1932

Abstract

Performance enhancing polymorphisms (PEPs) are examples of natural genetic variation that affect the outcome of athletic challenges. Elite athletes, and what separates them from the average competitor, have been the subjects of discussion and debate for decades. While training, diet, and mental fitness are all clearly important contributors to achieving athletic success, the fact that individuals reaching the pinnacle of their chosen sports often share both physical and physiological attributes suggests a role for genetics. That multiple members of a family often participate in highly competitive events, such as the Olympics, further supports this argument.

In this review, we discuss what is known regarding the genes and gene families, including the mitochondrial genome, that are believed to play a role in human athletic performance. Where possible, we describe the physiological impact of the critical gene variants and consider predictions about other potentially important genes. Finally, we discuss the implications of these findings on the future for competitive athletics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-082908-150058
2009-09-22
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/genom/10/1/annurev-genom-082908-150058.html?itemId=/content/journals/10.1146/annurev-genom-082908-150058&mimeType=html&fmt=ahah

Literature Cited

  1. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC. 1.  et al. 2007. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc. Natl. Acad. Sci. USA 104:1835–40 [Google Scholar]
  2. Asai T, Ohkubo T, Katsuya T, Higaki J, Fu Y. 2.  et al. 2001. Endothelin-1 gene variant associates with blood pressure in obese Japanese subjects: the Ohasama Study. Hypertension 38:1321–24 [Google Scholar]
  3. Barnett A. 3.  2006. Using recovery modalities between training sessions in elite athletes: Does it help?. Sports Med. 36:781–96 [Google Scholar]
  4. Barry P. 4.  2008. Finding the golden genes. Sci. News 174:16 [Google Scholar]
  5. Borggrefe M, Wolpert C, Antzelevitch C, Veltmann C, Giustetto C. 5.  et al. 2005. Short QT syndrome. Genotype-phenotype correlations. J. Electrocardiol. 38:75–80 [Google Scholar]
  6. Bosch AN, Goslin BR, Noakes TD, Dennis SC. 6.  1990. Physiological differences between black and white runners during a treadmill marathon. Eur. J. Appl. Physiol. Occup. Physiol. 61:68–72 [Google Scholar]
  7. Buono MJ, Clancy TR, Cook JR. 7.  1984. Blood lactate and ammonium ion accumulation during graded exercise in humans. J. Appl. Physiol. 57:135–39 [Google Scholar]
  8. Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E. 8.  2007. Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion 7:354–57 [Google Scholar]
  9. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH. 9.  1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345:50–54 [Google Scholar]
  10. Coetzer P, Noakes TD, Sanders B, Lambert MI, Bosch AN. 10.  et al. 1993. Superior fatigue resistance of elite black South African distance runners. J. Appl. Physiol. 75:1822–27 [Google Scholar]
  11. Danser AH, Schalekamp MA, Bax WA, Van Den Brink AM, Saxena PR. 11.  et al. 1995. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 92:1387–88 [Google Scholar]
  12. Davids K, Baker J. 12.  2007. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant. Sports Med. 37:961–80 [Google Scholar]
  13. De Moor MH, Spector TD, Cherkas LF, Falchi M, Hottenga JJ. 13.  et al. 2007. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 10:812–20 [Google Scholar]
  14. di Prampero PE. 14.  2003. Factors limiting maximal performance in humans. Eur. J. Appl. Physiol. 90:420–29 [Google Scholar]
  15. Diamanti-Kandarakis E, Konstantinopoulos PA, Papailiou J, Kandarakis SA, Andreopoulos A, Sykiotis GP. 15.  2005. Erythropoietin abuse and erythropoietin gene doping: detection strategies in the genomic era. Sports Med. 35:831–40 [Google Scholar]
  16. Druzhevskaya AM, Ahmetov II, Astratenkova IV, Rogozkin VA. 16.  2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur. J. Appl. Physiol. 103:631–34 [Google Scholar]
  17. Ellsworth DL, Coady SA, Chen W, Srinivasan SR, Elkasabany A. 17.  et al. 2002. Influence of the beta2-adrenergic receptor Arg16Gly polymorphism on longitudinal changes in obesity from childhood through young adulthood in a biracial cohort: the Bogalusa Heart Study. Int. J. Obes. Relat. Metab. Disord. 26:928–37 [Google Scholar]
  18. Fedoruk MN, Rupert JL. 18.  2008. Myostatin inhibition: a potential performance enhancement strategy?. Scand. J. Med. Sci. Sports 18:123–31 [Google Scholar]
  19. Finck BN, Kelly DP. 19.  2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Investig 116:615–22 [Google Scholar]
  20. Franks P, Barroso I, Luan J, Ekelund U, Crowley VE. 20.  et al. 2003. PGC-1alpha genotype modifies the association of volitional energy expenditure with VO2max. Med. Sci. Sports Exerc. 35:1998–2004 [Google Scholar]
  21. Gayagay G, Yu B, Hambly B, Boston T, Hahn A. 21.  et al. 1998. Elite endurance athletes and the ACE I allele—the role of genes in athletic performance. Hum. Genet. 103:48–50 [Google Scholar]
  22. Gibson TJ, Spring J. 22.  1998. Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends Genet. 14:46–49 [Google Scholar]
  23. Girgenrath S, Song K, Whittemore LA. 23.  2005. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle Nerve 31:34–40 [Google Scholar]
  24. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B. 24.  et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:71–74 [Google Scholar]
  25. Haisma HJ, de Hon O. 25.  2006. Gene doping. Int. J. Sports Med. 27:257–66 [Google Scholar]
  26. He Z, Hu Y, Feng L, Lu Y, Liu G. 26.  et al. 2007. NRF2 genotype improves endurance capacity in response to training. Int. J. Sports Med. 28:717–21 [Google Scholar]
  27. He Z, Hu Y, Feng L, Bao D, Wang L. 27.  et al. 2008. Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men?. Scand. J. Med. Sci. Sports 18:195–204 [Google Scholar]
  28. He Z, Hu Y, Feng L, Li Y, Liu G. 28.  et al. 2008. NRF-1 genotypes and endurance exercise capacity in young Chinese men. Br. J. Sports Med. 42:361–66 [Google Scholar]
  29. Jones A, Montgomery HE, Woods DR. 29.  2002. Human performance: a role for the ACE genotype?. Exerc. Sport Sci. Rev. 30:184–90 [Google Scholar]
  30. Kambadur R, Sharma M, Smith TP, Bass JJ. 30.  1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910–16 [Google Scholar]
  31. Karjalainen J, Kujala UM, Stolt A, Mäntysaari M, Viitasalo M. 31.  et al. 1999. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J. Am. Coll. Cardiol. 34:494–99 [Google Scholar]
  32. Kohn TA, Essén-Gustavsson B, Myburgh KH. 32.  2007. Do skeletal muscle phenotypic characteristics of Xhosa and Caucasian endurance runners differ when matched for training and racing distances?. J. Appl. Physiol. 103:932–40 [Google Scholar]
  33. Lasne F, de Ceaurriz J. 33.  2000. Recombinant erythropoietin in urine. Nature 405:635 [Google Scholar]
  34. Lasne F, Martin L, de Ceaurriz J, Larcher T, Moullier P, Chenuaud P. 34.  2004. “Genetic doping” with erythropoietin cDNA in primate muscle is detectable. Mol. Ther. 10:409–10 [Google Scholar]
  35. Legge M, Fitzgerald R, Jones L. 35.  2008. An alternative consideration in drug testing in elite athletes. NZ Med. J. 121:73–77 [Google Scholar]
  36. Li B, Holloszy JO, Semenkovich CF. 36.  1999. Respiratory uncoupling induces delta-aminolevulinate synthase expression through a nuclear respiratory factor-1-dependent mechanism in HeLa cells. J. Biol. Chem. 274:17534–40 [Google Scholar]
  37. Lieberman DE, Bramble DM. 37.  2007. The evolution of marathon running: capabilities in humans. Sports Med. 37:288–90 [Google Scholar]
  38. Liggett SB, Wagoner LE, Craft LL, Hornung RW, Hoit BD. 38.  et al. 1998. The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J. Clin. Investig 102:1534–39 [Google Scholar]
  39. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z. 39.  et al. 2002. Transcriptional coactivator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801 [Google Scholar]
  40. Lippi G. 40.  2008. Genomics and sports, building a bridge towards a rational and personalized training framework. Int. J. Sports Med. 29:264–65 [Google Scholar]
  41. Lortie G, Simoneau JA, Hamel P, Boulay MR, Landry F, Bouchard C. 41.  1984. Responses of maximal aerobic power and capacity to aerobic training. Int. J. Sports Med. 5:232–36 [Google Scholar]
  42. Lucia A, Esteve-Lanao J, Oliván J, Gómez-Gallego F, San Juan AF. 42.  et al. 2006. Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl. Physiol. Nutr. Metab. 31:530–40 [Google Scholar]
  43. Lucia A, Gomez-Gallego F, Barroso I, Rabadan M, Bandres F. 43.  et al. 2005. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 99:344–48 [Google Scholar]
  44. MacArthur DG, North KN. 44.  2004. A gene for speed? The evolution and function of alpha-actinin-3. BioEssays 26:786–95Key paper for understanding the role of the alpha-actinin-3 gene in athletic performance [Google Scholar]
  45. MacArthur DG, North KN. 45.  2007. ACTN3: a genetic influence on muscle function and athletic performance. Exerc. Sport Sci. Rev. 35:30–34 [Google Scholar]
  46. MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM. 46.  et al. 2008. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet. 17:1076–86 [Google Scholar]
  47. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA. 47.  et al. 2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet. 39:1261–65 [Google Scholar]
  48. Marchitelli C, Savarese MC, Crisa A, Nardone A, Marsan PA, Valentini A. 48.  2003. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm. Genome 14:392–95 [Google Scholar]
  49. McPherron AC, Lawler AM, Lee SJ. 49.  1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90 [Google Scholar]
  50. McPherron AC, Lee SJ. 50.  1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94:12457–61 [Google Scholar]
  51. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH. 51.  et al. 2001. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum. Mol. Genet. 10:1335–46 [Google Scholar]
  52. Montgomery H, Clarkson P, Barnard M, Bell J, Brynes A. 52.  et al. 1999. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 353:541–45 [Google Scholar]
  53. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P. 53.  et al. 1998. Human gene for physical performance. Nature 393:221–22One of the first papers to describe the role for polymorphisms in the ACE gene and performance athletics [Google Scholar]
  54. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Parker HG. 54.  et al. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79Excellent description of a canine animal model for myostatin deletion and its relation to racing speed [Google Scholar]
  55. Muniesa CA, González-Freire M, Santiago C, Lao JI, Buxens A. 55.  et al. 2008. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclists, runners and nonathletes. Br. J. Sports Med. bjsm.2008.051680 [Google Scholar]
  56. Murakami H, Ota A, Simojo H, Okada M, Ajisaka R, Kuno S. 56.  2002. Polymorphisms in control region of mtDNA relates to individual differences in endurance cpacity or trainability. Jpn. J. Physiol. 52:247–56 [Google Scholar]
  57. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. 57.  1999. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 87:1313–16 [Google Scholar]
  58. Nakayama T, Soma M, Takahashi Y, Izumi Y, Kanmatsuse K, Esumi M. 58.  1997. Association analysis of CA repeat polymorphism of the endothelial nitric oxide synthase gene with essential hypertension in Japanese. Clin. Genet. 51:26–30 [Google Scholar]
  59. Niemi AK, Majamaa K. 59.  2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 13:965–69 [Google Scholar]
  60. North K. 60.  2008. Why is alpha-actinin-3 deficiency so common in the general population? The evolution of athletic performance. Twin Res. Hum. Genet. 11:384–94 [Google Scholar]
  61. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. 61.  1999. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 21:353–54Describes the role for a common nonsense mutation in the ACTN3 gene and its role in both the general population and athletes [Google Scholar]
  62. Oh SD. 62.  2007. The distribution of I/D polymorphism in the ACE gene among Korean male elite athletes. J. Sports Med. Phys. Fitness 47:250–54 [Google Scholar]
  63. Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C. 63.  2008. The ACTN3 gene in elite Greek track and field athletes. Int. J. Sports Med. 29:352–55 [Google Scholar]
  64. Pearson H. 64.  2006. Physiology: freaks of nature?. Nature 444:1000–1 [Google Scholar]
  65. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS. 65.  et al. 2000. Molecular portraits of human breast tumours. Nature 406:747–52 [Google Scholar]
  66. Puigserver P, Spiegelman BM. 66.  2003. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78–90 [Google Scholar]
  67. Rådegran G, Saltin B. 67.  1999. Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am. J. Physiol. 276:H1951–60 [Google Scholar]
  68. Rankinen T, Bray MS, Hagberg JM, Pérusse L, Roth SM. 68.  et al. 2006. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med. Sci. Sports Exerc. 38:1863–88 [Google Scholar]
  69. Rankinen T, Church T, Rice T, Markward N, Leon AS. 69.  et al. 2007. Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension 50:1120–25 [Google Scholar]
  70. Rankinen T, Wolfarth B, Simoneau JA, Maier-Lenz D, Rauramaa R. 70.  et al. 2000. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J. Appl. Physiol. 88:1571–75 [Google Scholar]
  71. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. 71.  1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig 86:1343–46 [Google Scholar]
  72. Rivera MA, Wolfarth B, Dionne FT, Chagnon M, Simoneau JA. 72.  et al. 1998. Three mitochondrial DNA restriction polymorphisms in elite endurance athletes and sedentary controls. Med. Sci. Sports Exerc. 30:687–90 [Google Scholar]
  73. Roth SM, Walsh S, Liu D, Metter EJ, Ferrucci L, Hurley BF. 73.  2007. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 16:391–94 [Google Scholar]
  74. Saltin B, Larsen H, Terrados N, Bangsbo J, Bak T. 74.  et al. 1995. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand. J. Med. Sci. Sports 5:209–21 [Google Scholar]
  75. Santiago C, González-Freire M, Serratosa L, Morate FJ, Meyer T. 75.  et al. 2008. ACTN3 genotype in professional soccer players. Br. J. Sports Med. 42:71–73 [Google Scholar]
  76. Saunders CJ, Xenophontos SL, Cariolou MA, Anastassiades LC, Noakes TD, Collins M. 76.  2006. The bradykinin beta 2 receptor (BDKRB2) and endothelial nitric oxide synthase 3 (NOS3) genes and endurance performance during Ironman Triathlons. Hum. Mol. Genet. 15:979–87 [Google Scholar]
  77. Saunders PU, Pyne DB, Telford RD, Hawley JA. 77.  2004. Factors affecting running economy in trained distance runners. Sports Med. 34:465–85 [Google Scholar]
  78. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T. 78.  et al. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350:2682–88Presents the first description of a human homozygous for protein truncating mutations in the myostatin gene [Google Scholar]
  79. Scott RA, Wilson RH, Goodwin WH, Moran CN, Georgiades E. 79.  et al. 2005. Mitochondrial DNA lineages of elite Ethiopian athletes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140:497–503 [Google Scholar]
  80. Sharp NC. 80.  2008. The human genome and sport, including epigenetics and athleticogenomics: a brief look at a rapidly changing field. J. Sports Sci. 10:1–7 [Google Scholar]
  81. Stamler JS, Meissner G. 81.  2001. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 81:209–37 [Google Scholar]
  82. Stinckens A, Luyten T, Bijttebier J, Van Den Maagdenberg K, Dieltiens D. 82.  et al. 2008. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 39:586–96 [Google Scholar]
  83. Svensson EC, Black HB, Dugger DL, Tripathy SK, Goldwasser E. 83.  et al. 1997. Long-term erythropoietin expression in rodents and nonhuman primates following intramuscular injection of a replication-defective adenoviral vector. Hum. Gene Ther. 8:1797–806 [Google Scholar]
  84. Takahashi Y, Nakayama T, Soma M, Uwabo J, Izumi Y, Kanmatsuse K. 84.  1997. Association analysis of TG repeat polymorphism of the neuronal nitric oxide synthase gene with essential hypertension. Clin. Genet. 52:83–85 [Google Scholar]
  85. Taylor RR, Mamotte CD, Fallon K, van Bockxmeer FM. 85.  1999. Elite athletes and the gene for angiotensin-converting enzyme. J. Appl. Physiol. 87:1035–37 [Google Scholar]
  86. Thomas M, Langley B, Berry C, Sharma M, Kirk S. 86.  et al. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275:40235–43 [Google Scholar]
  87. Thompson J, Raitt J, Hutchings L, Drenos F, Bjargo E. 87.  et al. and the Caudwell Xtreme Everest Research Group 2007. Angiotensin-converting enzyme genotype and successful ascent to extreme high altitude. High Alt. Med. Biol. 8:278–85 [Google Scholar]
  88. Thompson WR, Binder-Macleod Stuart A. 88.  2006. Association of genetic factors with selected measures of physical performance. Phys. Ther. 86:585–91 [Google Scholar]
  89. Tiret L, Poirier O, Hallet V, McDonagh TA, Morrison C. 89.  et al. 1999. The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension 33:1169–74 [Google Scholar]
  90. Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L. 90.  et al. 1996. Classification of European mtDNAs from an analysis of three European populations. Genetics 144:1835–50 [Google Scholar]
  91. Tsianos G, Sanders J, Dhamrait S, Humphries S, Grant S, Montgomery H. 91.  2004. The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur. J. Appl. Physiol. 92:360–62 [Google Scholar]
  92. Tsuchida K. 92.  2008. Targeting myostatin for therapies against muscle-wasting disorders. Curr. Opin. Drug Discov. Dev. 11:487–94 [Google Scholar]
  93. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A. 93.  et al. 2002. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 283:E66–72 [Google Scholar]
  94. Vincent B, De Bock K, Ramaekers M, Van Den Eede E, Van Leemputte M. 94.  et al. 2007. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol. Genomics 32:58–63 [Google Scholar]
  95. 95. World Anti-Doping Agency 2005. The world anti-doping code. The 2006 prohibited list. International standard. Keynote address, WADA health medical and research committee. 1-1-2006. http://www.wada-ama.org/en/dynamic.ch2?pageCategory.id=250 Presents World Anti-Doping Code information of interest [Google Scholar]
  96. Wagoner LE, Craft LL, Singh B, Suresh DP, Zengel PW. 96.  2000. Polymorphisms of the beta2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 86:834–40 [Google Scholar]
  97. Weston AR, Karamizrak O, Smith A, Noakes TD, Myburgh KH. 97.  1999. African runners exhibit greater fatigue resistance, lower lactate accumulation, and higher oxidative enzyme activity. J. App. Physiol. 86:915–23 [Google Scholar]
  98. Weston AR, Mbambo Z, Myburgh KH. 98.  2000. Running economy of African and Caucasian distance runners. Med. Sci. Sports Exerc. 32:1140–44 [Google Scholar]
  99. Williams AG, Dhamrait SS, Wootton PT, Day SH, Hawe E. 99.  et al. 2004. Bradykinin receptor gene variant and human physical performance. J. Appl. Physiol. 96:938–42 [Google Scholar]
  100. Williams AG, Folland JP. 100.  2008. Similarity of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 586:113–21 [Google Scholar]
  101. Wolfarth B, Rankinen T, Mühlbauer S, Ducke M, Rauramaa R. 101.  et al. 2008. Endothelial nitric oxide synthase gene polymorphism and elite endurance athlete status: the Genathlete study. Scand. J. Med. Sci. Sports 18:485–90 [Google Scholar]
  102. Wolfarth B, Rankinen T, Mühlbauer S, Scherr J, Boulay MR. 102.  2007. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metabolism 56:1649–51 [Google Scholar]
  103. Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V. 103.  et al. 2001. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum. Genet. 108:230–32 [Google Scholar]
  104. Woods DR, Brull D, Montgomery HE. 104.  2000. Endurance and the ACE I/D polymorphism. Sci. Prog. 84:317–36 [Google Scholar]
  105. Woods DR, Montgomergy HE. 105.  2001. Angiotensin-converting enzyme and genetics at high altitude. High Alt. Med. Biol. 2:201–10 [Google Scholar]
  106. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH. 106.  et al. 2003. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 73:627–31 [Google Scholar]
  107. Zhang G, Budker V, Williams P, Subbotin V, Wolff JA. 107.  2001. Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum. Gene Ther. 12:427–38 [Google Scholar]
  108. Zhang X, Wang C, Dai H, Lin Y, Zhang J. 108.  2008. Association between angiotensin-converting enzyme gene polymorphisms and exercise performance in patients with COPD. Respirology 13:683–88 [Google Scholar]
  109. Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E. 109.  et al. 2002. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J. Physiol. 543:191–200 [Google Scholar]
/content/journals/10.1146/annurev-genom-082908-150058
Loading
/content/journals/10.1146/annurev-genom-082908-150058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error