1932

Abstract

The eukaryotic epigenome has an instrumental role in determining and maintaining cell identity and function. Epigenetic components such as DNA methylation, histone tail modifications, chromatin accessibility, and DNA architecture are tightly correlated with central cellular processes, while their dysregulation manifests in aberrant gene expression and disease. The ability to specifically edit the epigenome holds the promise of enhancing understanding of how epigenetic modifications function and enabling manipulation of cell phenotype for research or therapeutic purposes. Genome engineering technologies use highly specific DNA-targeting tools to precisely deposit epigenetic changes in a locus-specific manner, creating diverse epigenome editing platforms. This review summarizes these technologies and insights from recent studies, describes the complex relationship between epigenetic components and gene regulation, and highlights caveats and promises of the emerging field of epigenome editing, including applications for translational purposes, such as epigenetic therapy and regenerative medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021632
2018-08-31
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/genom/19/1/annurev-genom-083117-021632.html?itemId=/content/journals/10.1146/annurev-genom-083117-021632&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D et al. 2016. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–32Demonstrated persistent gene repression after the transient expression of multiple epigenetic editors.
    [Google Scholar]
  2. 2.  Anreiter I, Kramer JM, Sokolowski MB 2017. Epigenetic mechanisms modulate differences in Drosophila foraging behavior. PNAS 114:12518–23
    [Google Scholar]
  3. 3.  Avitzour M, Mor-Shaked H, Yanovsky-Dagan S, Aharoni S, Altarescu G et al. 2014. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Rep 3:699–706
    [Google Scholar]
  4. 4.  Baylin SB 2005. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2:Suppl. 1S4–11
    [Google Scholar]
  5. 5.  Baylin SB, Jones PA 2011. A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer 11:726–34
    [Google Scholar]
  6. 6.  Becker JS, Nicetto D, Zaret KS 2016. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 32:29–41
    [Google Scholar]
  7. 7.  Bell AC, Felsenfeld G 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–85
    [Google Scholar]
  8. 8.  Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J et al. 2012. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLOS Genet 8:e1002629
    [Google Scholar]
  9. 9.  Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K et al. 2014. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158:673–88
    [Google Scholar]
  10. 10.  Benveniste D, Sonntag HJ, Sanguinetti G, Sproul D 2014. Transcription factor binding predicts histone modifications in human cell lines. PNAS 111:13367–72
    [Google Scholar]
  11. 11.  Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z et al. 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44:40–46
    [Google Scholar]
  12. 12.  Bernstein BE, Meissner A, Lander ES 2007. The mammalian epigenome. Cell 128:669–81
    [Google Scholar]
  13. 13.  Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26
    [Google Scholar]
  14. 14.  Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J et al. 2011. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20:66–78
    [Google Scholar]
  15. 15.  Bhadury J, Nilsson LM, Muralidharan SV, Green LC, Li Z et al. 2014. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. PNAS 111:E2721–30
    [Google Scholar]
  16. 16.  Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y et al. 2016. Dynamics of epigenetic regulation at the single-cell level. Science 351:720–24Showed differences in the kinetics and dynamics of targeted epigenetic repression by histone modifications and DNA methylation.
    [Google Scholar]
  17. 17.  Black JB, Adler AF, Wang HG, D'Ippolito AM, Hutchinson HA et al. 2016. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19:406–14
    [Google Scholar]
  18. 18.  Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  19. 19.  Bohm V, Hieb AR, Andrews AJ, Gansen A, Rocker A et al. 2011. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res 39:3093–102
    [Google Scholar]
  20. 20.  Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL et al. 2017. Multiscale 3D genome rewiring during mouse neural development. Cell 171:557–72
    [Google Scholar]
  21. 21.  Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR 2017. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8:560
    [Google Scholar]
  22. 22.  Calvanese V, Lara E, Kahn A, Fraga MF 2009. The role of epigenetics in aging and age-related diseases. Ageing Res. Rev. 8:268–76
    [Google Scholar]
  23. 23.  Cano-Rodriguez D, Gjaltema RA, Jilderda LJ, Jellema P, Dokter-Fokkens J et al. 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7:12284
    [Google Scholar]
  24. 24.  Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M 2014. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86:3697–702
    [Google Scholar]
  25. 25.  Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW 2014. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–47
    [Google Scholar]
  26. 26.  Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12:326–28
    [Google Scholar]
  27. 27.  Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R et al. 2016. Comparison of Cas9 activators in multiple species. Nat. Methods 13:563–67
    [Google Scholar]
  28. 28.  Chelmicki T, Dundar F, Turley MJ, Khanam T, Aktas T et al. 2014. MOF-associated complexes ensure stem cell identity and Xist repression. eLife 3:e02024
    [Google Scholar]
  29. 29.  Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  30. 30.  Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:46545–56
    [Google Scholar]
  31. 31.  Ciabrelli F, Comoglio F, Fellous S, Bonev B, Ninova M et al. 2017. Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat. . Genet 49:876–86
    [Google Scholar]
  32. 32.  Coffee B, Zhang F, Warren ST, Reines D 1999. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 22:98–101
    [Google Scholar]
  33. 33.  Colak D, Zaninovic N, Cohen MS, Rosenwaks Z, Yang WY et al. 2014. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343:1002–5
    [Google Scholar]
  34. 34.  Cui K, Zang C, Roh TY, Schones DE, Childs RW et al. 2009. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4:80–93
    [Google Scholar]
  35. 35.  Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ et al. 2011. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65
    [Google Scholar]
  36. 36.  Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G et al. 2010. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463:360–63
    [Google Scholar]
  37. 37.  Das C, Tyler JK 2013. Histone exchange and histone modifications during transcription and aging. Biochim. Biophys. Acta 1819:332–42
    [Google Scholar]
  38. 38.  de Esch CE, Ghazvini M, Loos F, Schelling-Kazaryan N, Widagdo W et al. 2014. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation. Stem Cell Rep 3:548–55
    [Google Scholar]
  39. 39.  De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC et al. 2014. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17:1156–63
    [Google Scholar]
  40. 40.  De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G 2007. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of Polycomb-mediated gene silencing. Cell 130:1083–94
    [Google Scholar]
  41. 41.  Deng W, Rupon JW, Krivega I, Breda L, Motta I et al. 2014. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158:849–60
    [Google Scholar]
  42. 42.  Ding GL, Wang FF, Shu J, Tian S, Jiang Y et al. 2012. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61:1133–42
    [Google Scholar]
  43. 43.  Dorighi KM, Swigut T, Henriques T, Bhanu NV, Scruggs BS et al. 2017. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66:568–76
    [Google Scholar]
  44. 44.  Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ et al. 2014. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374–87
    [Google Scholar]
  45. 45.  El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R et al. 2017. Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLOS ONE 12:e0172725
    [Google Scholar]
  46. 46.  Elgin SC, Reuter G 2013. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. . Biol 5:a017780
    [Google Scholar]
  47. 47. ENCODE Proj. Consort. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  48. 48.  Ernst J, Kellis M 2010. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28:817–25
    [Google Scholar]
  49. 49.  Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD et al. 2011. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49A seminal study that correlated key epigenetic marks with putative genetic regulatory elements and their potency.
    [Google Scholar]
  50. 50.  Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N et al. 2007. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. PNAS 104:15805–10
    [Google Scholar]
  51. 51.  Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43
    [Google Scholar]
  52. 52.  Feng Y, Jankovic J, Wu YC 2015. Epigenetic mechanisms in Parkinson's disease. J. Neurol. Sci. 349:3–9
    [Google Scholar]
  53. 53.  Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I et al. 2014. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53:49–62
    [Google Scholar]
  54. 54.  Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J et al. 2010. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–24
    [Google Scholar]
  55. 55.  Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR et al. 2016. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:769–73
    [Google Scholar]
  56. 56.  Gaj T, Gersbach CA, Barbas CF III. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405
    [Google Scholar]
  57. 57.  Galonska C, Charlton J, Mattei AL, Donaghey J, Clement K et al. 2018. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9:597
    [Google Scholar]
  58. 58.  Garriga-Canut M, Agustin-Pavon C, Herrmann F, Sanchez A, Dierssen M et al. 2012. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. PNAS 109:E3136–45
    [Google Scholar]
  59. 59.  Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. 2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–71
    [Google Scholar]
  60. 60.  Gaydos LJ, Wang W, Strome S 2014. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345:1515–18
    [Google Scholar]
  61. 61.  Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–61
    [Google Scholar]
  62. 62.  Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51
    [Google Scholar]
  63. 63.  Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51
    [Google Scholar]
  64. 64.  Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88
    [Google Scholar]
  65. 65.  Guo Y, Xu Q, Canzio D, Shou J, Li J et al. 2015. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900–10
    [Google Scholar]
  66. 66.  Ha M, Ng DW, Li WH, Chen ZJ 2011. Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res 21:590–98
    [Google Scholar]
  67. 67.  Hannum G, Guinney J, Zhao L, Zhang L, Hughes G et al. 2013. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49:359–67
    [Google Scholar]
  68. 68.  Hanson MA, Godfrey KM 2015. Epigenetic mechanisms underlying type 2 diabetes mellitus. Nat. Rev. Endocrinol. 11:261–62
    [Google Scholar]
  69. 69.  Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR et al. 2012. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21:473–87
    [Google Scholar]
  70. 70.  Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R et al. 2010. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–91
    [Google Scholar]
  71. 71.  He J, Nguyen AT, Zhang Y 2011. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117:3869–80
    [Google Scholar]
  72. 72.  Helin K, Dhanak D 2013. Chromatin proteins and modifications as drug targets. Nature 502:480–88
    [Google Scholar]
  73. 73.  Heller EA, Cates HM, Pena CJ, Sun H, Shao N et al. 2014. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 17:1720–27Used epigenome editing of histone marks in the mouse brain to modulate addictive behavior.
    [Google Scholar]
  74. 74.  Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17
    [Google Scholar]
  75. 75.  Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP et al. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS 106:9362–67
    [Google Scholar]
  76. 76.  Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:934–47
    [Google Scholar]
  77. 77.  Ho JW, Jung YL, Liu T, Alver BH, Lee S et al. 2014. Comparative analysis of metazoan chromatin organization. Nature 512:449–52
    [Google Scholar]
  78. 78.  Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA et al. 2016. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5:e19760
    [Google Scholar]
  79. 79.  Huang P, Zhang L, Gao Y, He Z, Yao D et al. 2014. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14:370–84
    [Google Scholar]
  80. 80.  Huang YH, Su J, Lei Y, Brunetti L, Gundry MC et al. 2017. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 18:176
    [Google Scholar]
  81. 81.  Hyun K, Jeon J, Park K, Kim J 2017. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49:e324
    [Google Scholar]
  82. 82.  Jackson V 1990. In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:719–31
    [Google Scholar]
  83. 83.  Jadhav U, Nalapareddy K, Saxena M, O'Neill NK, Pinello L et al. 2016. Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells. Cell 165:1389–400
    [Google Scholar]
  84. 84.  Jones PA 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:484–92
    [Google Scholar]
  85. 85.  Juan AH, Wang S, Ko KD, Zare H, Tsai PF et al. 2016. Roles of H3K27me2 and H3K27me3 examined during fate specification of embryonic stem cells. Cell Rep 17:1369–82
    [Google Scholar]
  86. 86.  Jungmann R, Avendano MS, Woehrstein JB, Dai M, Shih WM, Yin P 2014. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11:313–18
    [Google Scholar]
  87. 87.  Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D et al. 2011. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8:676–87
    [Google Scholar]
  88. 88.  Katz DJ, Edwards TM, Reinke V, Kelly WG 2009. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137:308–20
    [Google Scholar]
  89. 89.  Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12:401–3
    [Google Scholar]
  90. 90.  Kelly TK, Miranda TB, Liang G, Berman BP, Lin JC et al. 2010. H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol. Cell 39:901–11
    [Google Scholar]
  91. 91.  Kim K, Doi A, Wen B, Ng K, Zhao R et al. 2010. Epigenetic memory in induced pluripotent stem cells. Nature 467:285–90
    [Google Scholar]
  92. 92.  Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW et al. 2017. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat. Med. 23:213–22
    [Google Scholar]
  93. 93.  Klann TS, Black JB, Chellappan M, Safi A, Song L et al. 2017. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35:561–68Provided the first demonstration of complementary gain- and loss-of-function epigenome editing screens to annotate the function of the noncoding genome.
    [Google Scholar]
  94. 94.  Kleer CG, Cao Q, Varambally S, Shen R, Ota I et al. 2003. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. PNAS 100:11606–11
    [Google Scholar]
  95. 95.  Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B 2017. Transgenerational transmission of environmental information in C. elegans. . Science 356:320–23
    [Google Scholar]
  96. 96.  Klosin A, Reis K, Hidalgo-Carcedo C, Casas E, Vavouri T, Lehner B 2017. Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory. Sci. Adv. 3:e1701143Showed how epigenetic modifications are essential to the formation of epigenetic memory, which was sustained over more than 10 generations in worms.
    [Google Scholar]
  97. 97.  Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–24
    [Google Scholar]
  98. 98.  Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y et al. 2008. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet. 40:741–50
    [Google Scholar]
  99. 99.  Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–88
    [Google Scholar]
  100. 100.  Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R et al. 2016. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34:192–98
    [Google Scholar]
  101. 101.  Koyanagi M, Baguet A, Martens J, Margueron R, Jenuwein T, Bix M 2005. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J. Biol. Chem. 280:31470–77
    [Google Scholar]
  102. 102.  Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K et al. 2012. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488:404–8
    [Google Scholar]
  103. 103.  Kumar RM, Cahan P, Shalek AK, Satija R, DaleyKeyser AJ et al. 2014. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516:56–61
    [Google Scholar]
  104. 104.  Kwon DY, Zhao YT, Lamonica JM, Zhou Z 2017. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 8:15315
    [Google Scholar]
  105. 105.  Laganiere J, Kells AP, Lai JT, Guschin D, Paschon DE et al. 2010. An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson's disease. J. Neurosci. 30:16469–74
    [Google Scholar]
  106. 106.  Li T, Kelly WG 2011. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLOS Genet 7:e1001349
    [Google Scholar]
  107. 107.  Liao H-K, Hatanaka F, Araoka T, Reddy P, Wu M-Z et al. 2017. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171:1495–507
    [Google Scholar]
  108. 108.  Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–22
    [Google Scholar]
  109. 109.  Liszczak GP, Brown ZZ, Kim SH, Oslund RC, David Y, Muir TW 2017. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. PNAS 114:681–86
    [Google Scholar]
  110. 110.  Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z 2013. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat. Commun. 4:1868
    [Google Scholar]
  111. 111.  Liu P, Chen M, Liu Y, Qi LS, Ding S 2018. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22:252–61
    [Google Scholar]
  112. 112.  Liu XS, Wu H, Ji X, Stelzer Y, Wu X et al. 2016. Editing DNA methylation in the mammalian genome. Cell 167:233–47A detailed and extensive characterization of epigenome editing of DNA methylation and demethylation with CRISPR/Cas9-based targeting, including the effects on gene expression, genome structure, and cell differentiation.
    [Google Scholar]
  113. 113.  Loven J, Hoke HA, Lin CY, Lau A, Orlando DA et al. 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–34
    [Google Scholar]
  114. 114.  Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60
    [Google Scholar]
  115. 115.  Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G et al. 2014. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat. Neurosci. 17:1164–70
    [Google Scholar]
  116. 116.  Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C et al. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–57
    [Google Scholar]
  117. 117.  McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T et al. 2016. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open 5:866–74
    [Google Scholar]
  118. 118.  Merkenschlager M, Nora EP 2016. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genom. Hum. Genet. 17:17–43
    [Google Scholar]
  119. 119.  Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S et al. 2011. Targeting MYC dependence in cancer by inhibiting BET bromodomains. PNAS 108:16669–74
    [Google Scholar]
  120. 120.  Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–60
    [Google Scholar]
  121. 121.  Millar CB, Grunstein M 2006. Genome-wide patterns of histone modifications in yeast. Nat. Rev. Mol. Cell Biol. 7:657–66
    [Google Scholar]
  122. 122.  Mirabella AC, Foster BM, Bartke T 2016. Chromatin deregulation in disease. Chromosoma 125:75–93
    [Google Scholar]
  123. 123. modENCODE Consort., Roy S, Ernst J, Kharchenko PV, Kheradpour P et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–97
    [Google Scholar]
  124. 124.  Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW et al. 2017. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23:483–92
    [Google Scholar]
  125. 125.  Morgan MAJ, Rickels RA, Collings CK, He X, Cao K et al. 2017. A cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4 methylation. Genes Dev 31:2003–14
    [Google Scholar]
  126. 126.  Morgan SL, Mariano NC, Bermudez A, Arruda NL, Wu F et al. 2017. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8:15993
    [Google Scholar]
  127. 127.  Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M et al. 2016. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34:1060–65
    [Google Scholar]
  128. 128.  Negre N, Brown CD, Ma L, Bristow CA, Miller SW et al. 2011. A cis-regulatory map of the Drosophila genome. Nature 471:527–31
    [Google Scholar]
  129. 129.  O'Geen H, Ren CH, Halmai J, Le VM, Mackay JP et al. 2017. dCas9 epigenome editing suggests histone methylation does not always precede target gene repression. Mol. Ther. 25:10–11
    [Google Scholar]
  130. 130.  Oda H, Okamoto I, Murphy N, Chu J, Price SM et al. 2009. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell. Biol. 29:2278–95
    [Google Scholar]
  131. 131.  Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE et al. 2007. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39:237–42
    [Google Scholar]
  132. 132.  Okada Y, Feng Q, Lin Y, Jiang Q, Li Y et al. 2005. hDOT1L links histone methylation to leukemogenesis. Cell 121:167–78
    [Google Scholar]
  133. 133.  Ooi SK, Qiu C, Bernstein E, Li K, Jia D et al. 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–17
    [Google Scholar]
  134. 134.  Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I et al. 2014. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46:136–43
    [Google Scholar]
  135. 135.  Pérez-Lluch S, Blanco E, Tilgner H, Curado J, Ruiz-Romero M et al. 2015. Absence of canonical marks of active chromatin in developmentally regulated genes. Nat. Genet. 47:1158–67Analyzed epigenetic marks and gene expression in different stages throughout fruit fly development, thus offering interesting insights into their role.
    [Google Scholar]
  136. 136.  Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10:973–76
    [Google Scholar]
  137. 137.  Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA et al. 2013. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10:239–42
    [Google Scholar]
  138. 138.  Polak P, Karlic R, Koren A, Thurman R, Sandstrom R et al. 2015. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518:360–64
    [Google Scholar]
  139. 139.  Poleshko A, Shah PP, Gupta M, Babu A, Morley MP et al. 2017. Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171:573–87
    [Google Scholar]
  140. 140.  Polstein LR, Gersbach CA 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11:198–200
    [Google Scholar]
  141. 141.  Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P et al. 2015. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 25:1158–69
    [Google Scholar]
  142. 142.  Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:305–20
    [Google Scholar]
  143. 143.  Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  144. 144. Roadmap Epigenom. Consort., Kundaje A, Meuleman W, Ernst J, Bilenky M et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–30
    [Google Scholar]
  145. 145.  Rust MJ, Bates M, Zhuang X 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95
    [Google Scholar]
  146. 146.  Saitoh S, Wada T 2000. Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am. J. Hum. Genet. 66:1958–62
    [Google Scholar]
  147. 147.  Schenk T, Chen WC, Gollner S, Howell L, Jin L et al. 2012. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18:605–11
    [Google Scholar]
  148. 148.  Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M et al. 2007. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39:232–36
    [Google Scholar]
  149. 149.  Schoenherr CJ, Levorse JM, Tilghman SM 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33:66–69
    [Google Scholar]
  150. 150.  Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G et al. 2017. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51–56Showed how the loss of cohesin (and TADs) leads to modest changes of expression, and offered two models of chromatin organization.
    [Google Scholar]
  151. 151.  Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N et al. 2014. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat. Immunol. 15:777–88
    [Google Scholar]
  152. 152.  Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80
    [Google Scholar]
  153. 153.  Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL 2006. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–47
    [Google Scholar]
  154. 154.  Shrimp JH, Grose C, Widmeyer SRT, Thorpe AL, Jadhav A, Meier JL 2018. Chemical control of a CRISPR-Cas9 acetyltransferase. ACS Chem. Biol. 13:455–60
    [Google Scholar]
  155. 155.  Stampfel G, Kazmar T, Frank O, Wienerroither S, Reiter F, Stark A 2015. Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature 528:147–51
    [Google Scholar]
  156. 156.  Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP 1994. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat. Genet. 7:433–39
    [Google Scholar]
  157. 157.  Su J, Wang F, Cai Y, Jin J 2016. The functional analysis of histone acetyltransferase MOF in tumorigenesis. Int. J. Mol. Sci. 17:99
    [Google Scholar]
  158. 158.  Sur I, Taipale J 2016. The role of enhancers in cancer. Nat. Rev. Cancer 16:483–93
    [Google Scholar]
  159. 159.  Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ et al. 2014. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res 24:821–30
    [Google Scholar]
  160. 160.  Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46
    [Google Scholar]
  161. 161.  Tchasovnikarova IA, Timms RT, Matheson NJ, Wals K, Antrobus R et al. 2015. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348:1481–85
    [Google Scholar]
  162. 162.  Thakore PI, Black JB, Hilton IB, Gersbach CA 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13:127–37
    [Google Scholar]
  163. 163.  Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK et al. 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12:1143–49
    [Google Scholar]
  164. 164.  Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP et al. 2018. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9:1674
    [Google Scholar]
  165. 165.  Tjeertes JV, Miller KM, Jackson SP 2009. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28:1878–89
    [Google Scholar]
  166. 166.  Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V et al. 2012. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–47
    [Google Scholar]
  167. 167.  Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K et al. 2008. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–32
    [Google Scholar]
  168. 168.  Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J et al. 2015. Transcription factor binding dynamics during human ES cell differentiation. Nature 518:344–49
    [Google Scholar]
  169. 169.  Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C et al. 2002. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–29
    [Google Scholar]
  170. 170.  Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P et al. 2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–28
    [Google Scholar]
  171. 171.  Wang H, Maurano MT, Qu H, Varley KE, Gertz J et al. 2012. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22:1680–88
    [Google Scholar]
  172. 172.  Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S et al. 2007. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39:457–66
    [Google Scholar]
  173. 173.  Weiner A, Lara-Astiaso D, Krupalnik V, Gafni O, David E et al. 2016. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nat. Biotechnol. 34:953–61
    [Google Scholar]
  174. 174.  Whitaker JW, Chen Z, Wang W 2015. Predicting the human epigenome from DNA motifs. Nat. Methods 12:265–72
    [Google Scholar]
  175. 175.  Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G et al. 2007. Epigenetic stem cell signature in cancer. Nat. Genet. 39:157–58
    [Google Scholar]
  176. 176.  Xin Z, Allis CD, Wagstaff J 2001. Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4 methylation at the Prader-Willi syndrome imprinting center. Am. J. Hum. Genet. 69:1389–94
    [Google Scholar]
  177. 177.  Xin Z, Tachibana M, Guggiari M, Heard E, Shinkai Y, Wagstaff J 2003. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. 278:14996–5000
    [Google Scholar]
  178. 178.  Xu X, Tao Y, Gao X, Zhang L, Li X et al. 2016. A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009
    [Google Scholar]
  179. 179.  Yamazaki T, Hatano Y, Handa T, Kato S, Hoida K et al. 2017. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLOS ONE 12:e0177764
    [Google Scholar]
  180. 180.  Yan J, Chen SA, Local A, Liu T, Qiu Y et al. 2018. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28:204–20
    [Google Scholar]
  181. 181.  Yan L, Guo H, Hu B, Li R, Yong J et al. 2016. Epigenomic landscape of human fetal brain, heart, and liver. J. Biol. Chem. 291:4386–98
    [Google Scholar]
  182. 182.  Yang X, Lay F, Han H, Jones PA 2010. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 31:536–46
    [Google Scholar]
  183. 183.  Yap DB, Chu J, Berg T, Schapira M, Cheng SW et al. 2011. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117:2451–59
    [Google Scholar]
  184. 184.  Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B et al. 2017. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356:eaaj2239Provided a comprehensive analysis of how DNA methylation affects the binding affinity of transcription factors.
    [Google Scholar]
  185. 185.  Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM et al. 2012. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem. Biol. 7:1152–57
    [Google Scholar]
  186. 186.  Zhou H, Liu J, Zhou C, Gao N, Rao Z et al. 2018. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat. Neurosci. 21:440–46
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021632
Loading
/content/journals/10.1146/annurev-genom-083117-021632
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error