1932

Abstract

The ethical standards for the responsible conduct of human research have come a long way; however, concerns surrounding equity remain in human genetics and genomics research. Addressing these concerns will help society realize the full potential of human genomics research. One outstanding concern is the fair and equitable sharing of benefits from research on human participants. Several international bodies have recognized that benefit-sharing can be an effective tool for ethical research conduct, but international laws, including the Convention on Biological Diversity and its Nagoya Protocol on Access and Benefit-Sharing, explicitly exclude human genetic and genomic resources. These agreements face significant challenges that must be considered and anticipated if similar principles are applied in human genomics research. We propose that benefit-sharing from human genomics research can be a bottom-up effort and embedded into the existing research process. We propose the development of a “benefit-sharing by design” framework to address concerns of fairness and equity in the use of human genomic resources and samples and to learn from the aspirations and decade of implementation of the Nagoya Protocol.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-021623-104241
2024-08-27
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-021623-104241.html?itemId=/content/journals/10.1146/annurev-genom-021623-104241&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abacan M, Alsubaie L, Barlow-Stewart K, Caanen B, Cordier C, et al. 2019.. The global state of the genetic counseling profession. . Eur. J. Hum. Genet. 27:(2):18397
    [Crossref] [Google Scholar]
  2. 2.
    Aguirre-Liguori JA, Ramírez-Barahona S, Gaut BS. 2021.. The evolutionary genomics of species’ responses to climate change. . Nat. Ecol. Evol. 5:(10):135060
    [Crossref] [Google Scholar]
  3. 3.
    Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA, et al. 2022.. Complete genomic and epigenetic maps of human centromeres. . Science 376:(6588):eabl4178
    [Crossref] [Google Scholar]
  4. 4.
    Alves RJV, Weksler M, Oliveira JA, Buckup PA, Pombal JP Jr., et al. 2018.. Brazilian legislation on genetic heritage harms Biodiversity Convention goals and threatens basic biology research and education. . An. Acad. Bras. Cienc. 90:(2):127984
    [Crossref] [Google Scholar]
  5. 5.
    Arbour L, Cook D. 2006.. DNA on loan: issues to consider when carrying out genetic research with aboriginal families and communities. . Community Genet. 9:(3):15360
    [Google Scholar]
  6. 6.
    Bagley MA, Rai AK. 2014.. The Nagoya Protocol and synthetic biology research: a look at the potential impacts. Rep. , Wilson Cent., Washington, DC:
    [Google Scholar]
  7. 7.
    BC Child. Hosp. Res. Inst. 2024.. Silent Genomes Indigenous Rare Disease Diagnosis Steering Committee. . BC Children's Hospital Research Institute. https://www.bcchr.ca/silent-genomes-project/our-team/s-girdd-steering-committee
    [Google Scholar]
  8. 8.
    Beaton A, Hudson M, Milne M, Port RV, Russell K, et al. 2017.. Engaging Māori in biobanking and genomic research: a model for biobanks to guide culturally informed governance, operational, and community engagement activities. . Genet. Med. 19:(3):34551
    [Crossref] [Google Scholar]
  9. 9.
    Bentley AR, Callier S, Rotimi CN. 2017.. Diversity and inclusion in genomic research: why the uneven progress?. J. Community Genet. 8:(4):25566
    [Crossref] [Google Scholar]
  10. 10.
    Bentley AR, Callier SL, Rotimi CN. 2020.. Evaluating the promise of inclusion of African ancestry populations in genomics. . npj Genom. Med. 5::5
    [Crossref] [Google Scholar]
  11. 11.
    Bernatchez L, Ferchaud A-L, Berger CS, Venney CJ, Xuereb A. 2024.. Genomics for monitoring and understanding species responses to global climate change. . Nat. Rev. Genet. 25:(3):16583
    [Crossref] [Google Scholar]
  12. 12.
    Biasiotto R, Pramstaller PP, Mascalzoni D. 2021.. The dynamic consent of the Cooperative Health Research in South Tyrol (CHRIS) study: broad aim within specific oversight and communication. . BioLaw Spec. Issue 1::27787
    [Google Scholar]
  13. 13.
    Boef N, Brunier Q, Knowles I, Malowany A, May J, et al. 2020.. Source code for the GWAS Diversity Monitor. . Zenodo. https://doi.org/10.5281/zenodo.3600472
    [Google Scholar]
  14. 14.
    Bollinger JM, Scott J, Dvoskin R, Kaufman D. 2012.. Public preferences regarding the return of individual genetic research results: findings from a qualitative focus group study. . Genet. Med. 14:(4):45157
    [Crossref] [Google Scholar]
  15. 15.
    Borthwick J, Evertsz N, Pratt B. 2023.. How should communities be meaningfully engaged (if at all) when setting priorities for biomedical research? Perspectives from the biomedical research community. . BMC Med. Ethics 24::6
    [Crossref] [Google Scholar]
  16. 16.
    Brittain HK, Scott R, Thomas E. 2017.. The rise of the genome and personalised medicine. . Clin. Med. 17:(6):54551
    [Crossref] [Google Scholar]
  17. 17.
    Buck M, Hamilton C. 2011.. The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization to the Convention on Biological Diversity. . Rev. Eur. Community Int. Environ. Law 20:(1):4761
    [Crossref] [Google Scholar]
  18. 18.
    Budin-Ljøsne I, Teare HJA, Kaye J, Beck S, Bentzen HB, et al. 2017.. Dynamic consent: a potential solution to some of the challenges of modern biomedical research. . BMC Med. Ethics 18::4
    [Crossref] [Google Scholar]
  19. 19.
    Bukyya JL, Tejasvi MLA, Avinash A, P CH, Talwade P, et al. 2021.. DNA profiling in forensic science: a review. . Glob. Med. Genet. 8:(4):13543
    [Crossref] [Google Scholar]
  20. 20.
    Capps B, Chadwick R, Joly Y, Lysaght T, Mills C, et al. 2019.. Statement on bioinformatics and capturing the benefits of genome sequencing for society. . Hum. Genom. 13::24
    [Crossref] [Google Scholar]
  21. 21.
    Caron NR, Chongo M, Hudson M, Arbour L, Wasserman WW, et al. 2020.. Indigenous genomic databases: pragmatic considerations and cultural contexts. . Front. Public Health 8::111
    [Crossref] [Google Scholar]
  22. 22.
    Carroll SR, Herczog E, Hudson M, Russell K, Stall S. 2021.. Operationalizing the CARE and FAIR Principles for Indigenous data futures. . Sci. Data 8::108
    [Crossref] [Google Scholar]
  23. 23.
    Chen H, Pang T. 2015.. A call for global governance of biobanks. . Bull. World Health Organ. 93:(2):11317
    [Crossref] [Google Scholar]
  24. 24.
    Claw KG, Anderson MZ, Begay RL, Tsosie KS, Fox K, et al. 2018.. A framework for enhancing ethical genomic research with Indigenous communities. . Nat. Commun. 9::2957
    [Crossref] [Google Scholar]
  25. 25.
    Conv. Biol. Divers. 2016.. Mo’ otz Kuxtal guidelines. Rep. , Secr. Conv. Biodivers., Montreal, Can:. https://www.cbd.int/doc/publications/8j-cbd-mootz-kuxtal-en.pdf
    [Google Scholar]
  26. 26.
    Conv. Biol. Divers. 1995.. COP 2 Decision II/11: access to genetic resources. . Convention on Biological Diversity. https://www.cbd.int/decision/cop/?id=7084
    [Google Scholar]
  27. 27.
    Cottier T. 2021.. The principle of common concern of humankind. . In The Prospects of Common Concern of Humankind in International Law, ed. T Cottier , pp. 392. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  28. 28.
    Davis K, Smit MF, Kidd M, Sharrock S, Allenstein P. 2015.. An access and benefit-sharing awareness survey for botanic gardens: Are they prepared for the Nagoya Protocol?. S. Afr. J. Bot. 98::14856
    [Crossref] [Google Scholar]
  29. 29.
    de los Campos G, Gianola D, Allison DB. 2010.. Predicting genetic predisposition in humans: the promise of whole-genome markers. . Nat. Rev. Genet. 11:(12):88086
    [Crossref] [Google Scholar]
  30. 30.
    De Sutter E, Zaçe D, Boccia S, Di Pietro ML, Geerts D, et al. 2020.. Implementation of electronic informed consent in biomedical research and stakeholders’ perspectives: systematic review. . J. Med. Internet Res. 22:(10):e19129
    [Crossref] [Google Scholar]
  31. 31.
    DSI Sci. Netw. 2022.. The CBD DSI Matrix: How do the DSI policy options measure up? Rep. , DSI Sci. Netw. https://www.dsiscientificnetwork.org/dsi-policy-options-for-benefit-sharing-by-dsi-scientific-network-2
    [Google Scholar]
  32. 32.
    Ebert AW, Engels JMM, Schafleitner R, van Hintum T, Mwila G. 2023.. Critical review of the increasing complexity of access and benefit-sharing policies of genetic resources for genebank curators and plant breeders—a public and private sector perspective. . Plants 12:(16):2992
    [Crossref] [Google Scholar]
  33. 33.
    Eur. Environ. Agency. 2023.. The benefits to biodiversity of a strong circular economy. Rep. , Eur. Environ. Agency, Copenhagen, Den.: https://www.eea.europa.eu/publications/the-benefits-to-biodiversity
    [Google Scholar]
  34. 34.
    Ewuoso C, Sudoi A, Kamuya D. 2022.. Rethinking benefit sharing in collaborative human genetic research from an Afrocommunitarian perspective. . Front. Genet. 13::1014120
    [Crossref] [Google Scholar]
  35. 35.
    Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. 2022.. A roadmap to increase diversity in genomic studies. . Nat. Med. 28:(2):24350
    [Crossref] [Google Scholar]
  36. 36.
    Fiallos K, Applegate C, Mathews DJ, Bollinger J, Bergner AL, James CA. 2017.. Choices for return of primary and secondary genomic research results of 790 members of families with Mendelian disease. . Eur. J. Hum. Genet. 25:(5):53037
    [Crossref] [Google Scholar]
  37. 37.
    Forzano F, Genuardi M, Moreau Y (Eur. Soc. Hum. Genet.). 2021.. ESHG warns against misuses of genetic tests and biobanks for discrimination purposes. . Eur. J. Hum. Genet. 29:(6):89496
    [Crossref] [Google Scholar]
  38. 38.
    Fox K. 2020.. The illusion of inclusion—the “All of Us” Research Program and Indigenous peoples’ DNA. . N. Engl. J. Med. 383:(5):41113
    [Crossref] [Google Scholar]
  39. 39.
    Garrison NA. 2013.. Genomic justice for Native Americans: impact of the Havasupai case on genetic research. . Sci. Technol. Hum. Values 38:(2):20123
    [Crossref] [Google Scholar]
  40. 40.
    Gillespie AM, Obregon R, El Asawi R, Richey C, Manoncourt E, et al. 2016.. Social mobilization and community engagement central to the Ebola response in West Africa: lessons for future public health emergencies. . Glob. Health Sci. Pract. 4:(4):62646
    [Crossref] [Google Scholar]
  41. 41.
    Gonçalves GAR, Paiva RDMA. 2017.. Gene therapy: advances, challenges and perspectives. . Einstein 15:(3):36975
    [Crossref] [Google Scholar]
  42. 42.
    Gwynne K, Jiang S, Venema R, Christie V, Boughtwood T, et al. 2023.. Genomics and inclusion of Indigenous peoples in high income countries. . Hum. Genet. 142:(9):140716
    [Crossref] [Google Scholar]
  43. 43.
    Haldeman KM, Cadigan RJ, Davis A, Goldenberg A, Henderson GE, et al. 2014.. Community engagement in US biobanking: multiplicity of meaning and method. . Public Health Genom. 17:(2):8494
    [Crossref] [Google Scholar]
  44. 44.
    Halewood M, Bagley MA, Wyss M, Scholz AH. 2023.. New benefit-sharing principles for digital sequence information. . Science 382:(6670):52022
    [Crossref] [Google Scholar]
  45. 45.
    Hall DE, Prochazka AV, Fink AS. 2012.. Informed consent for clinical treatment. . CMAJ 184:(5):53340
    [Crossref] [Google Scholar]
  46. 46.
    Hallinan D. 2020.. Broad consent under the GDPR: an optimistic perspective on a bright future. . Life Sci. Soc. Policy 16::1
    [Crossref] [Google Scholar]
  47. 47.
    Hansson MG, Lochmüller H, Riess O, Schaefer F, Orth M, et al. 2016.. The risk of re-identification versus the need to identify individuals in rare disease research. . Eur. J. Hum. Genet. 24:(11):155358
    [Crossref] [Google Scholar]
  48. 48.
    Hardy B-J, Séguin B, Ramesar R, Singer PA, Daar AS. 2008.. South Africa: from species cradle to genomic applications. . Nat. Rev. Genet. 9:(Suppl. 1):S1923
    [Crossref] [Google Scholar]
  49. 49.
    Hindorff LA, Bonham VL, Brody LC, Ginoza MEC, Hutter CM, et al. 2018.. Prioritizing diversity in human genomics research. . Nat. Rev. Genet. 19:(3):17585
    [Crossref] [Google Scholar]
  50. 50.
    Horton R, Lucassen A. 2019.. Consent and autonomy in the genomics era. . Curr. Genet. Med. Rep. 7:(2):8591
    [Crossref] [Google Scholar]
  51. 51.
    Hudson M, Beaton A, Milne M, Port W, Russell K, et al. 2016.. Te Mata Ira: guidelines for genomic research with Māori. Rep. , Te Mata Haut Taketake—Mori Indig. Gov. Cent., Univ. Waikato, Hamilton, N.Z:.
    [Google Scholar]
  52. 52.
    Hudson M, Garrison NA, Sterling R, Caron NR, Fox K, et al. 2020.. Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data. . Nat. Rev. Genet. 21:(6):37784
    [Crossref] [Google Scholar]
  53. 53.
    HUGO Ethics Comm. 2000.. HUGO Ethics Committee statement on benefit sharing: April 9, 2000. . Clin. Genet. 58:(5):36466
    [Crossref] [Google Scholar]
  54. 54.
    Hurst DJ. 2017.. Benefit sharing in a global context: working towards solutions for implementation. . Dev. World Bioeth. 17:(2):7076
    [Crossref] [Google Scholar]
  55. 55.
    Igbe MA, Adebamowo CA. 2012.. Qualitative study of knowledge and attitudes to biobanking among lay persons in Nigeria. . BMC Med. Ethics 13::27
    [Crossref] [Google Scholar]
  56. 56.
    Jackson L, Kuhlman C, Jackson F, Fox PK. 2019.. Including vulnerable populations in the assessment of data from vulnerable populations. . Front. Big Data 2::19
    [Crossref] [Google Scholar]
  57. 57.
    Jao I, Kombe F, Mwalukore S, Bull S, Parker M, et al. 2015.. Involving research stakeholders in developing policy on sharing public health research data in Kenya: views on fair process for informed consent, access oversight, and community engagement. . J. Empir. Res. Hum. Res. Ethics 10:(3):26477
    [Crossref] [Google Scholar]
  58. 58.
    Johnsson M. 2023.. Genomics in animal breeding from the perspectives of matrices and molecules. . Hereditas 160::20
    [Crossref] [Google Scholar]
  59. 59.
    Joly Y, Dalpé G. 2022.. Genetic discrimination still casts a large shadow in 2022. . Eur. J. Hum. Genet. 30:(12):132022
    [Crossref] [Google Scholar]
  60. 60.
    Joly Y, Dalpé G, Dupras C, Bévière-Boyer B, de Paor A, et al. 2020.. Establishing the International Genetic Discrimination Observatory. . Nat. Genet. 52:(5):46668
    [Crossref] [Google Scholar]
  61. 61.
    Jooma S, Hahn MJ, Hindorff LA, Bonham VL. 2019.. Defining and achieving health equity in genomic medicine. . Ethn. Dis. 29:(Suppl. 1):17378
    [Crossref] [Google Scholar]
  62. 62.
    Kaye J, Whitley EA, Lund D, Morrison M, Teare H, Melham K. 2015.. Dynamic consent: a patient interface for twenty-first century research networks. . Eur. J. Hum. Genet. 23:(2):14146
    [Crossref] [Google Scholar]
  63. 63.
    Kharb D. 2021.. The legal conundrum over regulation of access and benefit sharing obligations in digital sequence information over genetic resources—assessing Indian position. . J. World Intellect. Prop. 24:(1–2):15266
    [Crossref] [Google Scholar]
  64. 64.
    Krebs K, Milani L. 2019.. Translating pharmacogenomics into clinical decisions: Do not let the perfect be the enemy of the good. . Hum. Genom. 13::39
    [Crossref] [Google Scholar]
  65. 65.
    Kumar D. 2020.. Integrated genomic and molecular medicine. . In Clinical Molecular Medicine, ed. D Kumar , pp. 53543. San Diego, CA:: Academic
    [Google Scholar]
  66. 66.
    Lázaro-Muñoz G, Conley JM, Davis AM, Prince AER, Cadigan RJ. 2017.. Which results to return: subjective judgments in selecting medically actionable genes. . Genet. Test. Mol. Biomark. 21:(3):18494
    [Crossref] [Google Scholar]
  67. 67.
    Lipphardt V, Surdu M, Ellebrecht N, Pfaffelhuber P, Wienroth M, Rappold GA. 2021.. Europe's Roma people are vulnerable to poor practice in genetics. . Nature 599:(7885):36871
    [Crossref] [Google Scholar]
  68. 68.
    Llamas B, Willerslev E, Orlando L. 2017.. Human evolution: a tale from ancient genomes. . Philos. Trans. R. Soc. B 372:(1713):20150484
    [Crossref] [Google Scholar]
  69. 69.
    Lucas JC, Schroeder D, Arnason G, Andanda P, Kimani J, et al. 2013.. Donating human samples: Who benefits? Cases from Iceland, Kenya and Indonesia. . In Benefit Sharing: From Biodiversity to Human Genetics, ed. D Schroeder, J Cook Lucas , pp. 95127. Dordrecht, Neth.:: Springer
    [Google Scholar]
  70. 70.
    Marden E, Sackville Hamilton R, Halewood M, McCouch S. 2023.. International agreements and the plant genetics research community: a guide to practice. . PNAS 120:(14):e2205773119
    [Crossref] [Google Scholar]
  71. 71.
    Martin AR, Stroud RE II, Abebe T, Akena D, Alemayehu M, et al. 2022.. Increasing diversity in genomics requires investment in equitable partnerships and capacity building. . Nat. Genet. 54:(6):74045
    [Crossref] [Google Scholar]
  72. 72.
    Martinez SI, Biber-Klemm S. 2010.. Scientists—take action for access to biodiversity. . Curr. Opin. Environ. Sustain. 2::2733
    [Crossref] [Google Scholar]
  73. 73.
    Mascalzoni D, Melotti R, Pattaro C, Pramstaller PP, Gögele M, et al. 2022.. Ten years of dynamic consent in the CHRIS study: informed consent as a dynamic process. . Eur. J. Hum. Genet. 30:(12):139197
    [Crossref] [Google Scholar]
  74. 74.
    Mc Cartney AM, Anderson J, Liggins L, Hudson ML, Anderson MZ, et al. 2022.. Balancing openness with Indigenous data sovereignty: an opportunity to leave no one behind in the journey to sequence all of life. . PNAS 119:(4):e2115860119
    [Crossref] [Google Scholar]
  75. 75.
    Mc Cartney AM, Head MA, Tsosie KS, Sterner B, Glass JR, et al. 2023.. Indigenous peoples and local communities as partners in the sequencing of global eukaryotic biodiversity. . npj Biodivers. 2::8
    [Crossref] [Google Scholar]
  76. 76.
    McGregor S, Henderson KJ, Kaldor JM. 2014.. How are health research priorities set in low and middle income countries? A systematic review of published reports. . PLOS ONE 9:(9):e108787
    [Crossref] [Google Scholar]
  77. 77.
    Meuwissen THE, Sonesson AK, Gebregiwergis G, Woolliams JA. 2020.. Management of genetic diversity in the era of genomics. . Front. Genet. 11::880
    [Crossref] [Google Scholar]
  78. 78.
    Michiels F, Feiter U, Paquin-Jaloux S, Jungmann D, Braun A, et al. 2021.. Facing the harsh reality of access and benefit sharing (ABS) legislation: an industry perspective. . Sustainability 14:(1):277
    [Crossref] [Google Scholar]
  79. 79.
    Middleton A, Milne R, Almarri MA, Anwer S, Atutornu J, et al. 2020.. Global public perceptions of genomic data sharing: What shapes the willingness to donate DNA and health data?. Am. J. Hum. Genet. 107:(4):74352
    [Crossref] [Google Scholar]
  80. 80.
    Molnár-Gábor F, Korbel JO. 2020.. Genomic data sharing in Europe is stumbling—could a code of conduct prevent its fall?. EMBO Mol. Med. 12:(3):e11421
    [Crossref] [Google Scholar]
  81. 81.
    Moodley K, Sibanda N, February K, Rossouw T. 2014.. “ It's my blood”: ethical complexities in the use, storage and export of biological samples: perspectives from South African research participants. . BMC Med. Ethics 15::4
    [Crossref] [Google Scholar]
  82. 82.
    Movilla Pateiro L. 2020.. Advances and uncertainties in compliance measures for users from the Nagoya Protocol in the European Union. . Rev. Eur. Comp. Int. Environ. Law 29:(2):28290
    [Crossref] [Google Scholar]
  83. 83.
    Mueni Katee S, Keambou Tiambo C. 2021.. Discussing the drawbacks of the implementation of access and benefit sharing of the Nagoya Protocol following the COVID-19 pandemic. . Front. Public Health 9::639581
    [Crossref] [Google Scholar]
  84. 84.
    Munung NS, de Vries J. 2020.. Benefit sharing for human genomics research: awareness and expectations of genomics researchers in sub-Saharan Africa. . Ethics Hum. Res. 42:(6):1420
    [Crossref] [Google Scholar]
  85. 85.
    Munung NS, Mayosi BM, de Vries J. 2018.. Genomics research in Africa and its impact on global health: insights from African researchers. . Glob. Health Epidemiol. Genom. 3::e12
    [Crossref] [Google Scholar]
  86. 86.
    Murtagh MJ, Machirori M, Gaff CL, Blell MT, de Vries J, et al. 2021.. Engaged genomic science produces better and fairer outcomes: an engagement framework for engaging and involving participants, patients and publics in genomics research and healthcare implementation. . Wellcome Open Res. 6::311
    [Crossref] [Google Scholar]
  87. 87.
    Natl. Acad. Sci. Eng. Med. 2018.. Returning Individual Research Results to Participants: Guidance for a New Research Paradigm. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  88. 88.
    Ndebele P, Musesengwa R. 2008.. Will developing countries benefit from their participation in genetics research?. Malawi Med. J. 20:(2):6769
    [Google Scholar]
  89. 89.
    Nebeker C, Gholami M, Kareem D, Kim E. 2021.. Applying a digital health checklist and readability tools to improve informed consent for digital health research. . Front. Digit. Health 3::690901
    [Crossref] [Google Scholar]
  90. 90.
    Nembaware V, Johnston K, Diallo AA, Kotze MJ, Matimba A, et al. 2019.. A framework for tiered informed consent for health genomic research in Africa. . Nat. Genet. 51:(11):156671
    [Crossref] [Google Scholar]
  91. 91.
    Nijar GS. 2011.. The Nagoya Protocol on access and benefit sharing of genetic resources: analysis and implementation options for developing countries. Res. Pap. 36 , South Cent., Geneva:. https://www.econstor.eu/bitstream/10419/232154/1/south-centre-rp-036.pdf
    [Google Scholar]
  92. 92.
    Nordling L. 2019.. Rooibos tea profits will be shared with Indigenous communities in landmark agreement. . Nature 575:(7781):1920
    [Crossref] [Google Scholar]
  93. 93.
    Oh SS, Galanter J, Thakur N, Pino-Yanes M, Barcelo NE, et al. 2015.. Diversity in clinical and biomedical research: a promise yet to be fulfilled. . PLOS Med. 12:(12):e1001918
    [Crossref] [Google Scholar]
  94. 94.
    Otlowski M, Taylor S, Bombard Y. 2012.. Genetic discrimination: international perspectives. . Annu. Rev. Genom. Hum. Genet. 13::43354
    [Crossref] [Google Scholar]
  95. 95.
    Overmann J, Scholz AH. 2017.. Microbiological research under the Nagoya Protocol: facts and fiction. . Trends Microbiol. 25:(2):8588
    [Crossref] [Google Scholar]
  96. 96.
    Pascual J, Tanner K, Vilanova C, Porcar M, Delgado A. 2021.. The microbial terroir: open questions on the Nagoya protocol applied to microbial resources. . Microb. Biotechnol. 14:(5):187880
    [Crossref] [Google Scholar]
  97. 97.
    Peiry KK. 2021.. Triggers for treaty negotiations: Could lessons from environmental protection inform a prospective pandemic treaty?. BMJ 375::e068903
    [Crossref] [Google Scholar]
  98. 98.
    Perbal L. 2013.. The “warrior gene” and the Mãori people: the responsibility of the geneticists. . Bioethics 27:(7):38287
    [Crossref] [Google Scholar]
  99. 99.
    Popejoy AB, Fullerton SM. 2016.. Genomics is failing on diversity. . Nature 538:(7624):16164
    [Crossref] [Google Scholar]
  100. 100.
    Prathapan KD, Pethiyagoda R, Bawa KS, Raven PH, Rajan PD, 172 Co-Signatories 35 Ctries. 2018.. When the cure kills—CBD limits biodiversity research. . Science 360:(6396):14056
    [Crossref] [Google Scholar]
  101. 101.
    Prictor M, Teare HJA, Kaye J. 2018.. Equitable participation in biobanks: the risks and benefits of a “dynamic consent” approach. . Front. Public Health 6::253
    [Crossref] [Google Scholar]
  102. 102.
    Prince AER. 2017.. Insurance risk classification in an era of genomics: Is a rational discrimination policy rational?. Neb. Law Rev. 96:(3):62487
    [Google Scholar]
  103. 103.
    Public Policy Proj. 2022.. Equity of access and return in global genomics. Rep. , Public Policy Proj., London:. https://publicpolicyprojects.com/wp-content/uploads/2023/06/Global-Genomics-2-Insights-Report-1.pdf
    [Google Scholar]
  104. 104.
    Rabesandratana T. 2018.. “ Poop vault” of human feces could preserve gut's microbial biodiversity—and help treat disease. . Science, Nov. 1. https://www.science.org/content/article/poop-vault-human-feces-could-preserve-gut-biodiversity-and-help-treat-disease
    [Google Scholar]
  105. 105.
    Robertson SP, Hindmarsh JH, Berry S, Cameron VA, Cox MP, et al. 2018.. Genomic medicine must reduce, not compound, health inequities: the case for hauora-enhancing genomic resources for New Zealand. . N.Z. Med. J. 131:(1480):8189
    [Google Scholar]
  106. 106.
    Sanderson J, Wiseman L. 2018.. Certified ABS: the Union for Ethical Biotrade and the use of trade and certification marks to encourage and facilitate behaviour change. . In Biodiversity, Genetic Resources and Intellectual Property: Developments in Access and Benefit Sharing, ed. C Lawson, K Adhikari , pp. 22050. New York:: Routledge
    [Google Scholar]
  107. 107.
    Sanna S, Kurilshikov A, van der Graaf A, Fu J, Zhernakova A. 2022.. Challenges and future directions for studying effects of host genetics on the gut microbiome. . Nat. Genet. 54:(2):1006
    [Crossref] [Google Scholar]
  108. 108.
    Sara R, Wyss M, Custers R, in ’t Veld A, Muyldermans D. 2022.. A need for recalibrating access and benefit sharing: how best to improve conservation, sustainable use of biodiversity, and equitable benefit sharing in a mutually reinforcing manner?. EMBO Rep. 23:(2):e53973
    [Crossref] [Google Scholar]
  109. 109.
    Schaibley VM, Ramos IN, Woosley RL, Curry S, Hays S, Ramos KS. 2022.. Limited genomics training among physicians remains a barrier to genomics-based implementation of precision medicine. . Front. Med. 9::757212
    [Crossref] [Google Scholar]
  110. 110.
    Scholtz W. 2008.. Common heritage: saving the environment for humankind or exploiting resources in the name of eco-imperialism?. Comp. Int. Law J. South. Afr. 41:(2):27393
    [Google Scholar]
  111. 111.
    Schroeder D. 2007.. Benefit sharing: It's time for a definition. . J. Med. Ethics 33:(4):2059
    [Crossref] [Google Scholar]
  112. 112.
    Schroeder D, Gefenas E. 2012.. Realizing benefit sharing—the case of post-study obligations. . Bioethics 26:(6):30514
    [Crossref] [Google Scholar]
  113. 113.
    Schroeder D, Lasén-Díaz C. 2006.. Sharing the benefits of genetic resources: from biodiversity to human genetics. . Dev. World Bioeth. 6:(3):13543
    [Crossref] [Google Scholar]
  114. 114.
    Schüklenk U, Kleinsmidt A. 2006.. North-south benefit sharing arrangements in bioprospecting and genetic research: a critical ethical and legal analysis. . Dev. World Bioeth. 6:(3):12234
    [Crossref] [Google Scholar]
  115. 115.
    Sirakaya A. 2019.. Balanced options for access and benefit-sharing: stakeholder insights on provider country legislation. . Front. Plant Sci. 10::1175
    [Crossref] [Google Scholar]
  116. 116.
    Smith M, Miller S. 2021.. A principled approach to cross-sector genomic data access. . Bioethics 35:(8):77986
    [Crossref] [Google Scholar]
  117. 117.
    Sohn E. 2023.. How philanthropy can nurture your research. . Nature 613:(7945):79193
    [Crossref] [Google Scholar]
  118. 118.
    Souzeau E, Burdon KP, Mackey DA, Hewitt AW, Savarirayan R, et al. 2016.. Ethical considerations for the return of incidental findings in ophthalmic genomic research. . Transl. Vis. Sci. Technol. 5::3
    [Crossref] [Google Scholar]
  119. 119.
    Sridhar D. 2012.. Who sets the global health research agenda? The challenge of multi-bi financing. . PLOS Med. 9:(9):e1001312
    [Crossref] [Google Scholar]
  120. 120.
    Staunton C, Kösters M, Pramstaller PP, Mascalzoni D. 2021.. Return of research results (RoRR) to the healthy CHRIS cohort: designing a policy with the participants. . J. Community Genet. 12:(4):57792
    [Crossref] [Google Scholar]
  121. 121.
    Staunton C, Moodley K. 2013.. Challenges in biobank governance in sub-Saharan Africa. . BMC Med. Ethics 14::35
    [Crossref] [Google Scholar]
  122. 122.
    Steinsbekk KS, Kåre Myskja B, Solberg B. 2013.. Broad consent versus dynamic consent in biobank research: Is passive participation an ethical problem?. Eur. J. Hum. Genet. 21:(9):897902
    [Crossref] [Google Scholar]
  123. 123.
    Sudoi A, De Vries J, Kamuya D. 2021.. A scoping review of considerations and practices for benefit sharing in biobanking. . BMC Med. Ethics 22::102
    [Crossref] [Google Scholar]
  124. 124.
    Symbiome. 2024.. Conservation. . Symbiome. https://www.symbiome.com/about-us/conservation.list
    [Google Scholar]
  125. 125.
    Tan S-H, Petrovics G, Srivastava S. 2018.. Prostate cancer genomics: recent advances and the prevailing underrepresentation from racial and ethnic minorities. . Int. J. Mol. Sci. 19:(4):1255
    [Crossref] [Google Scholar]
  126. 126.
    Tindana P, de Vries J. 2016.. Broad consent for genomic research and biobanking: perspectives from low- and middle-income countries. . Annu. Rev. Genom. Hum. Genet. 17::37593
    [Crossref] [Google Scholar]
  127. 127.
    Tindana P, de Vries J, Campbell M, Littler K, Seeley J, et al. 2015.. Community engagement strategies for genomic studies in Africa: a review of the literature. . BMC Med. Ethics 16::24
    [Crossref] [Google Scholar]
  128. 128.
    Trinidad SB, Fullerton SM, Bares JM, Jarvik GP, Larson EB, Burke W. 2010.. Genomic research and wide data sharing: views of prospective participants. . Genet. Med. 12:(8):48695
    [Crossref] [Google Scholar]
  129. 129.
    Tsosie KS, Fox K, Yracheta JM. 2021.. Genomics data: the broken promise is to Indigenous people. . Nature 591:(7851):529
    [Crossref] [Google Scholar]
  130. 130.
    Tsosie KS, Yracheta JM, Kolopenuk JA, Geary J. 2021.. We have “gifted” enough: Indigenous genomic data sovereignty in precision medicine. . Am. J. Bioeth. 21:(4):7275
    [Crossref] [Google Scholar]
  131. 131.
    Udoewa V. 2022.. An introduction to radical participatory design: decolonising participatory design processes. . Des. Sci. 8::e31
    [Crossref] [Google Scholar]
  132. 132.
    US Dep. Agric. 2024.. i5k Workspace@NAL. . US Department of Agriculture. https://i5k.nal.usda.gov
    [Google Scholar]
  133. 133.
    van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M. 2001.. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. . Clin. Microbiol. Rev. 14:(3):54760
    [Crossref] [Google Scholar]
  134. 134.
    van Schalkwyk G, de Vries J, Moodley K. 2012.. “ It's for a good cause, isn't it?”—exploring views of South African TB research participants on sample storage and re-use. . BMC Med. Ethics 13::19
    [Crossref] [Google Scholar]
  135. 135.
    Vaz M, Vaz M, K S. 2018.. The views of ethics committee members and medical researchers on the return of individual research results and incidental findings, ownership issues and benefit sharing in biobanking research in a South Indian city. . Dev. World Bioeth. 18:(4):32130
    [Crossref] [Google Scholar]
  136. 136.
    Venkatesaramani R, Malin BA, Vorobeychik Y. 2021.. Re-identification of individuals in genomic datasets using public face images. . Sci. Adv. 7:(47):eabg3296
    [Crossref] [Google Scholar]
  137. 137.
    Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, et al. 2022.. Segmental duplications and their variation in a complete human genome. . Science 376:(6588):eabj6965
    [Crossref] [Google Scholar]
  138. 138.
    von Thenen N, Ayday E, Cicek AE. 2019.. Re-identification of individuals in genomic data-sharing beacons via allele inference. . Bioinformatics 35:(3):36571
    [Crossref] [Google Scholar]
  139. 139.
    Watanabe ME. 2017.. The Nagoya Protocol: big steps, new problems. . BioScience 67:(4):400
    [Crossref] [Google Scholar]
  140. 140.
    Watts G. 2007.. Genes on ice. . BMJ 334:(7595):66263
    [Crossref] [Google Scholar]
  141. 141.
    Wendler D. 2013.. Broad versus blanket consent for research with human biological samples. . Hastings Cent. Rep. 43:(5):34
    [Crossref] [Google Scholar]
  142. 142.
    Wizemann TM, Asalone KC, Beachy SH. 2022.. Improving Diversity of the Genomics Workforce: Proceedings of a Workshopin Brief. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  143. 143.
    Wright BR, Farquharson KA, McLennan EA, Belov K, Hogg CJ, Grueber CE. 2020.. A demonstration of conservation genomics for threatened species management. . Mol. Ecol. Resour. 20:(6):152641
    [Crossref] [Google Scholar]
  144. 144.
    Zhang G, Li C, Li Q, Li B, Larkin DM, et al. 2014.. Comparative genomics reveals insights into avian genome evolution and adaptation. . Science 346:(6215):131120
    [Crossref] [Google Scholar]
  145. 145.
    Zheng X. 2020.. Empowering indigenous peoples and local communities: a human rights-based appraisal of the compliance mechanism of the Nagoya Protocol. . Rev. Eur. Comp. Int. Environ. Law 30:(1):6172
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-021623-104241
Loading
/content/journals/10.1146/annurev-genom-021623-104241
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error