1932

Abstract

North Africa is defined as the geographical region separated from the rest of the continent by the Sahara and from Europe by the Mediterranean Sea. The main demographic features of North African populations are their familial structure and high rates of familial and geographic endogamy, which have a proven impact on health, particularly the occurrence of genetic diseases, with a greater effect on the frequency and spectrum of the rarest forms of autosomal recessive genetic diseases. More than 500 different genetic diseases have been reported in this region, most of which are autosomal recessive. During the last few decades, there has been great interest in the molecular investigation of large consanguineous North African families. The development of local capacities has brought a substantial improvement in the molecular characterization of these diseases, but the genetic bases of half of them remain unknown. Diseases of known molecular etiology are characterized by their genetic and mutational heterogeneity, although some founder mutations are encountered relatively frequently. Some founder mutations are specific to a single country or a specific ethnic or geographic group, and others are shared by all North African countries or worldwide. The impact of consanguinity on common multifactorial diseases is less evident.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083118-014954
2019-08-31
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/genom/20/1/annurev-genom-083118-014954.html?itemId=/content/journals/10.1146/annurev-genom-083118-014954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbad A, Baba H, Dehbi H, Elmessaoudi-Idrissi M, Elyazghi Z et al. 2018. Genetics of breast cancer in African populations: a literature review. Glob. Health Epidemiol. Genom. 3:e8
    [Google Scholar]
  2. 2.
    Abudejaja A, Khan MA, Singh R, Toweir AA, Narayanappa M et al. 1987. Experience of a family clinic at Benghazi, Libya, and sociomedical aspects of its catchment population. Fam. Pract. 4:19–26
    [Google Scholar]
  3. 3.
    Agouti I, Badens C, Abouyoub A, Khattab M, Sayah F et al. 2007. Genotypic correlation between six common β-thalassemia mutations and the XmnI polymorphism in the Moroccan population. Hemoglobin 31:141–49
    [Google Scholar]
  4. 4.
    Agrebi N, Sfaihi Ben-Mansour L, Medhaffar M, Hadiji S, Fedhila F et al. 2017. Autoimmune lymphoproliferative syndrome caused by homozygous FAS mutations with normal or residual protein expression. J. Allergy Clin. Immunol. 140:298–301.e3
    [Google Scholar]
  5. 5.
    Al Hosani H, Salah M, Osman H, Farag H, El Assiouty L et al. 2014. Expanding the comprehensive national neonatal screening programme in the United Arab Emirates from 1995 to 2011. East. Mediterr. Health J. 11:17–23
    [Google Scholar]
  6. 6.
    Al-Mutair A, Iqbal MA, Sakati N, Ashwal A 2004. Cytogenetics and etiology of ambiguous genitalia in 120 pediatric patients. Ann. Saudi Med. 24:368–72
    [Google Scholar]
  7. 7.
    Alkuraya FS. 2010. Autozygome decoded. Genet. Med. 12:765–71
    [Google Scholar]
  8. 8.
    Allen S, O'Donnell A, Alexander N, Alpers M, Peto T et al. 1997. α+-Thalassemia protects children against disease caused by other infections as well as malaria. PNAS 94:14736–41
    [Google Scholar]
  9. 9.
    Alter BP, Rosenberg PS, Brody LC 2007. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J. Med. Genet 44:1–9
    [Google Scholar]
  10. 10.
    Badr F. 1972. Genetic studies of Egyptian Nubian populations. I. Hum. Hered. 22:387–98
    [Google Scholar]
  11. 11.
    Barbouche M-R, Galal N, Ben‐Mustapha I, Jeddane L, Mellouli F et al. 2011. Primary immunodeficiencies in highly consanguineous North African populations. Ann. N.Y. Acad. Sci. 1238:42–52
    [Google Scholar]
  12. 12.
    Barbouche M-R, Mekki N, Ben-Ali M, Ben-Mustapha I 2017. Lessons from genetic studies of primary immunodeficiencies in a highly consanguineous population. Front. Immunol. 8:737
    [Google Scholar]
  13. 13.
    Barkaoui E, Cherif W, Tebib N, Charfeddine C, Rhouma FB et al. 2007. Mutation spectrum of glycogen storage disease type Ia in Tunisia: implication for molecular diagnosis. J. Inherit. Metab. Dis. 30:989
    [Google Scholar]
  14. 14.
    Bashamboo A, Ferraz-de-Souza B, Lourenco D, Lin L, Sebire NJ et al. 2010. Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am. J. Hum. Genet. 87:505–12
    [Google Scholar]
  15. 15.
    Bashamboo A, McElreavey K. 2014. Consanguinity and disorders of sex development. Hum. Hered. 77:108–17
    [Google Scholar]
  16. 16.
    Behlouli A, Bonnet C, Abdi S, Bouaita A, Lelli A et al. 2014. EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness. Orphanet J. Rare Dis. 9:55
    [Google Scholar]
  17. 17.
    Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J et al. 2013. Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape. PLOS ONE 8:e56775
    [Google Scholar]
  18. 18.
    Belaiba F, Medimegh I, Bidet Y, Boussetta S, Baroudi O et al. 2018. BRCA1/BRCA2 mutations shaped by ancient consanguinity practice in southern Mediterranean populations. Asian Pac. J. Cancer Prev. 19:2963–72
    [Google Scholar]
  19. 19.
    Ben Arab S, Chalbi N 1984. [Consanguinity and its effects in the governorate of Bizerte]. Tunis. Méd 62:551–54 In French )
    [Google Scholar]
  20. 20.
    Ben Arab S, Hmani M, Denoyelle F, Boulila‐Elgaied A, Chardenoux S et al. 2000. Mutations of GJB2 in three geographic isolates from northern Tunisia: evidence for genetic heterogeneity within isolates. Clin. Genet. 57:439–43
    [Google Scholar]
  21. 21.
    Ben Arab S, Masmoudi S, Beltaief N, Hachicha S, Ayadi H 2004. Consanguinity and endogamy in northern Tunisia and its impact on non-syndromic deafness. Genet. Epidemiol. 27:74–79
    [Google Scholar]
  22. 22.
    Ben Halim B. 2006. Etude de la population de Douiret sous l'angle l'endogamie et de la consanguinité MS Thesis, Univ. Tunis Tunisia:
    [Google Scholar]
  23. 23.
    Ben Halim N, Ben Alaya Bouafif N, Romdhane L, Kefi Ben Atig R, Chouchane I et al. 2013. Consanguinity, endogamy, and genetic disorders in Tunisia. J. Community Genet. 4:273–84
    [Google Scholar]
  24. 24.
    Ben Halim N, Hsouna S, Lasram K, Rejeb I, Walha A et al. 2016. Differential impact of consanguineous marriages on autosomal recessive diseases in Tunisia. Am. J. Hum. Biol. 28:171–80
    [Google Scholar]
  25. 25.
    Ben Hamida M, Fardeau M 1980. Severe, autosomal recessive, limb-girdle muscular dystrophies frequent in Tunisia. Muscular Dystrophy Research: Advances and New Trends C Angelini, GA Danieli, D Fontanari 143–46 Amsterdam: Excerpta Med.
    [Google Scholar]
  26. 26.
    Ben M'rad A. 1986. Demographic situation in Tunisia at the end of 1985 Stud. Ser. INS, Tunis Tunisia:
    [Google Scholar]
  27. 27.
    Ben M'rad L, Chalbi N 2004. Le choix matrimonial en Tunisie est-il transmissible. ? Antropo 7:31–37
    [Google Scholar]
  28. 28.
    Ben M'rad L, Chalbi N 2006. Milieu de résidence origine des conjoints et consanguinité en Tunisie. Antropo 12:63–71
    [Google Scholar]
  29. 29.
    Ben-Mustapha I, Ben-Farhat K, Guirat-Dhouib N, Dhemaied E, Larguèche B et al. 2013. Clinical, immunological and genetic findings of a large Tunisian series of major histocompatibility complex class II deficiency patients. J. Clin. Immunol. 33:865–70
    [Google Scholar]
  30. 30.
    Benallegue A, Kedji F. 1984. Consanguinité et santé publique: etude algérienne. Arch. Fr. Pédiatr. 41:435–40
    [Google Scholar]
  31. 31.
    Bener A, Hussain R. 2006. Consanguineous unions and child health in the State of Qatar. Paediatr. Perinat. Epidemiol. 20:372–78
    [Google Scholar]
  32. 32.
    Bittles AH. 1991. Consanguinity: a major variable in studies on North African reproductive behavior morbidity and mortality? Paper presented at the Demographic and Health Surveys World Conference Washington, DC: Aug. 5–7
    [Google Scholar]
  33. 33.
    Bittles AH. 2001. Consanguinity and its relevance to clinical genetics. Clin. Genet. 60:89–98
    [Google Scholar]
  34. 34.
    Bittles AH. 2002. Endogamy, consanguinity and community genetics. J. Genet. 81:91–98
    [Google Scholar]
  35. 35.
    Bittles AH. 2008. A community genetics perspective on consanguineous marriage. Community Genet 11:324–30
    [Google Scholar]
  36. 36.
    Bittles AH, Black M. 2010. Consanguinity, human evolution, and complex diseases. PNAS 107:1779–86
    [Google Scholar]
  37. 37.
    Blanco Villegas M, Fuster V 2006. Reproductive pattern in consanguineous and non-consanguineous marriages in La Cabrera, Spain. Ann. Hum. Biol. 33:330–41
    [Google Scholar]
  38. 38.
    Boudrahem-Addour N, Zidani N, Carion N, Labie D, Belhani M, Beldjord C 2009. Molecular heterogeneity of beta-thalassemia in Algeria: how to face up to a major health problem. Hemoglobin 33:24–36
    [Google Scholar]
  39. 39.
    Brett M, Fentress E. 1997. The Peoples of Africa: The Berbers Oxford, UK: Blackwell
    [Google Scholar]
  40. 40.
    Caballero A, Hill WG. 1992. Effects of partial inbreeding on fixation rates and variation of mutant genes. Genetics 131:493–507
    [Google Scholar]
  41. 41.
    Cent. Arab Genom. Stud 2017. CTGA at a glance. Centre for Arab Genomic Studies updated Oct. 2017. http://cags.org.ae/ctga/graph
    [Google Scholar]
  42. 42.
    Chaabouni HB, Ksantini M, M'rad R, Kharrat M, Chaabouni M et al. 2007. MEFV mutations in Tunisian patients suffering from familial Mediterranean fever. Semin. Arthritis Rheum. 36:397–401
    [Google Scholar]
  43. 43.
    Charoute H, Bakhchane A, Benrahma H, Romdhane L, Gabi K et al. 2015. Mediterranean Founder Mutation Database (MFMD): taking advantage from founder mutations in genetics diagnosis, genetic diversity and migration history of the Mediterranean population. Hum. Mutat. 36:E2441–53
    [Google Scholar]
  44. 44.
    Cherif W, Uhrhummer N, Ayed F, Bignon Y, Sibille C 2014. Does consanguinity protect against breast cancer in Tunisian population?. Hered. Genet. 3:130
    [Google Scholar]
  45. 45.
    Chouchane L, Boussen H, Sastry KS 2013. Breast cancer in Arab populations: molecular characteristics and disease management implications. Lancet Oncol 14:e417–24
    [Google Scholar]
  46. 46.
    Colombo R. 2000. Age and origin of the PRNP E200K mutation causing familial Creutzfeldt-Jacob disease in Libyan Jews. Am. J. Hum. Genet. 67:528–31
    [Google Scholar]
  47. 47.
    Dahmani M, Ammar-Khodja F, Bonnet C, Lefèvre GM, Hardelin J-P et al. 2015. EPS8L2 is a new causal gene for childhood onset autosomal recessive progressive hearing loss. Orphanet J. Rare Dis. 10:96
    [Google Scholar]
  48. 48.
    Delmaghani S, Aghaie A, Bouyacoub Y, El Hachmi H, Bonnet C et al. 2016. Mutations in CDC14A, encoding a protein phosphatase involved in hair cell ciliogenesis, cause autosomal-recessive severe to profound deafness. Am. J. Hum. Genet. 98:1266–70
    [Google Scholar]
  49. 49.
    Denic S, Bener A. 2001. Consanguinity decreases risk of breast cancer–cervical cancer unaffected. Br. J. Cancer 85:1675–79
    [Google Scholar]
  50. 50.
    Denic S, Nagelkerke N, Agarwal MM 2008. Consanguineous marriages and endemic malaria: Can inbreeding increase population fitness?. Malar. J. 7:150
    [Google Scholar]
  51. 51.
    Denic S, Nicholls MG. 2007. Genetic benefits of consanguinity through selection of genotypes protective against malaria. Hum. Biol. 79:145–58
    [Google Scholar]
  52. 52.
    Deyde VM, Lo BB, Khalifa IO, Ly B, Ball A, Fattoum. 2002. Epidemiological profile of hemoglobinopathies in the Mauritanian population. Ann. Hematol. 81:320–21
    [Google Scholar]
  53. 53.
    Dipierri J, Rodríguez-Larralde A, Barrai I, Camelo JL, Redomero EG et al. 2014. Random inbreeding, isonymy, and population isolates in Argentina. J. Community Genet. 5:241–48
    [Google Scholar]
  54. 54.
    Ebermann I, Walger M, Scholl HP, Issa PC, Lüke C et al. 2007. Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum. Mutat. 28:571–77
    [Google Scholar]
  55. 55.
    El-Beshlawy A, Kaddah N, Moustafa A, Mouktar G, Youssry I 2007. Screening for beta-thalassaemia carriers in Egypt: significance of the osmotic fragility test. East. Mediterr. Health J. 13:780–86
    [Google Scholar]
  56. 56.
    El-Beshlawy A, Youssry I. 2009. Prevention of hemoglobinopathies in Egypt. Hemoglobin 33:Suppl. 1S14–20
    [Google Scholar]
  57. 57.
    El Gazzah L, Chalbi N, Ben Hamida M 1985. [Effect of consanguinity on certain hereditary-degenerative spinocerebellar diseases in Tunisia]. Tunis. Méd 63:71–77 In French )
    [Google Scholar]
  58. 58.
    Ellouze I. 2004. Etude de l'endogamie et de la consanguinité dans la région de Sfax; causes socio-économiques et culturelles et conséquences sur la circulation des genes dans la population PhD Thesis, Univ. Tunis El Manar Tunisia:
    [Google Scholar]
  59. 59.
    Ennafaa H, Fregel R, González AM, El Mahmoudi HA, Cabrera VM et al. 2011. Mitochondrial DNA and Y-chromosome microstructure in Tunisia. J. Hum. Genet. 56:734–41
    [Google Scholar]
  60. 60.
    Fattoum S. 2006. [Hemoglobinopathies in Tunisia: an updated review of the epidemiologic and molecular data]. Tunis. Méd 84:687–96 In French )
    [Google Scholar]
  61. 61.
    Fried K, Davies AM. 1974. Some effects on the offspring of uncle-niece marriage in the Moroccan Jewish community in Jerusalem. Am. J. Hum. Genet. 26:65–72
    [Google Scholar]
  62. 62.
    The germinating seed of Arab genomics 2006. Nat. Genet. 38:851
    [Google Scholar]
  63. 63.
    Ghoussaini M, Pharoah PDP, Easton DF 2013. Inherited genetic susceptibility to breast cancer: the beginning of the end or the end of the beginning?. Am. J. Pathol. 183:1038–51
    [Google Scholar]
  64. 64.
    Guidoum M, Kefi R, Abdelhak S, Bouslama Z 2015. Consanguinity and endogamy of a Northeastern Algerian population (population of El-Kala). Adv. Environ. Biol. 9:457–66
    [Google Scholar]
  65. 65.
    Guilford P, Arab SB, Blanchard S, Levilliers J, Weissenbach J et al. 1994. A non-syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nat. Genet. 6:24–28
    [Google Scholar]
  66. 66.
    Habib Z, Böök JA. 1983. Consanguinity and incidence of thalassaemia in Egypt. Hereditas 99:215–17
    [Google Scholar]
  67. 67.
    Hafez M, El-Tahan H, Awadalla M, El-Khayat H, Abdel-Gafar A, Ghoneim M 1983. Consanguineous matings in the Egyptian population. J. Med. Genet. 20:58–60
    [Google Scholar]
  68. 68.
    Haj Khelil A, Denden S, Leban N, Daimi H, Lakhdhar R et al. 2010. Hemoglobinopathies in North Africa: a review. Hemoglobin 34:1–23
    [Google Scholar]
  69. 69.
    Hamamy HA. 2012. Consanguineous marriages: preconception consultation in primary health care settings. J. Community Genet. 3:185–92
    [Google Scholar]
  70. 70.
    Hamamy HA, Al-Allawi NA. 2013. Epidemiological profile of common haemoglobinopathies in Arab countries. J. Community Genet. 4:147–67
    [Google Scholar]
  71. 71.
    Hammami A, Elgazzeh M, Chalbi N, Mansour BA 2005. [Endogamy and consanguinity in Mauritania]. Tunis. Méd 83:38–42 In French )
    [Google Scholar]
  72. 72.
    Harris ES, Weyrich AS, Zimmerman GA 2013. Lessons from rare maladies: leukocyte adhesion deficiency syndromes. Curr. Opin. Hematol. 20:16–25
    [Google Scholar]
  73. 73.
    Hashem N. 1968. Consanguinity patterns among Egyptians with genetic or congenital anomalies. Ainshams Med. J. 19:261–70
    [Google Scholar]
  74. 74.
    Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW 2004. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect. Dis. 4:327–36
    [Google Scholar]
  75. 75.
    Henn BM, Botigué LR, Gravel S, Wang W, Brisbin A et al. 2012. Genomic ancestry of North Africans supports back-to-Africa migrations. PLOS Genet 8:e1002397
    [Google Scholar]
  76. 76.
    Hentati F. 2008. Muscular dystrophies in Arab countries Presentation at the First Educational Workshop in Developing Countries on Genetic Counseling, Beirut Lebanon: Nov 20–28 http://www.jeans4genes.org/files/GC_arab_states.pdf
    [Google Scholar]
  77. 77.
    Hertzberg VS, Hinton CF, Therrell BL, Shapira SK 2011. Birth prevalence rates of newborn screening disorders in relation to screening practices in the United States. J. Pediatr. 159:555–60
    [Google Scholar]
  78. 78.
    Hussain R, Bittles AH. 2004. Assessment of association between consanguinity and fertility in Asian populations. J. Health Popul. Nutr. 22:1–12
    [Google Scholar]
  79. 79.
    Hussien F. 1971. Endogamy in Egyptian Nubia. J. Biosoc. Sci. 3:251–57
    [Google Scholar]
  80. 80.
    Jain RC. 1985. Sickle cell and thalassaemic genes in Libya. Trans. R. Soc. Trop. Med. Hyg. 79:132–33
    [Google Scholar]
  81. 81.
    Jarrah N, El-Shanti H, Khier A, Obeidat FN, Haddidi A, Ajlouni K 2000. Familial disorder of sex determination in seven individuals from three related sibships. Eur. J. Pediatr. 159:912–18
    [Google Scholar]
  82. 82.
    Kéfi R, Stevanovitch A, Bouzaid E, Béraud-Colomb E 2005. Diversité mitochondriale de la population de Taforalt (12.000 ans BP – Maroc) une approche génétique à l'étude du peuplement de l'Afrique du nord. Anthropologie 43:1–12
    [Google Scholar]
  83. 83.
    Kerkeni E, Monastiri K, Saket B, Guediche MN, Cheikh HB 2007. Interplay of socio-economic factors, consanguinity, fertility, and offspring mortality in Monastir, Tunisia. Croat. Med. J. 48:701
    [Google Scholar]
  84. 84.
    Kerkeni E, Monastiri K, Saket B, Rudan D, Zgaga L, Ben Cheikh H 2006. Association among education level, occupation status, and consanguinity in Tunisia and Croatia. Croat. Med. J. 47:656–61
    [Google Scholar]
  85. 85.
    Kharrat M, Riahi A, Maazoul F, M'rad R, Chaabouni H 2011. Detection of a frequent duplicated CYP21A2 gene carrying a Q318X mutation in a general population with quantitative PCR methods. Diagn. Mol. Pathol. 20:123–27
    [Google Scholar]
  86. 86.
    Kharrat M, Tardy VR, M'rad R, Maazoul F, Jemaa LB et al. 2004. Molecular genetic analysis of Tunisian patients with a classic form of 21-hydroxylase deficiency: identification of four novel mutations and high prevalence of Q318X mutation. J. Clin. Endocrinol. Metab. 89:368–74
    [Google Scholar]
  87. 87.
    Kharrat M, Trabelsi S, Chaabouni M, Maazoul F, Kraoua L et al. 2010. Only two mutations detected in 15 Tunisian patients with 11β-hydroxylase deficiency: the p.Q356X and the novel p.G379V. Clin. Genet. 78:398–401
    [Google Scholar]
  88. 88.
    Khayat RG, Saxena PC. 2000. Consanguinity and its effect on infant and child mortality in Egypt. Egypt. J. Med. Hum. Genet. 1:207–13
    [Google Scholar]
  89. 89.
    Khlat M. 1988. Consanguineous marriage and reproduction in Beirut, Lebanon. Am. J. Hum. Genet. 43:188
    [Google Scholar]
  90. 90.
    Khoury MJ, Cohen BH, Chase GA, Diomond EL 1987. An epidemiologic approach to the evaluation of the effect of inbreeding on prereproductive mortality. Am. J. Epidemiol. 125:251–62
    [Google Scholar]
  91. 91.
    Khoury SA, Massad DF. 2000. Consanguinity, fertility, reproductive wastage, infant mortality and congenital malformations in Jordan. Saudi Med. J. 21:150–54
    [Google Scholar]
  92. 92.
    Labie D, Bennani C, Beldjord C 1990. Beta-thalassemia in Algeria. Ann. N.Y. Acad. Sci. 612:43–54
    [Google Scholar]
  93. 93.
    Lamdouar NB. 1994. Consanguinity and public health in Morocco. Bull. Acad. Natl. Med. 178:1013–25
    [Google Scholar]
  94. 94.
    Lee PA, Houk CP, Ahmed SF, Hughes IA 2006. Consensus statement on management of intersex disorders. Pediatrics 118:e488–500
    [Google Scholar]
  95. 95.
    Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ 2018. Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol. Prev. Biomark. 27:380–94
    [Google Scholar]
  96. 96.
    Lourenço D, Brauner R, Lin L, De Perdigo A, Weryha G et al. 2009. Mutations in NR5A1 associated with ovarian insufficiency. N. Engl. J. Med. 360:1200–10
    [Google Scholar]
  97. 97.
    Lyons EJ, Frodsham AJ, Zhang L, Hill AV, Amos W 2009. Consanguinity and susceptibility to infectious diseases in humans. Biol. Lett. 5:574–76
    [Google Scholar]
  98. 98.
    M'Ghirbi J. 2002. Endogamie, choix matrimonial, consanguinité, facteurs démographiques et socio-économiques dans le Gouvernorat de Nabeul (Tunisie) DEA Thesis, Univ. Tunis Tunisia:
    [Google Scholar]
  99. 99.
    Mansour H, Fathi W, Klei L, Wood J, Chowdari K et al. 2010. Consanguinity and increased risk for schizophrenia in Egypt. Schizophr. Res. 120:108–12
    [Google Scholar]
  100. 100.
    Mansour H, Klei L, Wood J, Talkowski M, Chowdari K 2009. Consanguinity associated with increased risk for bipolar I disorder in Egypt. Am. J. Med. Genet. B 150B:879–85
    [Google Scholar]
  101. 101.
    Masmoudi S, Tlili A, Majava M, Ghorbel AM, Chardenoux S et al. 2003. Mapping of a new autosomal recessive nonsyndromic hearing loss locus (DFNB32) to chromosome 1p13. 3–22.1. Eur. J. Hum. Genet. 11:185–88
    [Google Scholar]
  102. 102.
    Maxwell KN, Nathanson KL. 2013. Common breast cancer risk variants in the post-COGS era: a comprehensive review. Breast Cancer Res 15:212
    [Google Scholar]
  103. 103.
    Mazen I, Hiort O, Bassiouny R, El Gammal M 2008. Differential diagnosis of disorders of sex development in Egypt. Horm. Res. 70:118–23
    [Google Scholar]
  104. 104.
    McElreavey K, Vilain E, Abbas N, Herskowitz I, Fellous M 1993. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. PNAS 90:3368–72
    [Google Scholar]
  105. 105.
    Mechri A, Rouissi K, Mehdi B, Khiari G, Abdelhak S, Gaha L 2007. [Influence of consanguinity on clinical characteristics and affective disorders frequency in relatives of bipolar I patients]. Tunis. Méd 85:951–54 In French )
    [Google Scholar]
  106. 106.
    Mellouli F, Mustapha IB, Khaled MB, Besbes H, Ouederni M et al. 2015. Report of the Tunisian registry of primary immunodeficiencies: 25-years of experience (1988–2012). J. Clin. Immunol. 35:745–53
    [Google Scholar]
  107. 107.
    Mesbah-Amroun H, Rouabhi F, Ducrocq R, Elion J 2008. Molecular basis of α-thalassemia in Algeria. Hemoglobin 32:273–78
    [Google Scholar]
  108. 108.
    Messaoud O, Rekaya MB, Kefi R, Chebel S, Boughammoura-Bouatay A et al. 2010. Identification of a primarily neurological phenotypic expression of xeroderma pigmentosum complementation group A in a Tunisian family. Br. J. Dermatol. 162:883–86
    [Google Scholar]
  109. 109.
    Messaoud O, Rekaya MB, Ouragini H, Benfadhel S, Azaiez H et al. 2012. Severe phenotypes in two Tunisian families with novel XPA mutations: evidence for a correlation between mutation location and disease severity. Arch. Dermatol. Res. 304:171–76
    [Google Scholar]
  110. 110.
    Messaoud T, Bel Haj Fredj S, Bibi A, Elion J, Férec C, Fattoum S 2005. Molecular epidemiology of cystic fibrosis in Tunisia. Ann. Biol. Clin. 63:627–30
    [Google Scholar]
  111. 111.
    Mezzavilla M, Vozzi D, Badii R, Alkowari MK, Abdulhadi K et al. 2015. Increased rate of deleterious variants in long runs of homozygosity of an inbred population from Qatar. Hum. Hered. 79:14–19
    [Google Scholar]
  112. 112.
    Modell B, Darr A. 2002. Genetic counselling and customary consanguineous marriage. Nat. Rev. Genet. 3:225–29
    [Google Scholar]
  113. 113.
    Mokhtar MM, Abdel-Fattah MM. 2001. Consanguinity and advanced maternal age as risk factors for reproductive losses in Alexandria, Egypt. Eur. J. Epidemiol. 17:559–65
    [Google Scholar]
  114. 114.
    Mseddi S, Gargouri J, Labiadh Z, Kassis M, Elloumi M et al. 1999. Prévalence des anomalies de l'hémoglobine à Kebili (Sud Tunisien). Rev. Epidemiol. Sante Publique 47:29–36
    [Google Scholar]
  115. 115.
    Nafei A. 1992. Prevalence of hemogolobinopathies and study of their genetics. Tanta Med. J. 20:467–80
    [Google Scholar]
  116. 116.
    Nasri K, Ben Fradj MK, Hamdi T, Aloui M, Ben Jemaa N et al. 2014. Epidemiology of neural tube defect subtypes in Tunisia, 1991–2011. Pathol. Res. Pract. 210:944–52
    [Google Scholar]
  117. 117.
    Othmane KB, Hamida MB, Pericak-Vance MA, Hamida CB, Blel S et al. 1992. Linkage of Tunisian autosomal recessive Duchenne-like muscular dystrophy to the pericentromeric region of chromosome 13q. Nat. Genet. 2:315–17
    [Google Scholar]
  118. 118.
    Ouederni M, Vincent QB, Frange P, Touzot F, Scerra S et al. 2011. Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 118:5108–18
    [Google Scholar]
  119. 119.
    Ouragini H, Cherif F, Daoud W, Kassar S, Charfeddine C et al. 2008. Haplotypic classification of dystrophic epidermolysis bullosa in Tunisian consanguineous families: implication for diagnosis. Arch. Dermatol. Res. 300:365–70
    [Google Scholar]
  120. 120.
    Pasteur Institute Moroc 2018. Moroccan Genetic Disease Database Updated Dec. 18. http://mgdd.pasteur.ma/statistics.php
    [Google Scholar]
  121. 121.
    Rekaya MB, Naouali C, Messaoud O, Jones M, Bouyacoub Y et al. 2018. Whole exome sequencing allows the identification of two novel groups of xeroderma pigmentosum in Tunisia, XP-D and XP-E: impact on molecular diagnosis. J. Dermatol. Sci. 89:172–80
    [Google Scholar]
  122. 122.
    Renwick A, Thompson D, Seal S, Kelly P, Chagtai T et al. 2006. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 38:873–75
    [Google Scholar]
  123. 123.
    Riahi Z, Bonnet C, Zainine R, Lahbib S, Bouyacoub Y et al. 2015. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients. PLOS ONE 10:e0120584
    [Google Scholar]
  124. 124.
    Riahi Z, Bonnet C, Zainine R, Louha M, Bouyacoub Y et al. 2014. Whole exome sequencing identifies new causative mutations in Tunisian families with non-syndromic deafness. PLOS ONE 9:e99797
    [Google Scholar]
  125. 125.
    Riou S, El Younsi C, Chaabouni H 1989. [Consanguinity in the population of northern Tunisia]. Tunis. Méd 67:167–72 In French )
    [Google Scholar]
  126. 126.
    Rizk S, Zayed S, Aziz M 2005. Identification of five common alpha-thalassaemia genotypes among a group of Egyptian neonates by single tube PCR. Med. J. Cairo Univ. 73:483–88
    [Google Scholar]
  127. 127.
    Romdhane L, Abdelhak S. 2012. Genetic disorders in North African populations. Genomics and Health in the Developing World D Kumar 382–99 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  128. 128.
    Romdhane L, Abdelhak S (Res. Unit Mol. Investig. Genet. Orphan Dis. and Collab.). 2011. Genetic diseases in the Tunisian population. Am. J. Med. Genet. A 155A:238–67
    [Google Scholar]
  129. 129.
    Romdhane L, Ben Halim N, Rejeb I, Kefi R, Bouyacoub Y et al. 2014. Specific aspects of consanguinity: some examples from the Tunisian population. Hum. Hered. 77:167–74
    [Google Scholar]
  130. 130.
    Romdhane L, Kefi R, Azaiez H, Halim NB, Dellagi K, Abdelhak S 2012. Founder mutations in Tunisia: implications for diagnosis in North Africa and Middle East. Orphanet J. Rare Dis. 7:52
    [Google Scholar]
  131. 131.
    Romdhane L, Messaoud O, Bouyacoub Y, Kerkeni E, Naouali C et al. 2016. Comorbidity in the Tunisian population. Clin. Genet. 89:312–19
    [Google Scholar]
  132. 132.
    Rösler A, Leiberman E, Cohen T 1992. High frequency of congenital adrenal hyperplasia (classic 11β‐hydroxylase deficiency) among Jews from Morocco. Am. J. Med. Genet. 42:827–34
    [Google Scholar]
  133. 133.
    Rösler A, Leiberman E, Sack J, Landau H, Benderly A et al. 1982. Clinical variability of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Hormones 16:133–41
    [Google Scholar]
  134. 134.
    Sanz MM, German J, Cunniff C 2016. Bloom's syndrome. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean et al. Seattle: Univ. Wash. Press https://www.ncbi.nlm.nih.gov/books/NBK1398
    [Google Scholar]
  135. 135.
    Schoenaker MH, Henriet SS, Zonderland J, van Deuren M, Pan-Hammarström Q et al. 2018. Immunodeficiency in Bloom's Syndrome. J. Clin. Immunol. 38:35–44
    [Google Scholar]
  136. 136.
    Sellami L, Gargouri A, Kacem I, Belhouane I, Sidhom Y et al. 2015. Familial Alzheimer's disease in a Tunisian population: clinical and genetic patterns. J. Neurol. Sci. 357:e126–27
    [Google Scholar]
  137. 137.
    Sfar S, Bzéouich AA, Kerkeni E, Bouaziz S, Najjar MF et al. 2012. A novel CASR mutation in a Tunisian FHH/NSHPT family associated with a mental retardation. Mol. Biol. Rep. 39:2395–400
    [Google Scholar]
  138. 138.
    Shawky RM, El-Awady MY, Elsayed SM, Hamadan GE 2011. Consanguineous matings among Egyptian population. Egypt. J. Med. Hum. Genet. 12:157–63
    [Google Scholar]
  139. 139.
    Siala H, Ouali F, Messaoud T, Bibi A, Fattoum S 2008. α-Thalassaemia in Tunisia: some epidemiological and molecular data. J. Genet. 87:229–34
    [Google Scholar]
  140. 140.
    Somboonnithiphol K, Panamonta O, Kiatchoosakun P, Jirapradittha J, Panamonta M et al. 2011. Newborn screening for congenital adrenal hyperplasia in Srinagarind Hospital, Khon Kaen University, Thailand. Asian Biomed 5:855–60
    [Google Scholar]
  141. 141.
    Stevenson AC, Johnston HA, Stewart M, Golding DR 1966. Congenital malformations. A report of a study of series of consecutive births in 24 centres. Bull. World Health Organ. 34:Suppl.9–11
    [Google Scholar]
  142. 142.
    Szpiech ZA, Xu J, Pemberton TJ, Peng W, Zollner S et al. 2013. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93:90–102
    [Google Scholar]
  143. 143.
    Talbi J, Khadmaoui AE, Soulaymani AE-M, Chafik AE-A 2007. Etude de la consanguinité dans la population marocaine. Impact sur le profil de la santé. Antropo 15:1–11
    [Google Scholar]
  144. 144.
    Tayel SM, Ismael H, Kandil H, Abd Rabuh AR, Sallam H 2011. Congenital adrenal hyperplasia in Alexandria, Egypt: a high prevalence justifying the need for a community-based newborn screening program. J. Trop. Pediatr. 57:232–34
    [Google Scholar]
  145. 145.
    Teebi AS 2010. Genetic Disorders Among Arab Populations New York: Springer. , 2nd ed..
    [Google Scholar]
  146. 146.
    Teebi AS, Farag TI, eds. 1997. Genetic Disorders Among Arab Populations Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  147. 147.
    Temel SG, Gulten T, Yakut T, Saglam H, Kilic N et al. 2007. Extended pedigree with multiple cases of XX sex reversal in the absence of SRY and of a mutation at the SOX9 locus. Sex Dev 1:24–34
    [Google Scholar]
  148. 148.
    Temtamy SA, Aglan M. 2012. Consanguinity and genetic disorders in Egypt. Middle East J. Med. Genet. 1:12–17
    [Google Scholar]
  149. 149.
    Temtamy SA, Ismail S, El-Kamah G, El-Bassyouni HT, Kotouri AIS et al. 2004. The phenomenon of multiple genetic disorders in the same individual or sibship: relevance to consanguinity. Med. J. Cairo Univ. 72:Suppl. 2157–73
    [Google Scholar]
  150. 150.
    Thyen U, Lanz K, Holterhus PM, Hiort O 2006. Epidemiology and initial management of ambiguous genitalia at birth in Germany. Horm. Res. 66:195–203
    [Google Scholar]
  151. 151.
    Van Batavia JP, Kolon TF 2016. Fertility in disorders of sex development: a review. J. Pediatr. Urol. 12:418–25
    [Google Scholar]
  152. 152.
    White P, Dupont J, New M, Leiberman E, Hochberg Z, Rösler A 1991. A mutation in CYP11B1 (Arg-448 → His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J. Clin. Investig. 87:1664–67
    [Google Scholar]
  153. 153.
    Wiszniewski W, Fondaneche M-C, Lambert N, Masternak K, Picard C et al. 2000. Founder effect for a 26-bp deletion in the RFXANK gene in North African major histocompatibility complex class II-deficient patients belonging to complementation group B. Immunogenetics 51:261–67
    [Google Scholar]
  154. 154.
    Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD et al. 2006. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am. J. Hum. Genet. 78:889–96
    [Google Scholar]
  155. 155.
    World Bank 2019. Fertility rate, total (births per woman). World Bank https://data.worldbank.org/indicator/SP.DYN.TFRT.IN
    [Google Scholar]
  156. 156.
    World Health Organ 2016. International Statistical Classification of Diseases and Related Health Problems Geneva: World Health Organ 10th Rev. https://icd.who.int/browse10/2016/en
    [Google Scholar]
  157. 157.
    Zakaria D. 1999. Etude de l'endogamie d'origine regionale, de la distribution de la consanguinite apparentee et du comportement intergenerationnel, dans le choix matrimonial. Interet des noms de famille et de l'isonymie maritale en Tunisie PhD Thesis, Univ. Tunis Tunisia:
    [Google Scholar]
  158. 158.
    Zaoui S, Biémont C. 2002. Fréquence et structure des mariages consanguins dans la région de Tlemcen (Ouest algérien). Cah. Études Rech. Francoph./Santé 12:289–95
    [Google Scholar]
  159. 159.
    Zghal M, Fazaa B, Kamoun M-R 2006. Xeroderma pigmentosum. EMC Dermatol 10:98–660-A-10
    [Google Scholar]
  160. 160.
    Zorai A, Harteveld CL, Bakir A, Van DP, Falfoul A et al. 2002. Molecular spectrum of alpha-thalassemia in Tunisia: epidemiology and detection at birth. Hemoglobin 26:353–62
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083118-014954
Loading
/content/journals/10.1146/annurev-genom-083118-014954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error