1932

Abstract

RNA sequencing (RNA-seq) enables the accurate measurement of multiple transcriptomic phenotypes for modeling the impacts of disease variants. Advances in technologies, experimental protocols, and analysis strategies are rapidly expanding the application of RNA-seq to identify disease biomarkers, tissue- and cell-type-specific impacts, and the spatial localization of disease-associated mechanisms. Ongoing international efforts to construct biobank-scale transcriptomic repositories with matched genomic data across diverse population groups are further increasing the utility of RNA-seq approaches by providing large-scale normative reference resources. The availability of these resources, combined with improved computational analysis pipelines, has enabled the detection of aberrant transcriptomic phenotypes underlying rare diseases. Further expansion of these resources, across both somatic and developmental tissues, is expected to soon provide unprecedented insights to resolve disease origin, mechanism of action, and causal gene contributions, suggesting the continued high utility of RNA-seq in disease diagnosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-021623-121812
2024-08-27
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-021623-121812.html?itemId=/content/journals/10.1146/annurev-genom-021623-121812&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, et al. 2013.. Comparative analysis of RNA sequencing methods for degraded or low-input samples. . Nat. Methods 10:(7):62329
    [Crossref] [Google Scholar]
  2. 2.
    Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. 2020.. Opportunities and challenges in long-read sequencing data analysis. . Genome Biol. 21::30
    [Crossref] [Google Scholar]
  3. 3.
    Anderson RH, Francis KR. 2018.. Modeling rare diseases with induced pluripotent stem cell technology. . Mol. Cell. Probes 40::5259
    [Crossref] [Google Scholar]
  4. 4.
    Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, et al. 2022.. Human iPSC-derived neural models for studying Alzheimer's disease: from neural stem cells to cerebral organoids. . Stem Cell Rev. Rep. 18:(2):792820
    [Crossref] [Google Scholar]
  5. 5.
    Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, et al. 2015.. Impact of regulatory variation from RNA to protein. . Science 347:(6222):66467
    [Crossref] [Google Scholar]
  6. 6.
    Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, et al. 2014.. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. . Genome Res. 24:(1):1424
    [Crossref] [Google Scholar]
  7. 7.
    Bayega A, Fahiminiya S, Oikonomopoulos S, Ragoussis J. 2018.. Current and future methods for mRNA analysis: a drive toward single molecule sequencing. . Methods Mol. Biol. 1783::20941
    [Crossref] [Google Scholar]
  8. 8.
    Berger K, Arafat D, Chandrakasan S, Snapper SB, Gibson G. 2022.. Targeted RNAseq improves clinical diagnosis of very early-onset pediatric immune dysregulation. . J. Pers. Med. 12:(6):919
    [Crossref] [Google Scholar]
  9. 9.
    Bhattacharya S, Mariani TJ. 2009.. Array of hope: expression profiling identifies disease biomarkers and mechanism. . Biochem. Soc. Trans. 37:(4):85562
    [Crossref] [Google Scholar]
  10. 10.
    Bonder MJ, Smail C, Gloudemans MJ, Frésard L, Jakubosky D, et al. 2021.. Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics. . Nat. Genet. 53:(3):31321
    [Crossref] [Google Scholar]
  11. 11.
    Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, et al. 2005.. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. . PNAS 102:(31):1102328
    [Crossref] [Google Scholar]
  12. 12.
    Brechtmann F, Mertes C, Matusevičiūtė A, Yépez VA, Avsec Ž, et al. 2018.. OUTRIDER: a statistical method for detecting aberrantly expressed genes in RNA sequencing data. . Am. J. Hum. Genet. 103:(6):90717
    [Crossref] [Google Scholar]
  13. 13.
    Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. 2016.. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. . Nat. Rev. Genet. 17:(5):25771
    [Crossref] [Google Scholar]
  14. 14.
    Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, et al. 2020.. A human cell atlas of fetal gene expression. . Science 370:(6518):eaba7721
    [Crossref] [Google Scholar]
  15. 15.
    Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, et al. 2014.. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. . Cell Death Dis. 5:(7):e1342
    [Crossref] [Google Scholar]
  16. 16.
    Carvill GL, Mefford HC. 2020.. Poison exons in neurodevelopment and disease. . Curr. Opin. Genet. Dev. 65::98102
    [Crossref] [Google Scholar]
  17. 17.
    Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T. 2015.. Tools and best practices for data processing in allelic expression analysis. . Genome Biol. 16::195
    [Crossref] [Google Scholar]
  18. 18.
    Chen W-T, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, et al. 2020.. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease. . Cell 182:(4):97691.e19
    [Crossref] [Google Scholar]
  19. 19.
    Cheung AYL, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, et al. 2011.. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. . Hum. Mol. Genet. 20:(11):210315
    [Crossref] [Google Scholar]
  20. 20.
    Cho H, Davis J, Li X, Smith KS, Battle A, Montgomery SB. 2014.. High-resolution transcriptome analysis with long-read RNA sequencing. . PLOS ONE 9:(9):e108095
    [Crossref] [Google Scholar]
  21. 21.
    Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. 2021.. Reconstructing the heart using iPSCs: engineering strategies and applications. . J. Mol. Cell. Cardiol. 157::5665
    [Crossref] [Google Scholar]
  22. 22.
    Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, et al. 2018.. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. . Am. J. Hum. Genet. 103:(2):17187
    [Crossref] [Google Scholar]
  23. 23.
    Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, et al. 2016.. A survey of best practices for RNA-seq data analysis. . Genome Biol. 17::13
    [Crossref] [Google Scholar]
  24. 24.
    Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, et al. 2017.. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. . Sci. Transl. Med. 9:(386):eaal5209
    [Crossref] [Google Scholar]
  25. 25.
    Dawes R, Bournazos AM, Bryen SJ, Bommireddipalli S, Marchant RG, et al. 2023.. SpliceVault predicts the precise nature of variant-associated mis-splicing. . Nat. Genet. 55:(2):32432
    [Crossref] [Google Scholar]
  26. 26.
    DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire M-D, et al. 2012.. RNA-SeQC: RNA-seq metrics for quality control and process optimization. . Bioinformatics 28:(11):153032
    [Crossref] [Google Scholar]
  27. 27.
    Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, et al. 2019.. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. . Nat. Commun. 10::754
    [Crossref] [Google Scholar]
  28. 28.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013.. STAR: ultrafast universal RNA-seq aligner. . Bioinformatics 29:(1):1521
    [Crossref] [Google Scholar]
  29. 29.
    Dong D, Shen H, Wang Z, Liu J, Li Z, Li X. 2023.. An RNA-informed dosage sensitivity map reflects the intrinsic functional nature of genes. . Am. J. Hum. Genet. 110:(9):150921
    [Crossref] [Google Scholar]
  30. 30.
    Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, et al. 2011.. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. . Sci. Transl. Med. 3:(96):96ra76
    [Crossref] [Google Scholar]
  31. 31.
    Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, et al. 2022.. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. . Genome Med. 14::73
    [Crossref] [Google Scholar]
  32. 32.
    Ergin S, Kherad N, Alagoz M. 2022.. RNA sequencing and its applications in cancer and rare diseases. . Mol. Biol. Rep. 49:(3):232533
    [Crossref] [Google Scholar]
  33. 33.
    Evangelista JE, Clarke DJB, Xie Z, Lachmann A, Jeon M, et al. 2022.. SigCom LINCS: data and metadata search engine for a million gene expression signatures. . Nucleic Acids Res. 50:(W1):W697709
    [Crossref] [Google Scholar]
  34. 34.
    Farrow E, Jay A, Means J, Younger S, Biswell R, et al. 2023.. Case of CLPB deficiency solved by HiFi long read genome sequencing and RNAseq. . Am. J. Med. Genet. A 191:(12):2908912
    [Crossref] [Google Scholar]
  35. 35.
    Ferraro NM, Strober BJ, Einson J, Abell NS, Aguet F, et al. 2020.. Transcriptomic signatures across human tissues identify functional rare genetic variation. . Science 369:(6509):eaaz5900
    [Crossref] [Google Scholar]
  36. 36.
    Frésard L, Smail C, Ferraro NM, Teran NA, Li X, et al. 2019.. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. . Nat. Med. 25:(6):91119
    [Crossref] [Google Scholar]
  37. 37.
    Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, et al. 2015.. A gene-based association method for mapping traits using reference transcriptome data. . Nat. Genet. 47:(9):109198
    [Crossref] [Google Scholar]
  38. 38.
    Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, et al. 2018.. Highly parallel direct RNA sequencing on an array of nanopores. . Nat. Methods 15:(3):2016
    [Crossref] [Google Scholar]
  39. 39.
    Glinos DA, Garborcauskas G, Hoffman P, Ehsan N, Jiang L, et al. 2022.. Transcriptome variation in human tissues revealed by long-read sequencing. . Nature 608:(7922):35359
    [Crossref] [Google Scholar]
  40. 40.
    Gonorazky HD, Liang M, Cummings B, Lek M, Micallef J, et al. 2016.. RNAseq analysis for the diagnosis of muscular dystrophy. . Ann. Clin. Transl. Neurol. 3:(1):5560
    [Crossref] [Google Scholar]
  41. 41.
    Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, et al. 2019.. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease. . Am. J. Hum. Genet. 104:(3):46683
    [Crossref] [Google Scholar]
  42. 42.
    GTEx Consort. 2015.. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. . Science 348:(6235):64860
    [Crossref] [Google Scholar]
  43. 43.
    GTEx Consort. 2020.. The GTEx Consortium atlas of genetic regulatory effects across human tissues. . Science 369:(6509):131830
    [Crossref] [Google Scholar]
  44. 44.
    Gu W, Crawford ED, O'Donovan BD, Wilson MR, Chow ED, et al. 2016.. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. . Genome Biol. 17::41
    [Crossref] [Google Scholar]
  45. 45.
    Helman G, Compton AG, Hock DH, Walkiewicz M, Brett GR, et al. 2021.. Multiomic analysis elucidates Complex I deficiency caused by a deep intronic variant in NDUFB10. . Hum. Mutat. 42:(1):1924
    [Crossref] [Google Scholar]
  46. 46.
    Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, et al. 2022.. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. . Science 376:(6588):eabk3112
    [Crossref] [Google Scholar]
  47. 47.
    Hua Y, Wu N, Miao J, Shen M. 2023.. Single-cell transcriptomic analysis in two patients with rare systemic autoinflammatory diseases treated with anti-TNF therapy. . Front. Immunol. 14::1091336
    [Crossref] [Google Scholar]
  48. 48.
    Jagadeesh KA, Dey KK, Montoro DT, Mohan R, Gazal S, et al. 2022.. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. . Nat. Genet. 54:(10):147992
    [Crossref] [Google Scholar]
  49. 49.
    Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, et al. 2019.. Predicting splicing from primary sequence with deep learning. . Cell 176:(3):53548.e24
    [Crossref] [Google Scholar]
  50. 50.
    Jain M, Abu-Shumays R, Olsen HE, Akeson M. 2022.. Advances in nanopore direct RNA sequencing. . Nat. Methods 19:(10):116064
    [Crossref] [Google Scholar]
  51. 51.
    Jenkinson G, Li YI, Basu S, Cousin MA, Oliver GR, Klee EW. 2020.. LeafCutterMD: an algorithm for outlier splicing detection in rare diseases. . Bioinformatics 36:(17):460915
    [Crossref] [Google Scholar]
  52. 52.
    Jiang K, Poppenberg KE, Wong L, Chen Y, Borowitz D, et al. 2019.. RNA sequencing data from neutrophils of patients with cystic fibrosis reveals potential for developing biomarkers for pulmonary exacerbations. . J. Cyst. Fibros. 18:(2):194202
    [Crossref] [Google Scholar]
  53. 53.
    Kang H, Pan S, Lin S, Wang Y-Y, Yuan N, Jia P. 2024.. PharmGWAS: a GWAS-based knowledgebase for drug repurposing. . Nucleic Acids Res. 52:(D1):D97279
    [Crossref] [Google Scholar]
  54. 54.
    Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E, et al. 2018.. The Library of Integrated Network-Based Cellular Signatures NIH program: system-level cataloging of human cells response to perturbations. . Cell Syst. 6:(1):1324
    [Crossref] [Google Scholar]
  55. 55.
    Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, et al. 2019.. Patient-customized oligonucleotide therapy for a rare genetic disease. . N. Engl. J. Med. 381:(17):164452
    [Crossref] [Google Scholar]
  56. 56.
    Koudijs KKM, Terwisscha van Scheltinga AGT, Böhringer S, Schimmel KJM, Guchelaar H-J. 2019.. Transcriptome signature reversion as a method to reposition drugs against cancer for precision oncology. . Cancer J. 25:(2):11620
    [Crossref] [Google Scholar]
  57. 57.
    Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, et al. 2017.. Genetic diagnosis of Mendelian disorders via RNA sequencing. . Nat. Commun. 8::15824
    [Crossref] [Google Scholar]
  58. 58.
    Kuo RI, Cheng Y, Zhang R, Brown JWS, Smith J, et al. 2020.. Illuminating the dark side of the human transcriptome with long read transcript sequencing. . BMC Genom. 21::751
    [Crossref] [Google Scholar]
  59. 59.
    Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PAC, Monlong J, et al. 2013.. Transcriptome and genome sequencing uncovers functional variation in humans. . Nature 501:(7468):50611
    [Crossref] [Google Scholar]
  60. 60.
    Lee H, Huang AY, Wang L-K, Yoon AJ, Renteria G, et al. 2020.. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. . Genet. Med. 22:(3):49099
    [Crossref] [Google Scholar]
  61. 61.
    Leek JT. 2014.. svaseq: removing batch effects and other unwanted noise from sequencing data. . Nucleic Acids Res. 42:(21):e161
    [Crossref] [Google Scholar]
  62. 62.
    Li B, Dewey CN. 2011.. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. . BMC Bioinform. 12::323
    [Crossref] [Google Scholar]
  63. 63.
    Li H. 2018.. Minimap2: pairwise alignment for nucleotide sequences. . Bioinformatics 34:(18):3094100
    [Crossref] [Google Scholar]
  64. 64.
    Li L, Huang K-L, Gao Y, Cui Y, Wang G, et al. 2021.. An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. . Nat. Genet. 53:(7):9941005
    [Crossref] [Google Scholar]
  65. 65.
    Li Q, Gloudemans MJ, Geisinger JM, Fan B, Aguet F, et al. 2022.. RNA editing underlies genetic risk of common inflammatory diseases. . Nature 608:(7923):56977
    [Crossref] [Google Scholar]
  66. 66.
    Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, et al. 2018.. Annotation-free quantification of RNA splicing using LeafCutter. . Nat. Genet. 50:(1):15158
    [Crossref] [Google Scholar]
  67. 67.
    Liao Y, Smyth GK, Shi W. 2014.. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. . Bioinformatics 30:(7):92330
    [Crossref] [Google Scholar]
  68. 68.
    Lim KH, Han Z, Jeon HY, Kach J, Jing E, et al. 2020.. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. . Nat. Commun. 11::3501
    [Crossref] [Google Scholar]
  69. 69.
    Liu Q, Fang L, Wu C. 2022.. Alternative splicing and isoforms: from mechanisms to diseases. . Genes 13:(3):401
    [Crossref] [Google Scholar]
  70. 70.
    Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, et al. 2022.. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. . Nat. Biotechnol. 40:(1):7485
    [Crossref] [Google Scholar]
  71. 71.
    Lord J, Baralle D. 2021.. Splicing in the diagnosis of rare disease: advances and challenges. . Front. Genet. 12::689892
    [Crossref] [Google Scholar]
  72. 72.
    Lunke S, Bouffler SE, Patel CV, Sandaradura SA, Wilson M, et al. 2023.. Integrated multi-omics for rapid rare disease diagnosis on a national scale. . Nat. Med. 29:(7):168191
    [Crossref] [Google Scholar]
  73. 73.
    Maniatis S, Äijö T, Vickovic S, Braine C, Kang K, et al. 2019.. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. . Science 364:(6435):8993
    [Crossref] [Google Scholar]
  74. 74.
    Martí-Martínez S, Valor LM. 2022.. A glimpse of molecular biomarkers in Huntington's disease. . Int. J. Mol. Sci. 23:(10):5411
    [Crossref] [Google Scholar]
  75. 75.
    Mastrokolias A, Ariyurek Y, Goeman JJ, van Duijn E, Roos RAC, et al. 2015.. Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. . Eur. J. Hum. Genet. 23:(10):134956
    [Crossref] [Google Scholar]
  76. 76.
    Mastrokolias A, den Dunnen JT, van Ommen GB, ’t Hoen PAC, van Roon-Mom WMC. 2012.. Increased sensitivity of next generation sequencing-based expression profiling after globin reduction in human blood RNA. . BMC Genom. 13::28
    [Crossref] [Google Scholar]
  77. 77.
    McGettigan PA. 2013.. Transcriptomics in the RNA-seq era. . Curr. Opin. Chem. Biol. 17:(1):411
    [Crossref] [Google Scholar]
  78. 78.
    Michel S, Schirduan K, Shen Y, Klar R, Tost J, Jaschinski F. 2021.. Using RNA-seq to assess off-target effects of antisense oligonucleotides in human cell lines. . Mol. Diagn. Ther. 25:(1):7785
    [Crossref] [Google Scholar]
  79. 79.
    Mikheenko A, Prjibelski AD, Joglekar A, Tilgner HU. 2022.. Sequencing of individual barcoded cDNAs using Pacific Biosciences and Oxford Nanopore Technologies reveals platform-specific error patterns. . Genome Res. 32:(4):72637
    [Crossref] [Google Scholar]
  80. 80.
    Mohammadi P, Castel SE, Brown AA, Lappalainen T. 2017.. Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. . Genome Res. 27:(11):187284
    [Crossref] [Google Scholar]
  81. 81.
    Mohammadi P, Castel SE, Cummings BB, Einson J, Sousa C, et al. 2019.. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. . Science 366:(6463):35156
    [Crossref] [Google Scholar]
  82. 82.
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, et al. 2018.. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. . Nature 560:(7718):31924
    [Crossref] [Google Scholar]
  83. 83.
    Newton Y, Sedgewick AJ, Cisneros L, Golovato J, Johnson M, et al. 2020.. Large scale, robust, and accurate whole transcriptome profiling from clinical formalin-fixed paraffin-embedded samples. . Sci. Rep. 10::17597
    [Crossref] [Google Scholar]
  84. 84.
    Nomakuchi TT, Rigo F, Aznarez I, Krainer AR. 2016.. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. . Nat. Biotechnol. 34:(2):16466
    [Crossref] [Google Scholar]
  85. 85.
    Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, et al. 2022.. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. . Commun. Biol. 5::49
    [Crossref] [Google Scholar]
  86. 86.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022.. The complete sequence of a human genome. . Science 376:(6588):4453
    [Crossref] [Google Scholar]
  87. 87.
    Pilarczyk M, Fazel-Najafabadi M, Kouril M, Shamsaei B, Vasiliauskas J, et al. 2022.. Connecting omics signatures and revealing biological mechanisms with iLINCS. . Nat. Commun. 13::4678
    [Crossref] [Google Scholar]
  88. 88.
    Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, et al. 2021.. Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. . Nat. Commun. 12::5647
    [Crossref] [Google Scholar]
  89. 89.
    Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. 2022.. Analysing high-throughput sequencing data in Python with HTSeq 2.0. . Bioinformatics 38:(10):294345
    [Crossref] [Google Scholar]
  90. 90.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, et al. 2017.. The Human Cell Atlas. . eLife 6::e27041
    [Crossref] [Google Scholar]
  91. 91.
    Rigo F, Hua Y, Krainer AR, Bennett CF. 2012.. Antisense-based therapy for the treatment of spinal muscular atrophy. . J. Cell Biol. 199:(1):2125
    [Crossref] [Google Scholar]
  92. 92.
    Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, et al. 2015.. Effect of predicted protein-truncating genetic variants on the human transcriptome. . Science 348:(6235):66669
    [Crossref] [Google Scholar]
  93. 93.
    Roberts TC, Wood MJA, Davies KE. 2023.. Therapeutic approaches for Duchenne muscular dystrophy. . Nat. Rev. Drug Discov. 22:(11):91734
    [Crossref] [Google Scholar]
  94. 94.
    Runne H, Kuhn A, Wild EJ, Pratyaksha W, Kristiansen M, et al. 2007.. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. . PNAS 104:(36):1442429
    [Crossref] [Google Scholar]
  95. 95.
    Setoain J, Franch M, Martínez M, Tabas-Madrid D, Sorzano COS, et al. 2015.. NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. . Nucleic Acids Res. 43:(W1):W19399
    [Crossref] [Google Scholar]
  96. 96.
    Sha Y, Phan JH, Wang MD. 2015.. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data. . In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 646164. Piscataway, NJ:: IEEE
    [Google Scholar]
  97. 97.
    Shiraishi Y, Okada A, Chiba K, Kawachi A, Omori I, et al. 2022.. Systematic identification of intron retention associated variants from massive publicly available transcriptome sequencing data. . Nat. Commun. 13::5357
    [Crossref] [Google Scholar]
  98. 98.
    Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. 2014.. Sequencing depth and coverage: key considerations in genomic analyses. . Nat. Rev. Genet. 15:(2):12132
    [Crossref] [Google Scholar]
  99. 99.
    Sladen PE, Perdigão PRL, Salsbury G, Novoselova T, van der Spuy J, et al. 2021.. CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial homeostasis in dominant optic atrophy patient-derived iPSCs. . Mol. Ther. Nucleic Acids 26::43243
    [Crossref] [Google Scholar]
  100. 100.
    Song J, Kim D, Lee S, Jung J, Joo JWJ, Jang W. 2022.. Integrative transcriptome-wide analysis of atopic dermatitis for drug repositioning. . Commun. Biol. 5::615
    [Crossref] [Google Scholar]
  101. 101.
    Statello L, Guo C-J, Chen L-L, Huarte M. 2021.. Gene regulation by long non-coding RNAs and its biological functions. . Nat. Rev. Mol. Cell Biol. 22:(2):96118. Correction . 2021.. Nat. Rev. Mol. Cell Biol. 22:(2):159
    [Google Scholar]
  102. 102.
    Stegle O, Parts L, Piipari M, Winn J, Durbin R. 2012.. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. . Nat. Protoc. 7:(3):5007
    [Crossref] [Google Scholar]
  103. 103.
    Stergachis AB, Blue EE, Gillentine MA, Wang L-K, Schwarze U, et al. 2023.. Full-length isoform sequencing for resolving the molecular basis of Charcot-Marie-Tooth 2A. . Neurol. Genet. 9:(5):e200090
    [Crossref] [Google Scholar]
  104. 104.
    Strand AD, Aragaki AK, Shaw D, Bird T, Holton J, et al. 2005.. Gene expression in Huntington's disease skeletal muscle: a potential biomarker. . Hum. Mol. Genet. 14:(13):186376
    [Crossref] [Google Scholar]
  105. 105.
    Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, et al. 2017.. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. . Cell 171:(6):143752.e17
    [Crossref] [Google Scholar]
  106. 106.
    Sun T, Sun Z, Jiang Y, Ferguson AA, Pilewski JM, et al. 2019.. Transcriptomic responses to ivacaftor and prediction of ivacaftor clinical responsiveness. . Am. J. Respir. Cell Mol. Biol. 61:(5):64352
    [Crossref] [Google Scholar]
  107. 107.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009.. mRNA-Seq whole-transcriptome analysis of a single cell. . Nat. Methods 6:(5):37782
    [Crossref] [Google Scholar]
  108. 108.
    Tang Q, Li W, Huang J, Wu Y, Ma C, et al. 2023.. Single-cell sequencing analysis of peripheral blood in patients with moyamoya disease. . Orphanet J. Rare Dis. 18::174
    [Crossref] [Google Scholar]
  109. 109.
    Teran NA, Nachun DC, Eulalio T, Ferraro NM, Smail C, et al. 2021.. Nonsense-mediated decay is highly stable across individuals and tissues. . Am. J. Hum. Genet. 108:(8):14018
    [Crossref] [Google Scholar]
  110. 110.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010.. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. . Nat. Biotechnol. 28:(5):51115
    [Crossref] [Google Scholar]
  111. 111.
    van den Brandt PA, Goldbohm RA, van ’t Veer P, Hermus RJ, Sturmans F. 1988.. Dietary habits and the aetiology of cancer. . Int. J. Epidemiol. 17:(2):472
    [Crossref] [Google Scholar]
  112. 112.
    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, et al. 2013.. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. . Curr. Protoc. Bioinform. 43:(1110):11.10.133
    [Google Scholar]
  113. 113.
    Vaquero-Garcia J, Barrera A, Gazzara MR, González-Vallinas J, Lahens NF, et al. 2016.. A new view of transcriptome complexity and regulation through the lens of local splicing variations. . eLife 5::e11752
    [Crossref] [Google Scholar]
  114. 114.
    Volden R, Palmer T, Byrne A, Cole C, Schmitz RJ, et al. 2018.. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. . PNAS 115:(39):972631
    [Crossref] [Google Scholar]
  115. 115.
    Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, et al. 2019.. Opportunities and challenges for transcriptome-wide association studies. . Nat. Genet. 51:(4):59299
    [Crossref] [Google Scholar]
  116. 116.
    Wang Z, Gerstein M, Snyder M. 2009.. RNA-Seq: a revolutionary tool for transcriptomics. . Nat. Rev. Genet. 10:(1):5763
    [Crossref] [Google Scholar]
  117. 117.
    Wang Z, Wu Z, Wang H, Feng R, Wang G, et al. 2023.. An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development. . Cell 186:(20):445471.e19
    [Crossref] [Google Scholar]
  118. 118.
    Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. 2022.. An introduction to spatial transcriptomics for biomedical research. . Genome Med. 14::68
    [Crossref] [Google Scholar]
  119. 119.
    Wu P, Feng Q, Kerchberger VE, Nelson SD, Chen Q, et al. 2022.. Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. . Nat. Commun. 13::46
    [Crossref] [Google Scholar]
  120. 120.
    Xiao Q, Lauschke VM. 2021.. The prevalence, genetic complexity and population-specific founder effects of human autosomal recessive disorders. . npj Genom. Med. 6::41
    [Crossref] [Google Scholar]
  121. 121.
    Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, et al. 2022.. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. . Genome Med. 14::38
    [Crossref] [Google Scholar]
  122. 122.
    Yépez VA, Mertes C, Müller MF, Klaproth-Andrade D, Wachutka L, et al. 2021.. Detection of aberrant gene expression events in RNA sequencing data. . Nat. Protoc. 16:(2):127696
    [Crossref] [Google Scholar]
  123. 123.
    Yoon OK, Hsu TY, Im JH, Brem RB. 2012.. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. . PLOS Genet. 8:(8):e1002882
    [Crossref] [Google Scholar]
  124. 124.
    Zeng T, Li YI. 2022.. Predicting RNA splicing from DNA sequence using Pangolin. . Genome Biol. 23::103
    [Crossref] [Google Scholar]
  125. 125.
    Zhao S, Zhang Y, Gamini R, Zhang B, von Schack D. 2018.. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion. . Sci. Rep. 8::4781
    [Crossref] [Google Scholar]
  126. 126.
    Zhernakova DV, de Klerk E, Westra H-J, Mastrokolias A, Amini S, et al. 2013.. DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. . PLOS Genet. 9:(6):e1003594
    [Crossref] [Google Scholar]
  127. 127.
    Zwiener I, Frisch B, Binder H. 2014.. Transforming RNA-Seq data to improve the performance of prognostic gene signatures. . PLOS ONE 9:(1):e85150
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-021623-121812
Loading
/content/journals/10.1146/annurev-genom-021623-121812
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error