.e21
    [Crossref] [Google Scholar]
  3. 3.
    Alasoo K, Rodrigues J, Mukhopadhyay S, Knights AJ, Mann AL, et al. 2018.. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. . Nat. Genet. 50:(3):42431
    [Crossref] [Google Scholar]
  4. 4.
    Ashuach T, Gabitto MI, Koodli RV, Saldi GA, Jordan MI, Yosef N. 2023.. MultiVI: deep generative model for the integration of multimodal data. . Nat. Methods 20:(8):122231
    [Crossref] [Google Scholar]
  5. 5.
    Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, et al. 2022.. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. . Nature 606:(7916):99298
    [Crossref] [Google Scholar]
  6. 6.
    Bailon-Zambrano R, Sucharov J, Mumme-Monheit A, Murry M, Stenzel A, et al. 2022.. Variable paralog expression underlies phenotype variation. . eLife 11::e79247
    [Crossref] [Google Scholar]
  7. 7.
    Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, et al. 2010.. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. . Nature 464:(7293):135156
    [Crossref] [Google Scholar]
  8. 8.
    Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, et al. 2015.. Impact of regulatory variation from RNA to protein. . Science 347:(6222):66467
    [Crossref] [Google Scholar]
  9. 9.
    Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, et al. 2020.. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. . N. Engl. J. Med. 383:(27):262838
    [Crossref] [Google Scholar]
  10. 10.
    Benaglio P, Newsome J, Han JY, Chiou J, Aylward A, et al. 2023.. Mapping genetic effects on cell type-specific chromatin accessibility and annotating complex immune trait variants using single nucleus ATAC-seq in peripheral blood. . PLOS Genet. 19:(6):e1010759
    [Crossref] [Google Scholar]
  11. 11.
    Bossini-Castillo L, Glinos DA, Kunowska N, Golda G, Lamikanra AA, et al. 2022.. Immune disease variants modulate gene expression in regulatory CD4+ T cells. . Cell Genom. 2:(4):100117
    [Crossref] [Google Scholar]
  12. 12.
    Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V. 2023.. Genome-wide prediction of disease variant effects with a deep protein language model. . Nat. Genet. 55:(9):151222
    [Crossref] [Google Scholar]
  13. 13.
    Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. 2022.. ProteinBERT: a universal deep-learning model of protein sequence and function. . Bioinformatics 38:(8):210210
    [Crossref] [Google Scholar]
  14. 14.
    Brenan L, Andreev A, Cohen O, Pantel S, Kamburov A, et al. 2016.. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants. . Cell Rep. 17:(4):117183
    [Crossref] [Google Scholar]
  15. 15.
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, et al. 2015.. Single-cell chromatin accessibility reveals principles of regulatory variation. . Nature 523:(7561):48690
    [Crossref] [Google Scholar]
  16. 16.
    Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, et al. 2017.. Comprehensive single-cell transcriptional profiling of a multicellular organism. . Science 357:(6352):66167
    [Crossref] [Google Scholar]
  17. 17.
    Carrel L, Willard HF. 2005.. X-inactivation profile reveals extensive variability in X-linked gene expression in females. . Nature 434:(7031):4004
    [Crossref] [Google Scholar]
  18. 18.
    Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, et al. 2018.. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. . Nat. Genet. 50:(9):132734
    [Crossref] [Google Scholar]
  19. 19.
    Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. 2008.. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. . Nature 453:(7194):54447
    [Crossref] [Google Scholar]
  20. 20.
    Chen L, Ge B, Casale FP, Vasquez L, Kwan T, et al. 2016.. Genetic drivers of epigenetic and transcriptional variation in human immune cells. . Cell 167:(5):1398414.e24
    [Crossref] [Google Scholar]
  21. 21.
    Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, et al. 2023.. Accurate proteome-wide missense variant effect prediction with AlphaMissense. . Science 381:(6664):eadg7492
    [Crossref] [Google Scholar]
  22. 22.
    Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA. 2008.. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. . Mutat. Res. 659:(1–2):14757
    [Crossref] [Google Scholar]
  23. 23.
    Cooper SE, Coelho MA, Strauss ME, Gontarczyk AM, Wu Q, et al. 2024. scSNV-seq: high-throughput phenotyping of single nucleotide variants by coupled single-cell genotyping and transcriptomics. . Genome Biol. 25::20
    [Crossref] [Google Scholar]
  24. 24.
    Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, et al. 2021.. Functional interrogation of DNA damage response variants with base editing screens. . Cell 184:(4):108197.e19
    [Crossref] [Google Scholar]
  25. 25.
    Cuevas JM, Domingo-Calap P, Sanjuán R. 2012.. The fitness effects of synonymous mutations in DNA and RNA viruses. . Mol. Biol. Evol. 29:(1):1720
    [Crossref] [Google Scholar]
  26. 26.
    Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ, et al. 2020.. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. . Nat. Commun. 11::810
    [Crossref] [Google Scholar]
  27. 27.
    Datlinger P, Rendeiro AF, Boenke T, Senekowitsch M, Krausgruber T, et al. 2021.. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. . Nat. Methods 18:(6):63542
    [Crossref] [Google Scholar]
  28. 28.
    De Kegel B, Ryan CJ. 2019.. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines. . PLOS Genet. 15:(10):e1008466
    [Crossref] [Google Scholar]
  29. 29.
    de Valles-Ibáñez G, Esteve-Solé A, Piquer M, González-Navarro EA, Hernandez-Rodriguez J, et al. 2018.. Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond. . Front. Immunol. 9::636
    [Crossref] [Google Scholar]
  30. 30.
    Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, et al. 2012.. DNase I sensitivity QTLs are a major determinant of human expression variation. . Nature 482:(7385):39094
    [Crossref] [Google Scholar]
  31. 31.
    Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, et al. 2016.. High-throughput discovery of novel developmental phenotypes. . Nature 537:(7621):50814
    [Crossref] [Google Scholar]
  32. 32.
    Dixit A, Parnas O, Li B, Chen J, Fulco CP, et al. 2016.. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. . Cell 167:(7):185366.e17
    [Crossref] [Google Scholar]
  33. 33.
    Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, et al. 2015.. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. . Cancer Res. 75:(24):534154
    [Crossref] [Google Scholar]
  34. 34.
    Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA. 2019.. Correcting the mean-variance dependency for differential variability testing using single-cell RNA sequencing data. . Cell Syst. 9:(4):40113
    [Crossref] [Google Scholar]
  35. 35.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002.. Stochastic gene expression in a single cell. . Science 297:(5584):118386
    [Crossref] [Google Scholar]
  36. 36.
    Feinberg AP, Irizarry RA. 2010.. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. . PNAS 107:(Suppl. 1):175764
    [Crossref] [Google Scholar]
  37. 37.
    Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, et al. 2021.. Large-scale integration of the plasma proteome with genetics and disease. . Nat. Genet. 53:(12):171221
    [Crossref] [Google Scholar]
  38. 38.
    Ferrada MA, Sikora KA, Luo Y, Wells KV, Patel B, et al. 2021.. Somatic mutations in UBA1 define a distinct subset of relapsing polychondritis patients with VEXAS. . Arthritis Rheumatol. 73:(10):188695
    [Crossref] [Google Scholar]
  39. 39.
    Finak G, McDavid A, Yajima M, Deng J, Gersuk V, et al. 2015.. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. . Genome Biol. 16::278
    [Crossref] [Google Scholar]
  40. 40.
    Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, et al. 2018.. Accurate classification of BRCA1 variants with saturation genome editing. . Nature 562:(7726):21722
    [Crossref] [Google Scholar]
  41. 41.
    Fisher RA. 1930.. The Genetical Theory of Natural Selection. Oxford, UK:: Clarendon
    [Google Scholar]
  42. 42.
    Franke K, Ziegler G, Klöppel S, Gaser C, Alzheimer's Dis. Neuroimaging Initiat. 2010.. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. . NeuroImage 50:(3):88392
    [Crossref] [Google Scholar]
  43. 43.
    Fraser LCR, Dikdan RJ, Dey S, Singh A, Tyagi S. 2021.. Reduction in gene expression noise by targeted increase in accessibility at gene loci. . PNAS 118:(42):e2018640118
    [Crossref] [Google Scholar]
  44. 44.
    Frazer J, Notin P, Dias M, Gomez A, Min JK, et al. 2021.. Disease variant prediction with deep generative models of evolutionary data. . Nature 599:(7883):9195
    [Crossref] [Google Scholar]
  45. 45.
    Gasperini M, Hill AJ, McFaline-Figueroa JL, Martin B, Kim S, et al. 2019.. A genome-wide framework for mapping gene regulation via cellular genetic screens. . Cell 176:(1–2):37790.e19. Erratum . 2019.. Cell 176:(6):1516
    [Google Scholar]
  46. 46.
    Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, et al. 2018.. Genetic determinants of co-accessible chromatin regions in activated T cells across humans. . Nat. Genet. 50:(8):114050
    [Crossref] [Google Scholar]
  47. 47.
    Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, et al. 2020.. Directed evolution of adenine base editors with increased activity and therapeutic application. . Nat. Biotechnol. 38:(7):892900
    [Crossref] [Google Scholar]
  48. 48.
    Gazal S, Weissbrod O, Hormozdiari F, Dey KK, Nasser J, et al. 2022.. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. . Nat. Genet. 54:(6):82736
    [Crossref] [Google Scholar]
  49. 49.
    Gong B, Zhou Y, Purdom E. 2021.. Cobolt: integrative analysis of multimodal single-cell sequencing data. . Genome Biol. 22::351
    [Crossref] [Google Scholar]
  50. 50.
    Goyal Y, Busch GT, Pillai M, Li J, Boe RH, et al. 2023.. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. . Nature 620:(7974):65159
    [Crossref] [Google Scholar]
  51. 51.
    Green GS, Yang HS, Fujita M, Taga M, Regev A, et al. 2023.. Cellular dynamics across aged human brains uncover a multicellular cascade leading to Alzheimer's disease. . Alzheimer's Dement. 19:(S24):e083212
    [Crossref] [Google Scholar]
  52. 52.
    GTEx Consort. 2013.. The Genotype-Tissue Expression (GTEx) project. . Nat. Genet. 45:(6):58085
    [Crossref] [Google Scholar]
  53. 53.
    GTEx Consort. 2020.. The GTEx Consortium atlas of genetic regulatory effects across human tissues. . Science 369:(6509):131830
    [Crossref] [Google Scholar]
  54. 54.
    Gupta A, Martin-Rufino JD, Jones TR, Subramanian V, Qiu X, et al. 2022.. Inferring gene regulation from stochastic transcriptional variation across single cells at steady state. . PNAS 119:(34):e2207392119
    [Crossref] [Google Scholar]
  55. 55.
    Hanna RE, Hegde M, Fagre CR, DeWeirdt PC, Sangree AK, et al. 2021.. Massively parallel assessment of human variants with base editor screens. . Cell 184:(4):106480.e20
    [Crossref] [Google Scholar]
  56. 56.
    Harbo HF, Gold R, Tintoré M. 2013.. Sex and gender issues in multiple sclerosis. . Ther. Adv. Neurol. Disord. 6:(4):23748
    [Crossref] [Google Scholar]
  57. 57.
    Hartoularos GC, Si Y, Zhang F, Kathail P, Lee DS, et al. 2023.. Reference-free multiplexed single-cell sequencing identifies genetic modifiers of the human immune response. . bioRxiv 2023.05.29.542756. https://doi.org/10.1101/2023.05.29.542756
    [Crossref]
  58. 58.
    Hashimshony T, Wagner F, Sher N, Yanai I. 2012.. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. . Cell Rep. 2:(3):66673
    [Crossref] [Google Scholar]
  59. 59.
    Hawe JS, Wilson R, Schmid KT, Zhou L, Lakshmanan LN, et al. 2022.. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. . Nat. Genet. 54:(1):1829
    [Crossref] [Google Scholar]
  60. 60.
    Heaton H, Talman AM, Knights A, Imaz M, Gaffney DJ, et al. 2020.. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. . Nat. Methods 17:(6):61520
    [Crossref] [Google Scholar]
  61. 61.
    Huang Y, McCarthy DJ, Stegle O. 2019.. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. . Genome Biol. 20::273
    [Crossref] [Google Scholar]
  62. 62.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, et al. 2001.. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. . Nature 411:(6837):599603
    [Crossref] [Google Scholar]
  63. 63.
    Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. 2014.. Exposing synonymous mutations. . Trends Genet. 30:(7):30821
    [Crossref] [Google Scholar]
  64. 64.
    Hwang B, Lee DS, Tamaki W, Sun Y, Ogorodnikov A, et al. 2021.. SCITO-seq: single-cell combinatorial indexed cytometry sequencing. . Nat. Methods 18:(8):90311
    [Crossref] [Google Scholar]
  65. 65.
    Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, et al. 2014.. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. . Science 343:(6172):77679
    [Crossref] [Google Scholar]
  66. 66.
    Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J, et al. 2021.. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. . Nat. Genet. 53:(3):30412
    [Crossref] [Google Scholar]
  67. 67.
    Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, et al. 2018.. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. . Nat. Biotechnol. 36:(1):8994
    [Crossref] [Google Scholar]
  68. 68.
    Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, et al. 2019.. CUT&Tag for efficient epigenomic profiling of small samples and single cells. . Nat. Commun. 10::1930
    [Crossref] [Google Scholar]
  69. 69.
    Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, et al. 2013.. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. . Genome Res. 23:(5):80011
    [Crossref] [Google Scholar]
  70. 70.
    Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. 2017.. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. . Nat. Biotechnol. 35:(4):37176
    [Crossref] [Google Scholar]
  71. 71.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, et al. 2015.. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. . Cell 161:(5):1187201
    [Crossref] [Google Scholar]
  72. 72.
    Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, et al. 2002.. Combined transcriptome and genome analysis of single micrometastatic cells. . Nat. Biotechnol. 20:(4):38792
    [Crossref] [Google Scholar]
  73. 73.
    Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, et al. 2018.. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. . Nat. Biotechnol. 36:(9):84346
    [Crossref] [Google Scholar]
  74. 74.
    Kobrynski L, Powell RW, Bowen S. 2014.. Prevalence and morbidity of primary immunodeficiency diseases, United States 2001–2007. . J. Clin. Immunol. 34:(8):95461
    [Crossref] [Google Scholar]
  75. 75.
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. . Nature 533:(7603):42024
    [Crossref] [Google Scholar]
  76. 76.
    Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, et al. 2017.. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. . Sci. Adv. 3:(8):eaao4774
    [Crossref] [Google Scholar]
  77. 77.
    Korthauer LE, Nowak NT, Frahmand M, Driscoll I. 2017.. Cognitive correlates of spatial navigation: associations between executive functioning and the virtual Morris Water Task. . Behav. Brain Res. 317::47078
    [Crossref] [Google Scholar]
  78. 78.
    Kwasnieski JC, Mogno I, Myers CA, Corbo JC, Cohen BA. 2012.. Complex effects of nucleotide variants in a mammalian cis-regulatory element. . PNAS 109:(47):19498503
    [Crossref] [Google Scholar]
  79. 79.
    Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, et al. 2020.. Eleven grand challenges in single-cell data science. . Genome Biol. 21::31
    [Crossref] [Google Scholar]
  80. 80.
    Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR, et al. 2019.. Genomic encoding of transcriptional burst kinetics. . Nature 565:(7738):25154
    [Crossref] [Google Scholar]
  81. 81.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, et al. 2016.. Analysis of protein-coding genetic variation in 60,706 humans. . Nature 536:(7616):28591
    [Crossref] [Google Scholar]
  82. 82.
    Lettre G, Rioux JD. 2008.. Autoimmune diseases: insights from genome-wide association studies. . Hum. Mol. Genet. 17:(R2):R11621
    [Crossref] [Google Scholar]
  83. 83.
    Lewis CM, Vassos E. 2020.. Polygenic risk scores: from research tools to clinical instruments. . Genome Med. 12::44
    [Crossref] [Google Scholar]
  84. 84.
    Li L, Huang KL, Gao Y, Cui Y, Wang G, et al. 2021.. An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. . Nat. Genet. 53:(7):9941005
    [Crossref] [Google Scholar]
  85. 85.
    Li Y, Huang Z, Zhang Z, Wang Q, Li F, et al. 2023.. FIPRESCI: droplet microfluidics based combinatorial indexing for massive-scale 5′-end single-cell RNA sequencing. . Genome Biol. 24::70
    [Crossref] [Google Scholar]
  86. 86.
    Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, et al. 2016.. RNA splicing is a primary link between genetic variation and disease. . Science 352:(6285):6004
    [Crossref] [Google Scholar]
  87. 87.
    Liang Y, Chen F, Wang K, Lai L. 2023.. Base editors: development and applications in biomedicine. . Front. Med. 17:(3):35987
    [Crossref] [Google Scholar]
  88. 88.
    Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. 2018.. Deep generative modeling for single-cell transcriptomics. . Nat. Methods 15:(12):105358
    [Crossref] [Google Scholar]
  89. 89.
    Luzuriaga-Neira A, Subramanian K, Alvarez-Ponce D. 2022.. Functional compensation of mouse duplicates by their paralogs expressed in the same tissues. . Genome Biol. Evol. 14:(8):evac126
    [Crossref] [Google Scholar]
  90. 90.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, et al. 2015.. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. . Cell 161:(5):120214
    [Crossref] [Google Scholar]
  91. 91.
    Mao L, Dhar A, Meng G, Fuss I, Montgomery-Recht K, et al. 2022.. Blau syndrome NOD2 mutations result in loss of NOD2 cross-regulatory function. . Front. Immunol. 13::988862
    [Crossref] [Google Scholar]
  92. 92.
    Maricque BB, Chaudhari HG, Cohen BA. 2018.. A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity. . Nat. Biotechnol. 37:(1):9095
    [Crossref] [Google Scholar]
  93. 93.
    Martin-Rufino JD, Castano N, Pang M, Grody EI, Joubran S, et al. 2023.. Massively parallel base editing to map variant effects in human hematopoiesis. . Cell 186:(11):245674.e24
    [Crossref] [Google Scholar]
  94. 94.
    Matreyek KA, Stephany JJ, Chiasson MA, Hasle N, Fowler DM. 2020.. An improved platform for functional assessment of large protein libraries in mammalian cells. . Nucleic Acids Res. 48:(1):e1
    [Crossref] [Google Scholar]
  95. 95.
    Matreyek KA, Stephany JJ, Fowler DM. 2017.. A platform for functional assessment of large variant libraries in mammalian cells. . Nucleic Acids Res. 45:(11):e102
    [Crossref] [Google Scholar]
  96. 96.
    McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, et al. 2019.. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. . Nat. Methods 16:(7):61926
    [Crossref] [Google Scholar]
  97. 97.
    McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, et al. 2013.. Identification of genetic variants that affect histone modifications in human cells. . Science 342:(6159):74779
    [Crossref] [Google Scholar]
  98. 98.
    Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y, et al. 2021.. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. . Nat. Biotechnol. 39:(10):124658
    [Crossref] [Google Scholar]
  99. 99.
    Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, et al. 2021.. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. . Nat. Genet. 53:(9):131121
    [Crossref] [Google Scholar]
  100. 100.
    Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, et al. 2004.. Genetic analysis of genome-wide variation in human gene expression. . Nature 430:(7001):74347
    [Crossref] [Google Scholar]
  101. 101.
    Mostafavi H, Spence JP, Naqvi S, Pritchard JK. 2022.. Limited overlap of eQTLs and GWAS hits due to systematic differences in discovery. . bioRxiv 2022.05.07.491045. https://doi.org/10.1101/2022.05.07.491045
    [Crossref]
  102. 102.
    Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T, et al. 2022.. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. . Nature 606:(7912):12028
    [Crossref] [Google Scholar]
  103. 103.
    Neavin D, Senabouth A, Lee JTH, Ripoll A, sc-eQTLGen Consort., et al. 2022.. Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and doublet detection methods. . bioRxiv 2022.03.07.483367. https://doi.org/10.1101/2022.03.07.483367
    [Crossref]
  104. 104.
    Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, et al. 2016.. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. . Science 353:(6305):eaaf8729
    [Crossref] [Google Scholar]
  105. 105.
    Niu Y, Ferreira Azevedo CA, Li X, Kamali E, Haagen Nielsen O, et al. 2022.. Multiparametric and accurate functional analysis of genetic sequence variants using CRISPR-Select. . Nat. Genet. 54:(12):198393
    [Crossref] [Google Scholar]
  106. 106.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022.. The complete sequence of a human genome. . Science 376:(6588):4453
    [Crossref] [Google Scholar]
  107. 107.
    Oelen R, de Vries DH, Brugge H, Gordon MG, Vochteloo M, et al. 2022.. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. . Nat. Commun. 13::3267
    [Crossref] [Google Scholar]
  108. 108.
    Ofer D, Brandes N, Linial M. 2021.. The language of proteins: NLP, machine learning and protein sequences. . Comput. Struct. Biotechnol. J. 19::175058
    [Crossref] [Google Scholar]
  109. 109.
    O'Shea JJ, Paul WE. 2010.. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. . Science 327:(5969):1098102
    [Crossref] [Google Scholar]
  110. 110.
    Peloquin JM, Goel G, Kong L, Huang H, Haritunians T, et al. 2016.. Characterization of candidate genes in inflammatory bowel disease-associated risk loci. . JCI Insight 1:(13):e87899
    [Crossref] [Google Scholar]
  111. 111.
    Perez RK, Gordon MG, Subramaniam M, Kim MC, Hartoularos GC, et al. 2022.. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. . Science 376:(6589):eabf1970
    [Crossref] [Google Scholar]
  112. 112.
    Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 2013.. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. . Nat. Methods 10:(11):109698
    [Crossref] [Google Scholar]
  113. 113.
    Pierce BL, Tong L, Argos M, Demanelis K, Jasmine F, et al. 2018.. Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms. . Nat. Commun. 9::804
    [Crossref] [Google Scholar]
  114. 114.
    Pinter SF, Colognori D, Beliveau BJ, Sadreyev RI, Payer B, et al. 2015.. Allelic imbalance is a prevalent and tissue-specific feature of the mouse transcriptome. . Genetics 200:(2):53749
    [Crossref] [Google Scholar]
  115. 115.
    Pounraja VK, Girirajan S. 2022.. A general framework for identifying oligogenic combinations of rare variants in complex disorders. . Genome Res. 32:(5):90415
    [Google Scholar]
  116. 116.
    Pujadas E, Feinberg AP. 2012.. Regulated noise in the epigenetic landscape of development and disease. . Cell 148:(6):112331
    [Crossref] [Google Scholar]
  117. 117.
    Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 2006.. Stochastic mRNA synthesis in mammalian cells. . PLOS Biol. 4:(10):e309
    [Crossref] [Google Scholar]
  118. 118.
    Raj A, van Oudenaarden A. 2008.. Nature, nurture, or chance: stochastic gene expression and its consequences. . Cell 135:(2):21626
    [Crossref] [Google Scholar]
  119. 119.
    Randolph HE, Fiege JK, Thielen BK, Mickelson CK, Shiratori M, et al. 2021.. Genetic ancestry effects on the response to viral infection are pervasive but cell type specific. . Science 374:(6571):112733
    [Crossref] [Google Scholar]
  120. 120.
    Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert JP. 2018.. A general and flexible method for signal extraction from single-cell RNA-seq data. . Nat. Commun. 9::284
    [Crossref] [Google Scholar]
  121. 121.
    Rives A, Meier J, Sercu T, Goyal S, Lin Z, et al. 2021.. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. . PNAS 118:(15):e2016239118
    [Crossref] [Google Scholar]
  122. 122.
    Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, et al. 2018.. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. . Science 360:(6385):17682
    [Crossref] [Google Scholar]
  123. 123.
    Sarkar A. 2021.. Deep learning and the evolution of useful information. . Inf. Matters 1:(12). https://informationmatters.org/2021/12/deep-learning-and-the-evolution-of-useful-information
    [Google Scholar]
  124. 124.
    Saurabh R, Fouodo CJK, König IR, Busch H, Wohlers I. 2022.. A survey of genome-wide association studies, polygenic scores and UK Biobank highlights resources for autoimmune disease genetics. . Front. Immunol. 13::972107
    [Crossref] [Google Scholar]
  125. 125.
    Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, et al. 2008.. Klinefelter's syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. . Arthritis Rheum. 58:(8):251117
    [Crossref] [Google Scholar]
  126. 126.
    Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, et al. 2013.. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. . Nature 498:(7453):23640
    [Crossref] [Google Scholar]
  127. 127.
    Sharon E, Chen SAA, Khosla NM, Smith JD, Pritchard JK, Fraser HB. 2018.. Functional genetic variants revealed by massively parallel precise genome editing. . Cell 175:(2):54457.e16
    [Crossref] [Google Scholar]
  128. 128.
    Shukla A, Huangfu D. 2018.. Decoding the noncoding genome via large-scale CRISPR screens. . Curr. Opin. Genet. Dev. 52::7076
    [Crossref] [Google Scholar]
  129. 129.
    Shvetsova E, Sofronova A, Monajemi R, Gagalova K, Draisma HHM, et al. 2019.. Skewed X-inactivation is common in the general female population. . Eur. J. Hum. Genet. 27:(3):45565
    [Crossref] [Google Scholar]
  130. 130.
    Soneson C, Robinson MD. 2018.. Bias, robustness and scalability in single-cell differential expression analysis. . Nat. Methods 15:(4):25561
    [Crossref] [Google Scholar]
  131. 131.
    Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. 2009.. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. . Nature 459:(7245):42832
    [Crossref] [Google Scholar]
  132. 132.
    Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J, et al. 2020.. Massively multiplex chemical transcriptomics at single-cell resolution. . Science 367:(6473):4551
    [Crossref] [Google Scholar]
  133. 133.
    Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, et al. 2021.. Monogenic adult-onset inborn errors of immunity. . Front. Immunol. 12::753978
    [Crossref] [Google Scholar]
  134. 134.
    Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, et al. 2013.. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. . Cell 154:(4):888903
    [Crossref] [Google Scholar]
  135. 135.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, et al. 2017.. Simultaneous epitope and transcriptome measurement in single cells. . Nat. Methods 14:(9):86568
    [Crossref] [Google Scholar]
  136. 136.
    Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, et al. 2018.. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. . Genome Biol. 19::224
    [Crossref] [Google Scholar]
  137. 137.
    Strodthoff N, Wagner P, Wenzel M, Samek W. 2020.. UDSMProt: universal deep sequence models for protein classification. . Bioinformatics 36:(8):24019
    [Crossref] [Google Scholar]
  138. 138.
    Stuart T, Hao S, Zhang B, Mekerishvili L, Landau DA, et al. 2023.. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. . Nat. Biotechnol. 41:(6):80612
    [Crossref] [Google Scholar]
  139. 139.
    Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, et al. 2018.. Predicting the clinical impact of human mutation with deep neural networks. . Nat. Genet. 50:(8):116170
    [Crossref] [Google Scholar]
  140. 140.
    Swanson E, Lord C, Reading J, Heubeck AT, Genge PC, et al. 2021.. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. . eLife 10::e63632
    [Crossref] [Google Scholar]
  141. 141.
    Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, et al. 2021.. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. . Nature 590:(7845):29099
    [Crossref] [Google Scholar]
  142. 142.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009.. mRNA-Seq whole-transcriptome analysis of a single cell. . Nat. Methods 6:(5):37782
    [Crossref] [Google Scholar]
  143. 143.
    Tedeschi SK, Bermas B, Costenbader KH. 2013.. Sexual disparities in the incidence and course of SLE and RA. . Clin. Immunol. 149:(2):21118
    [Crossref] [Google Scholar]
  144. 144.
    Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C. 2003.. Single-cell transcriptional analysis of neuronal progenitors. . Neuron 38:(2):16175
    [Crossref] [Google Scholar]
  145. 145.
    Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, et al. 2017.. Landscape of X chromosome inactivation across human tissues. . Nature 550:(7675):24448
    [Crossref] [Google Scholar]
  146. 146.
    Tunnacliffe E, Chubb JR. 2020.. What is a transcriptional burst?. Trends Genet. 36:(4):28897
    [Crossref] [Google Scholar]
  147. 147.
    Umans BD, Battle A, Gilad Y. 2021.. Where are the disease-associated eQTLs?. Trends Genet. 37:(2):10924
    [Crossref] [Google Scholar]
  148. 148.
    Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L, et al. 2022.. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. . Nat. Biotechnol. 40:(6):896905
    [Crossref] [Google Scholar]
  149. 149.
    van der Wijst MGP, Brugge H, de Vries DH, Deelen P, Swertz MA, et al. 2018.. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. . Nat. Genet. 50:(4):49397
    [Crossref] [Google Scholar]
  150. 150.
    Vu V, Verster AJ, Schertzberg M, Chuluunbaatar T, Spensley M, et al. 2015.. Natural variation in gene expression modulates the severity of mutant phenotypes. . Cell 162:(2):391402
    [Crossref] [Google Scholar]
  151. 151.
    Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. 2018.. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. . Science 360:(6392):98187
    [Crossref] [Google Scholar]
  152. 152.
    Warburton PE, Sebra RP. 2023.. Long-read DNA sequencing: recent advances and remaining challenges. . Annu. Rev. Genom. Hum. Genet. 24::10932
    [Crossref] [Google Scholar]
  153. 153.
    Weidemann DE, Holehouse J, Singh A, Grima R, Hauf S. 2023.. The minimal intrinsic stochasticity of constitutively expressed eukaryotic genes is sub-Poissonian. . Sci. Adv. 9:(32):eadh5138
    [Crossref] [Google Scholar]
  154. 154.
    Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. 2020.. Lineage tracing on transcriptional landscapes links state to fate during differentiation. . Science 367:(6479):eaaw3381
    [Crossref] [Google Scholar]
  155. 155.
    Wells MF, Nemesh J, Ghosh S, Mitchell JM, Salick MR, et al. 2023.. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. . Cell Stem Cell 30:(3):31232.e13
    [Crossref] [Google Scholar]
  156. 156.
    Yang X, Wen J, Yang H, Jones IR, Zhu X, et al. 2023.. Functional characterization of Alzheimer's disease genetic variants in microglia. . Nat. Genet. 55:(10):173544
    [Crossref] [Google Scholar]
  157. 157.
    Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG, et al. 2022.. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. . Science 376:(6589):eabf3041
    [Crossref] [Google Scholar]
  158. 158.
    Ye CJ, Chen J, Villani AC, Gate RE, Subramaniam M, et al. 2018.. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. . Genome Res. 28:(12):181225
    [Crossref] [Google Scholar]
  159. 159.
    Zhang F, Jonsson AH, Nathan A, Millard N, Curtis M, et al. 2023.. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. . Nature 623:(7987):61624
    [Crossref] [Google Scholar]
  160. 160.
    Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, et al. 2017.. Massively parallel digital transcriptional profiling of single cells. . Nat. Commun. 8::14049
    [Crossref] [Google Scholar]
  161. 161.
    Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, et al. 2016.. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. . Nat. Genet. 48:(1):6773
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-021623-083207
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error