1932

Abstract

In the last decade, exome and/or genome sequencing has become a common test in the diagnosis of individuals with features of a rare Mendelian disorder. Despite its success, this test leaves the majority of tested individuals undiagnosed. This review describes the Matchmaker Exchange (MME), a federated network established to facilitate the solving of undiagnosed rare-disease cases through data sharing. MME supports genomic matchmaking, the act of connecting two or more parties looking for cases with similar phenotypes and variants in the same candidate genes. An application programming interface currently connects six matchmaker nodes—the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER), GeneMatcher, PhenomeCentral, MyGene2, and the Initiative on Rare and Undiagnosed Diseases (IRUD) Exchange—resulting in a collective data set spanning more than 150,000 cases from more than 11,000 contributors in 88 countries. Here, we describe the successes and challenges of MME, its individual matchmaking nodes, plans for growing the network, and considerations for future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083118-014915
2020-08-31
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-083118-014915.html?itemId=/content/journals/10.1146/annurev-genom-083118-014915&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    ACMG Board Dir 2017. Laboratory and clinical genomic data sharing is crucial to improving genetic health care: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 19:721–22
    [Google Scholar]
  2. 2. 
    Adachi T, Kawamura K, Furusawa Y, Nishizaki Y, Imanishi N et al. 2017. Japan's Initiative on Rare and Undiagnosed Diseases (IRUD): towards an end to the diagnostic odyssey. Eur. J. Hum. Genet. 25:1025–28
    [Google Scholar]
  3. 3. 
    Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A 2015. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–98
    [Google Scholar]
  4. 4. 
    Arachchi H, Wojcik MH, Weisburd B, Jacobsen JOB, Valkanas E et al. 2018. matchbox: an open-source tool for patient matching via the Matchmaker Exchange. Hum. Mutat. 39:1827–34
    [Google Scholar]
  5. 5. 
    Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P et al. 2016. Autosomal-recessive mutations in AP3B2, adaptor-related protein complex 3 beta 2 subunit, cause an early-onset epileptic encephalopathy with optic atrophy. Am. J. Hum. Genet. 99:1368–76
    [Google Scholar]
  6. 6. 
    Austin CP, Cutillo CM, Lau LPL, Jonker AH, Rath A et al. 2018. Future of rare diseases research 2017–2027: an IRDiRC perspective. Clin. Transl. Sci. 11:21–27
    [Google Scholar]
  7. 7. 
    Bamshad MJ, Nickerson DA, Chong JX 2019. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105:448–55
    [Google Scholar]
  8. 8. 
    Basilicata MF, Bruel A-L, Semplicio G, Valsecchi CIK, Aktaş T et al. 2018. De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation. Nat. Genet. 50:1442–51
    [Google Scholar]
  9. 9. 
    Baynam G, Walters M, Claes P, Kung S, LeSouef P et al. 2015. Phenotyping: targeting genotype's rich cousin for diagnosis. J. Paediatr. Child Health 51:381–86
    [Google Scholar]
  10. 10. 
    Boerkoel C, du Souich C 2017. UNC80 deficiency. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK453434
    [Google Scholar]
  11. 11. 
    Boycott KM, Campeau PM, Howley HE, Pavlidis P, Rogic S et al. 2020. The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: connecting understudied genes to model organisms. Am. J. Hum. Genet. 106:143–52
    [Google Scholar]
  12. 12. 
    Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS et al. 2017. International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. Genet. 100:695–705
    [Google Scholar]
  13. 13. 
    Bruel A-L, Bigoni S, Kennedy J, Whiteford M, Buxton C et al. 2017. Expanding the clinical spectrum of recessive truncating mutations of KLHL7 to a Bohring-Opitz-like phenotype. J. Med. Genet. 54:830–35
    [Google Scholar]
  14. 14. 
    Buske OJ, Girdea M, Dumitriu S, Gallinger B, Hartley T et al. 2015. PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases. Hum. Mutat. 36:931–40
    [Google Scholar]
  15. 15. 
    Buske OJ, Schiettecatte F, Hutton B, Dumitriu S, Misyura A et al. 2015. The Matchmaker Exchange API: automating patient matching through the exchange of structured phenotypic and genotypic profiles. Hum. Mutat. 36:922–27Description of the Matchmaker Exchange API for exchanging phenotype and genotype profiles.
    [Google Scholar]
  16. 16. 
    Carapito R, Ivanova EL, Morlon A, Meng L, Molitor A et al. 2019. ZMIZ1 variants cause a syndromic neurodevelopmental disorder. Am. J. Hum. Genet. 104:319–30
    [Google Scholar]
  17. 17. 
    Chong JX, Yu J-H, Lorentzen P, Park KM, Jamal SM et al. 2016. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet. Med. 18:788–95
    [Google Scholar]
  18. 18. 
    Clark MM, Stark Z, Farnaes L, Tan TY, White SM et al. 2018. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. npj Genom. Med. 3:16
    [Google Scholar]
  19. 19. 
    Dawkins HJS, Draghia-Akli R, Lasko P, Lau LPL, Jonker AH et al. 2018. Progress in rare diseases research 2010–2016: an IRDiRC perspective. Clin. Transl. Sci. 11:11–20
    [Google Scholar]
  20. 20. 
    Dobyns WB, Aldinger KA, Ishak GE, Mirzaa GM, Timms AE et al. 2018. MACF1 mutations encoding highly conserved zinc-binding residues of the GAR domain cause defects in neuronal migration and axon guidance. Am. J. Hum. Genet. 103:1009–21
    [Google Scholar]
  21. 21. 
    Dyke SOM, Knoppers BM, Hamosh A, Firth HV, Hurles M et al. 2017. “Matching” consent to purpose: the example of the Matchmaker Exchange. Hum. Mutat. 38:1281–85A full explanation of the Matchmaker Exchange tiered consent policy.
    [Google Scholar]
  22. 22. 
    Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L et al. 2005. The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol 6:R44
    [Google Scholar]
  23. 23. 
    Farwell Hagman KD, Shinde DN, Mroske C, Smith E, Radtke K et al. 2017. Candidate-gene criteria for clinical reporting: diagnostic exome sequencing identifies altered candidate genes among 8% of patients with undiagnosed diseases. Genet. Med. 19:224–35
    [Google Scholar]
  24. 24. 
    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M et al. 2009. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84:524–33
    [Google Scholar]
  25. 25. 
    Fischer-Zirnsak B, Segebrecht L, Schubach M, Charles P, Alderman E et al. 2019. Haploinsufficiency of the notch ligand DLL1 causes variable neurodevelopmental disorders. Am. J. Hum. Genet. 105:631–39
    [Google Scholar]
  26. 26. 
    Friedman J, Smith DE, Issa MY, Stanley V, Wang R et al. 2019. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nat. Commun. 10:707
    [Google Scholar]
  27. 27. 
    Frints SGM, Hennig F, Colombo R, Jacquemont S, Terhal P et al. 2019. Deleterious de novo variants of X-linked ZC4H2 in females cause a variable phenotype with neurogenic arthrogryposis multiplex congenita. Hum. Mutat. 40:2270–85
    [Google Scholar]
  28. 28. 
    Fujiwara T, Yamamoto Y, Kim J-D, Buske O, Takagi T 2018. PubCaseFinder: a case-report-based, phenotype-driven differential-diagnosis system for rare diseases. Am. J. Hum. Genet. 103:389–99
    [Google Scholar]
  29. 29. 
    GeneMatcher 2019. Publications. GeneMatcher http://genematcher.org/publications
    [Google Scholar]
  30. 30. 
    Girdea M, Dumitriu S, Fiume M, Bowdin S, Boycott KM et al. 2013. PhenoTips: patient phenotyping software for clinical and research use. Hum. Mutat. 34:1057–65
    [Google Scholar]
  31. 31. 
    Glob. Alliance Genom. Health 2016. A federated ecosystem for sharing genomic, clinical data. Science 352:1278–80
    [Google Scholar]
  32. 32. 
    Glob. Alliance Genom. Health 2020. Documentation for the MatchmakerExchange APIs. GitHub https://github.com/ga4gh/mme-apis
    [Google Scholar]
  33. 33. 
    Glob. Alliance Genom. Health. 2020. Metrics API. GitHub https://github.com/ga4gh/mme-apis/blob/master/metrics-api.md
    [Google Scholar]
  34. 34. 
    Guissart C, Latypova X, Rollier P, Khan TN, Stamberger H et al. 2018. Dual molecular effects of dominant RORA mutations cause two variants of syndromic intellectual disability with either autism or cerebellar ataxia. Am. J. Hum. Genet. 102:744–59
    [Google Scholar]
  35. 35. 
    Hung CY, Volkmar B, Baker JD, Bauer JW, Gussoni E et al. 2017. A defect in the inner kinetochore protein CENPT causes a new syndrome of severe growth failure. PLOS ONE 12:e0189324
    [Google Scholar]
  36. 36. 
    Ito Y, Carss KJ, Duarte ST, Hartley T, Keren B et al. 2018. De novo truncating mutations in WASF1 cause intellectual disability with seizures. Am. J. Hum. Genet. 103:144–53
    [Google Scholar]
  37. 37. 
    Johnstone DL, Nguyen T-T-M, Murakami Y, Kernohan KD, Tétreault M et al. 2017. Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Hum. Mol. Genet. 26:1706–15
    [Google Scholar]
  38. 38. 
    Kernohan KD, Dyment DA, Pupavac M, Cramer Z, McBride A et al. 2017. Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene. Hum. Mutat. 38:511–16
    [Google Scholar]
  39. 39. 
    Knaus A, Kortüm F, Kleefstra T, Stray-Pedersen A, Đukić D et al. 2019. Mutations in PIGU impair the function of the GPI transamidase complex, causing severe intellectual disability, epilepsy, and brain anomalies. Am. J. Hum. Genet. 105:395–402
    [Google Scholar]
  40. 40. 
    Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D et al. 2019. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res 47:D1018–27
    [Google Scholar]
  41. 41. 
    Lambertson KF, Damiani SA, Might M, Shelton R, Terry SF 2015. Participant-driven matchmaking in the genomic era. Hum. Mutat. 36:965–73
    [Google Scholar]
  42. 42. 
    Lee S, Chen DY, Zaki MS, Maroofian R, Houlden H et al. 2019. Bi-allelic loss of human APC2, encoding adenomatous polyposis coli protein 2, leads to lissencephaly, subcortical heterotopia, and global developmental delay. Am. J. Hum. Genet. 105:844–53
    [Google Scholar]
  43. 43. 
    Liang L, Li X, Moutton S, Schrier Vergano SA, Cogné B et al. 2019. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum. Mol. Genet. 28:2937–51
    [Google Scholar]
  44. 44. 
    Lochmüller H, Le Cam Y, Jonker AH, Lau LPL, Baynam G et al. 2017. ‘IRDiRC Recognized Resources’: a new mechanism to support scientists to conduct efficient, high-quality research for rare diseases. Eur. J. Hum. Genet. 25:162–65
    [Google Scholar]
  45. 45. 
    Martinelli S, Krumbach OHF, Pantaleoni F, Coppola S, Amin E et al. 2018. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am. J. Hum. Genet. 102:309–20
    [Google Scholar]
  46. 46. 
    Matchmaker Exch 2017. Matchmaker Exchange end user agreement. Matchmaker Exchange https://www.matchmakerexchange.org/assets/files/MatchmakerExchangeEndUserAgreement.pdf
    [Google Scholar]
  47. 47. 
    Matchmaker Exch 2019. Matchmaker Exchange service requirements. Matchmaker Exchange https://www.matchmakerexchange.org/assets/files/Matchmaker%20Exchange%20Service%20Requirements_March2019.pdf
    [Google Scholar]
  48. 48. 
    Matchmaker Exch 2020. Matchmaker Exchange welcomes the chance to work with you. Matchmaker Exchange https://www.matchmakerexchange.org/i_am_a_clinician_laboratory.html
    [Google Scholar]
  49. 49. 
    Might M, Wilsey M. 2014. The shifting model in clinical diagnostics: how next-generation sequencing and families are altering the way rare diseases are discovered, studied, and treated. Genet. Med. 16:736–37
    [Google Scholar]
  50. 50. 
    Mirzaa GM, Chong JX, Piton A, Popp B, Foss K et al. 2019. De novo and inherited variants in ZNF292 underlie a neurodevelopmental disorder with features of autism spectrum disorder. Genet. Med. 22:538–46
    [Google Scholar]
  51. 51. 
    Mungall CJ, Washington NL, Nguyen-Xuan J, Condit C, Smedley D et al. 2015. Use of model organism and disease databases to support matchmaking for human disease gene discovery. Hum. Mutat. 36:979–84
    [Google Scholar]
  52. 52. 
    Natl. Inst. Health 2014. NIH Genomic Data Sharing Policy Not. NOT-OD-14-124, Natl. Inst. Health Bethesda, MD: https://grants.nih.gov/grants/guide/notice-files/not-od-14-124.html
    [Google Scholar]
  53. 53. 
    Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK et al. 2010. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42:30–35
    [Google Scholar]
  54. 54. 
    O'Donnell-Luria AH, Pais LS, Faundes V, Wood JC, Sveden A et al. 2019. Heterozygous variants in KMT2E cause a spectrum of neurodevelopmental disorders and epilepsy. Am. J. Hum. Genet. 104:1210–22
    [Google Scholar]
  55. 55. 
    Oud MM, Tuijnenburg P, Hempel M, van Vlies N, Ren Z et al. 2017. Mutations in EXTL3 cause neuro-immuno-skeletal dysplasia syndrome. Am. J. Hum. Genet. 100:281–96
    [Google Scholar]
  56. 56. 
    Palmer EE, Kumar R, Gordon CT, Shaw M, Hubert L et al. 2017. A recurrent de novo nonsense variant in ZSWIM6 results in severe intellectual disability without frontonasal or limb malformations. Am. J. Hum. Genet. 101:995–1005
    [Google Scholar]
  57. 57. 
    Patak J, Gilfert J, Byler M, Neerukonda V, Thiffault I et al. 2019. MAGEL2-related disorders: a study and case series. Clin. Genet. 96:493–505
    [Google Scholar]
  58. 58. 
    Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA et al. 2015. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum. Mutat. 36:915–21The primary reference providing a comprehensive overview of the Matchmaker Exchange.
    [Google Scholar]
  59. 59. 
    Rare Dis. Clin. Res. Netw 2011. The Office of Rare Diseases Research (ORDR). Rare Diseases Clinical Research Network https://www.rarediseasesnetwork.org/spotlight/spring2011/ORDR
    [Google Scholar]
  60. 60. 
    Saunders G, Baudis M, Becker R, Beltran S, Béroud C et al. 2019. Leveraging European infrastructures to access 1 million human genomes by 2022. Nat. Rev. Genet. 20:693–701
    [Google Scholar]
  61. 61. 
    Savatt JM, Azzariti DR, Faucett WA, Harrison S, Hart J et al. 2018. ClinGen's GenomeConnect registry enables patient-centered data sharing. Hum. Mutat. 39:1668–76
    [Google Scholar]
  62. 62. 
    SciLifeLab Clin. Genom 2020. PatientMatcher. GitHub https://github.com/Clinical-Genomics/patientMatcher
    [Google Scholar]
  63. 63. 
    Shefchek KA, Harris NL, Gargano M, Matentzoglu N, Unni D et al. 2019. The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res 48:D704–15
    [Google Scholar]
  64. 64. 
    Skraban CM, Wells CF, Markose P, Cho MT, Nesbitt AI et al. 2017. WDR26 haploinsufficiency causes a recognizable syndrome of intellectual disability, seizures, abnormal gait, and distinctive facial features. Am. J. Hum. Genet. 101:139–48
    [Google Scholar]
  65. 65. 
    Smedley D, Jacobsen JOB, Jäger M, Köhler S, Holtgrewe M et al. 2015. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat. Protoc. 10:2004–15
    [Google Scholar]
  66. 66. 
    Snijders Blok L, Kleefstra T, Venselaar H, Maas S, Kroes HY et al. 2019. De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder. Am. J. Hum. Genet. 105:403–12
    [Google Scholar]
  67. 67. 
    Sobreira NLM, Arachchi H, Buske OJ, Chong JX, Hutton B et al. 2017. Matchmaker Exchange. Curr. Protoc. Hum. Genet. 95:931.1–15A practical guide to get started initiating a query across the Matchmaker Exchange.
    [Google Scholar]
  68. 68. 
    Sobreira NLM, Schiettecatte F, Boehm C, Valle D, Hamosh A 2015. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene. Hum. Mutat. 36:425–31
    [Google Scholar]
  69. 69. 
    Sobreira NLM, Schiettecatte F, Valle D, Hamosh A 2015. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36:928–30
    [Google Scholar]
  70. 70. 
    Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M et al. 2017. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am. J. Hum. Genet. 100:895–906
    [Google Scholar]
  71. 71. 
    Stray-Pedersen A, Cobben J-M, Prescott TE, Lee S, Cang C et al. 2016. Biallelic mutations in UNC80 cause persistent hypotonia, encephalopathy, growth retardation, and severe intellectual disability. Am. J. Hum. Genet. 98:202–9
    [Google Scholar]
  72. 72. 
    Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K 2015. Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: yet another locus for thrombocytopenia and developmental delay. Am. J. Med. Genet. A 167:2822–25
    [Google Scholar]
  73. 73. 
    Takenouchi T, Yamaguchi Y, Tanikawa A, Kosaki R, Okano H, Kosaki K 2015. Novel overgrowth syndrome phenotype due to recurrent de novo PDGFRB mutation. J. Pediatr. 166:483–86
    [Google Scholar]
  74. 74. 
    Tanaka AJ, Cho MT, Millan F, Juusola J, Retterer K et al. 2015. Mutations in SPATA5 are associated with microcephaly, intellectual disability, seizures, and hearing loss. Am. J. Hum. Genet. 97:457–64
    [Google Scholar]
  75. 75. 
    Thompson R, Johnston L, Taruscio D, Monaco L, Béroud C et al. 2014. RD-Connect: an integrated platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research. J. Gen. Intern. Med. 29:Suppl. 3S780–87
    [Google Scholar]
  76. 76. 
    Wang J, Al-Ouran R, Hu Y, Kim S-Y, Wan Y-W et al. 2017. MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am. J. Hum. Genet. 100:843–53
    [Google Scholar]
  77. 77. 
    Wangler MF, Yamamoto S, Chao H-T, Posey JE, Westerfield M et al. 2017. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics 207:9–27
    [Google Scholar]
  78. 78. 
    Wright CF, Ware JS, Lucassen AM, Hall A, Middleton A et al. 2019. Genomic variant sharing: a position statement. Wellcome Open Res 4:22
    [Google Scholar]
  79. 79. 
    Yates TM, Vasudevan PC, Chandler KE, Donnelly DE, Stark Z et al. 2017. De novo mutations in HNRNPU result in a neurodevelopmental syndrome. Am. J. Med. Genet. A 173:3003–12
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083118-014915
Loading
/content/journals/10.1146/annurev-genom-083118-014915
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error