1932

Abstract

Since the discovery that DNA alterations initiate tumorigenesis, scientists and clinicians have been exploring ways to counter these changes with targeted therapeutics. The sequencing of tumor DNA was initially limited to highly actionable hot spots—areas of the genome that are frequently altered and have an approved matched therapy in a specific tumor type. Large-scale genome sequencing programs quickly developed technological improvements that enabled the deployment of whole-exome and whole-genome sequencing technologies at scale for pristine sample materials in research environments. However, the turning point for precision medicine in oncology was the innovations in clinical laboratories that improved turnaround time, depth of coverage, and the ability to reliably sequence archived, clinically available samples. Today, tumor genome sequencing no longer suffers from significant technical or financial hurdles, and the next opportunity for improvement lies in the optimal utilization of the technologies and data for many different tumor types.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083118-015034
2019-08-31
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/genom/20/1/annurev-genom-083118-015034.html?itemId=/content/journals/10.1146/annurev-genom-083118-015034&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    AACR Proj. GENIE Consort. 2017. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov 7:818–31
    [Google Scholar]
  2. 2.
    Angus SP, Zawistowski JS, Johnson GL 2018. Epigenetic mechanisms regulating adaptive responses to targeted kinase inhibitors in cancer. Annu. Rev. Pharmacol. Toxicol. 58:209–29
    [Google Scholar]
  3. 3.
    Baum JE, Zhang P, Hoda RS, Geraghty B, Rennert H et al. 2017. Accuracy of next-generation sequencing for the identification of clinically relevant variants in cytology smears in lung adenocarcinoma. Cancer Cytopathol 125:398–406
    [Google Scholar]
  4. 4.
    Beaubier N, Tell R, Huether R, Bontrager M, Bush S et al. 2018. Clinical validation of the Tempus xO assay. Oncotarget 9:25826–32
    [Google Scholar]
  5. 5.
    Beca F, Polyak K. 2016. Intratumor heterogeneity in breast cancer. Adv. Exp. Med. Biol. 882:169–89
    [Google Scholar]
  6. 6.
    Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A et al. 2015. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol 1:466–74
    [Google Scholar]
  7. 7.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y et al. 2014. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6:224ra24
    [Google Scholar]
  8. 8.
    Bolton KL, Gillis NK, Coombs CC, Takahashi K, Zehir A et al. 2019. Managing clonal hematopoiesis in patients with solid tumors. J. Clin. Oncol. 37:7–11
    [Google Scholar]
  9. 9.
    Borad MJ, Egan JB, Condjella RM, Liang WS, Fonseca R et al. 2016. Clinical implementation of integrated genomic profiling in patients with advanced cancers. Sci. Rep. 6:25
    [Google Scholar]
  10. 10.
    Cai L, Yuan W, Zhang Z, He L, Chou KC 2016. In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data. Sci. Rep. 6:36540
    [Google Scholar]
  11. 11.
    Cancer Genome Atlas Res. Netw 2017. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32:185–203.e13
    [Google Scholar]
  12. 12.
    Carvajal-Hausdorf DE, Schalper KA, Neumeister VM, Rimm DL 2015. Quantitative measurement of cancer tissue biomarkers in the lab and in the clinic. Lab. Investig. 95:385–96
    [Google Scholar]
  13. 13.
    Cent. Medicare Medicaid Serv 2018. CMS finalizes coverage of Next Generation Sequencing tests, ensuring enhanced access for cancer patients Press Release, Mar. 16, Cent. Medicare Medicaid Serv Baltimore, MD: https://www.cms.gov/newsroom/press-releases/cms-finalizes-coverage-next-generation-sequencing-tests-ensuring-enhanced-access-cancer-patients
    [Google Scholar]
  14. 14.
    Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H et al. 2017. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011
    [Crossref] [Google Scholar]
  15. 15.
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM et al. 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34
    [Google Scholar]
  16. 16.
    Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H et al. 2013. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59:211–24
    [Google Scholar]
  17. 17.
    Chantrill LA, Nagrial AM, Watson C, Johns AL, Martyn-Smith M et al. 2015. Precision medicine for advanced pancreas cancer: the Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial. Clin. Cancer Res. 21:2029–37
    [Google Scholar]
  18. 18.
    Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R et al. 2015. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17:251–64
    [Google Scholar]
  19. 19.
    Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D et al. 2013. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31:213–19
    [Google Scholar]
  20. 20.
    Cocco E, Scaltriti M, Drilon A 2018. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15:731–47
    [Google Scholar]
  21. 21.
    Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R 2003. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 8:303–6
    [Google Scholar]
  22. 22.
    Coombs CC, Gillis NK, Tan X, Berg JS, Ball M et al. 2018. Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays. Clin. Cancer Res. 24:5918–24
    [Google Scholar]
  23. 23.
    Daley GQ, Van Etten RA, Baltimore D 1990. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–30
    [Google Scholar]
  24. 24.
    de Leng WW, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, Koudijs MJ, Nijman I et al. 2016. Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLOS ONE 11:e0149405
    [Google Scholar]
  25. 25.
    Deverka PA, Doksum T, Carlson RJ 2007. Integrating molecular medicine into the US health-care system: opportunities, barriers, and policy challenges. Clin. Pharmacol. Ther. 82:427–34
    [Google Scholar]
  26. 26.
    Deverka PA, Dreyfus JC. 2014. Clinical integration of next generation sequencing: coverage and reimbursement challenges. J. Law Med. Ethics 42:Suppl. 122–41
    [Google Scholar]
  27. 27.
    Diekstra MH, Swen JJ, Boven E, Castellano D, Gelderblom H et al. 2015. CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma. Eur. Urol. 68:621–29
    [Google Scholar]
  28. 28.
    Drilon A, Hu ZI, Lai GGY, Tan DSW 2018. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat. Rev. Clin. Oncol. 15:151–67
    [Google Scholar]
  29. 29.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:1031–37
    [Google Scholar]
  30. 30.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM et al. 1996. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2:561–66
    [Google Scholar]
  31. 31.
    Dulbecco R. 1986. A turning point in cancer research: sequencing the human genome. Science 231:1055–56
    [Google Scholar]
  32. 32.
    Fountzilas E, Tsimberidou AM. 2018. Overview of precision oncology trials: challenges and opportunities. Expert Rev. Clin. Pharmacol. 11:797–804
    [Google Scholar]
  33. 33.
    Fox EJ, Reid-Bayliss KS, Emond MJ, Loeb LA 2014. Accuracy of next generation sequencing platforms. Next Gener. Seq. Appl. 1:10000106
    [Google Scholar]
  34. 34.
    Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR et al. 2013. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31:1023–31
    [Google Scholar]
  35. 35.
    Frederick L, Wang XY, Eley G, James CD 2000. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–87
    [Google Scholar]
  36. 36.
    Gatalica Z, Xiu J, Swensen J, Vranic S 2019. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 1:147–53
    [Google Scholar]
  37. 37.
    Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92
    [Google Scholar]
  38. 38.
    Goetz L, Bethel K, Topol EJ 2013. Rebooting cancer tissue handling in the sequencing era: toward routine use of frozen tumor tissue. JAMA 309:37–38
    [Google Scholar]
  39. 39.
    Goubet AG, Daillere R, Routy B, Derosa L, Roberti PM, Zitvogel L 2018. The impact of the intestinal microbiota in therapeutic responses against cancer. C. R. Biol. 341:284–89
    [Google Scholar]
  40. 40.
    Gray PN, Dunlop CL, Elliott AM 2015. Not all next generation sequencing diagnostics are created equal: understanding the nuances of solid tumor assay design for somatic mutation detection. Cancers 7:1313–32
    [Google Scholar]
  41. 41.
    Grosse SD, Khoury MJ. 2006. What is the clinical utility of genetic testing?. Genet. Med. 8:448
    [Google Scholar]
  42. 42.
    Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A et al. 2015. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21:1350–56
    [Google Scholar]
  43. 43.
    Gupta RG, Somer RA. 2017. Intratumor heterogeneity: novel approaches for resolving genomic architecture and clonal evolution. Mol. Cancer Res. 15:1127–37
    [Google Scholar]
  44. 44.
    Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70
    [Google Scholar]
  45. 45.
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  46. 46.
    Hansford S, Huntsman DG. 2014. Boveri at 100: Theodor Boveri and genetic predisposition to cancer. J. Pathol. 234:142–45
    [Google Scholar]
  47. 47.
    Harmeyer KM, Facompre ND, Herlyn M, Basu D 2017. JARID1 histone demethylases: emerging targets in cancer. Trends Cancer 3:713–25
    [Google Scholar]
  48. 48.
    Hastings KG, Boothroyd DB, Kapphahn K, Hu J, Rehkopf DH et al. 2018. Socioeconomic differences in the epidemiologic transition from heart disease to cancer as the leading cause of death in the United States, 2003 to 2015: an observational study. Ann. Intern. Med. 169:836–44
    [Google Scholar]
  49. 49.
    Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ et al. 2014. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLOS ONE 9:e98187
    [Google Scholar]
  50. 50.
    Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C et al. 2018. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189–94
    [Google Scholar]
  51. 51.
    Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I et al. 2015. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373:726–36
    [Google Scholar]
  52. 52.
    Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M et al. 2015. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci. Transl. Med. 7:283ra53
    [Google Scholar]
  53. 53.
    Karlsen F, Kalantari M, Chitemerere M, Johansson B, Hagmar B 1994. Modifications of human and viral deoxyribonucleic acid by formaldehyde fixation. Lab. Investig. 71:604–11
    [Google Scholar]
  54. 54.
    Kheder ES, Hong DS. 2018. Emerging targeted therapy for tumors with NTRK fusion proteins. Clin. Cancer Res. 24:5807–14
    [Google Scholar]
  55. 55.
    Kurnit KC, Bailey AM, Zeng J, Johnson AM, Shufean MA et al. 2017. “Personalized Cancer Therapy”: a publicly available precision oncology resource. Cancer Res 77:e123–26
    [Google Scholar]
  56. 56.
    Lam WKJ, Jiang P, Chan KCA, Cheng SH, Zhang H et al. 2018. Sequencing-based counting and size profiling of plasma Epstein-Barr virus DNA enhance population screening of nasopharyngeal carcinoma. PNAS 115:E5115–24
    [Google Scholar]
  57. 57.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  58. 58.
    Larson RA, Kondo K, Vardiman JW, Butler AE, Golomb HM, Rowley JD 1984. Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am. J. Med. 76:827–41
    [Google Scholar]
  59. 59.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18
    [Google Scholar]
  60. 60.
    Le Tourneau C, Delord JP, Goncalves A, Gavoille C, Dubot C et al. 2015. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16:1324–34
    [Google Scholar]
  61. 61.
    Lemery S, Keegan P, Pazdur R 2017. First FDA approval agnostic of cancer site—when a biomarker defines the indication. N. Engl. J. Med. 377:1409–12
    [Google Scholar]
  62. 62.
    Levy MA, Lovly CM, Pao W 2012. Translating genomic information into clinical medicine: lung cancer as a paradigm. Genome Res 22:2101–8
    [Google Scholar]
  63. 63.
    Levy SE, Myers RM. 2016. Advancements in next-generation sequencing. Annu. Rev. Genom. Hum. Genet. 17:95–115
    [Google Scholar]
  64. 64.
    Lih CJ, Harrington RD, Sims DJ, Harper KN, Bouk CH et al. 2017. Analytical validation of the next-generation sequencing assay for a nationwide signal-finding clinical trial: molecular analysis for therapy choice clinical trial. J. Mol. Diagn. 19:313–27
    [Google Scholar]
  65. 65.
    Lin MT, Mosier SL, Thiess M, Beierl KF, Debeljak M et al. 2014. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. Am. J. Clin. Pathol. 141:856–66
    [Google Scholar]
  66. 66.
    Loghavi S, Routbort MJ, Patel KP, Luthra R, Wang WL et al. 2016. How do we make clinical molecular testing for cancer standard of care for pathology departments?. J. Natl. Compr. Cancer Netw. 14:787–92
    [Google Scholar]
  67. 67.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:2129–39
    [Google Scholar]
  68. 68.
    Malapelle U, Ricciuti B, Baglivo S, Pepe F, Pisapia P et al. 2018. Osimertinib. Recent Results Cancer Res 211:257–76
    [Google Scholar]
  69. 69.
    Mardis ER. 2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6:287–303
    [Google Scholar]
  70. 70.
    Marquart J, Chen EY, Prasad V 2018. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol 4:1093–98
    [Google Scholar]
  71. 71.
    Mateo J, Chakravarty D, Dienstmann R, Jezdic S, Gonzalez-Perez A et al. 2018. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 29:1895–902
    [Google Scholar]
  72. 72.
    McGranahan N, Swanton C. 2015. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27:15–26
    [Google Scholar]
  73. 73.
    Meisel JL, Venur VA, Gnant M, Carey L 2018. Evolution of targeted therapy in breast cancer: where precision medicine began. Am. Soc. Clin. Oncol. Educ. Book 38:78–86
    [Google Scholar]
  74. 74.
    Meric-Bernstam F, Brusco L, Shaw K, Horombe C, Kopetz S et al. 2015. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol. 33:2753–62
    [Google Scholar]
  75. 75.
    Meyerson M, Gabriel S, Getz G 2010. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11:685–96
    [Google Scholar]
  76. 76.
    Moscow JA, Fojo T, Schilsky RL 2018. The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 15:183–92
    [Google Scholar]
  77. 77.
    N.Y. Genome Cent 2019. Whole genome and transcriptome sequencing (WGTS) for oncology. New York Genome Center https://www.nygenome.org/clinical-products/nygc-diagnostic-tests-wgts
    [Google Scholar]
  78. 78.
    Nowell PC, Hungerford DA. 1960. A minute chromosome in human chronic granulocytic leukemia. Science 132:1497
    [Google Scholar]
  79. 79.
    Pao W, Miller V, Zakowski M, Doherty J, Politi K et al. 2004. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. PNAS 101:13306–11
    [Google Scholar]
  80. 80.
    Paweletz CP, Sacher AG, Raymond CK, Alden RS, O'Connell A et al. 2016. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin. Cancer Res. 22:915–22
    [Google Scholar]
  81. 81.
    Pishvaian MJ, Bender RJ, Halverson D, Rahib L, Hendifar AE et al. 2018. Molecular profiling of patients with pancreatic cancer: initial results from the Know Your Tumor initiative. Clin. Cancer Res. 24:5018–27
    [Google Scholar]
  82. 82.
    Prasad V. 2016. Perspective: the precision-oncology illusion. Nature 537:S63
    [Google Scholar]
  83. 83.
    Rennert H, Eng K, Zhang T, Tan A, Xiang J et al. 2016. Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care. NPJ Genom. Med. 1:16019
    [Google Scholar]
  84. 84.
    Reuben A, Gittelman R, Gao J, Zhang J, Yusko EC et al. 2017. TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov 7:1088–97
    [Google Scholar]
  85. 85.
    Rowley JD, Golomb HM, Dougherty C 1977. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 309:549–50
    [Google Scholar]
  86. 86.
    Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP et al. 2017. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod. Pathol. 30:499–508
    [Google Scholar]
  87. 87.
    Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM et al. 2011. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3:111ra21
    [Google Scholar]
  88. 88.
    Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z et al. 2018. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat. Commun. 9:3962
    [Google Scholar]
  89. 89.
    Russo M, Misale S, Wei G, Siravegna G, Crisafulli G et al. 2016. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov 6:36–44
    [Google Scholar]
  90. 90.
    Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G et al. 2016. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov 6:147–53
    [Google Scholar]
  91. 91.
    Sabir SH, Krishnamurthy S, Gupta S, Mills GB, Wei W et al. 2017. Characteristics of percutaneous core biopsies adequate for next generation genomic sequencing. PLOS ONE 12:e0189651
    [Google Scholar]
  92. 92.
    Sanger F, Nicklen S, Coulson AR 1977. DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–67
    [Google Scholar]
  93. 93.
    Schloss JA. 2008. How to get genomes at one ten-thousandth the cost. Nat. Biotechnol. 26:1113–15
    [Google Scholar]
  94. 94.
    Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N 2013. Visualizing multidimensional cancer genomics data. Genome Med 5:9
    [Google Scholar]
  95. 95.
    Schwaederle M, Zhao M, Lee JJ, Eggermont AM, Schilsky RL et al. 2015. Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J. Clin. Oncol. 33:3817–25
    [Google Scholar]
  96. 96.
    Shankar GM, Balaj L, Stott SL, Nahed B, Carter BS 2017. Liquid biopsy for brain tumors. Expert Rev. Mol. Diagn. 17:943–47
    [Google Scholar]
  97. 97.
    Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26:1135–45
    [Google Scholar]
  98. 98.
    Shendure J, Mitra RD, Varma C, Church GM 2004. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5:335–44
    [Google Scholar]
  99. 99.
    Simon G, DiNardo CD, Takahashi K, Cascone T, Powers C et al. 2019. Applying artificial intelligence to address the knowledge gaps in cancer care. Oncologist 24:772–82
    [Google Scholar]
  100. 100.
    Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA et al. 2013. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn. 15:607–22
    [Google Scholar]
  101. 101.
    Srinivasamaharaj S, Salame BK, Rios-Perez J, Kloecker G, Perez CA 2016. The role of alectinib in the treatment of advanced ALK-rearranged non-small-cell lung cancer. Expert Rev. Anticancer Ther. 16:1227–33
    [Google Scholar]
  102. 102.
    Srinivasan M, Sedmak D, Jewell S 2002. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161:1961–71
    [Google Scholar]
  103. 103.
    Strickler JH, Loree JM, Ahronian LG, Parikh AR, Niedzwiecki D et al. 2018. Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov 8:164–73
    [Google Scholar]
  104. 104.
    Subbiah V, Kurzrock R. 2017. Debunking the delusion that precision oncology is an illusion. Oncologist 22:881–82
    [Google Scholar]
  105. 105.
    Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL et al. 2018. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 29:1869–76
    [Google Scholar]
  106. 106.
    Sundar R, Hong DS, Kopetz S, Yap TA 2017. Targeting BRAF-mutant colorectal cancer: progress in combination strategies. Cancer Discov 7:558–60
    [Google Scholar]
  107. 107.
    Tannock IF, Hickman JA. 2016. Limits to personalized cancer medicine. N. Engl. J. Med. 375:1289–94
    [Google Scholar]
  108. 108.
    Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D et al. 2015. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21:560–62
    [Google Scholar]
  109. 109.
    Toomey S, Madden SF, Furney SJ, Fan Y, McCormack M et al. 2016. The impact of ERBB-family germline single nucleotide polymorphisms on survival response to adjuvant trastuzumab treatment in HER2-positive breast cancer. Oncotarget 7:75518–25
    [Google Scholar]
  110. 110.
    Torga G, Pienta KJ. 2018. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol 4:868–70
    [Google Scholar]
  111. 111.
    Tough IM, Court Brown WM, Baikie AG, Buckton KE, Harnden DG et al. 1961. Cytogenetic studies in chronic myeloid leukaemia and acute leukaemia associated with monogolism. Lancet 277:411–17
    [Google Scholar]
  112. 112.
    Tuxen IV, Rohrberg KS, Oestrup O, Ahlborn LB, Schmidt AY et al. 2019. Copenhagen Prospective Personalized Oncology (CoPPO)—clinical utility of using molecular profiling to select patients to phase I trials. Clin. Cancer Res. 25:1239–47
    [Google Scholar]
  113. 113.
    US Food Drug Adm 2017. FDA unveils a streamlined path for the authorization of tumor profiling tests alongside its latest product action News Release, US Food Drug Adm Washington, DC: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm585347.htm
    [Google Scholar]
  114. 114.
    US Food Drug Adm 2017. Premarket approval (PMA): FoundationOne CDx PMA P170019, US Food Drug Adm Washington, DC: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P170019
    [Google Scholar]
  115. 115.
    Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K et al. 2014. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20:682–88
    [Google Scholar]
  116. 116.
    Vigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G 2015. Challenges and opportunities of next-generation sequencing: a cytopathologist's perspective. Cytopathology 26:271–83
    [Google Scholar]
  117. 117.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW 2013. Cancer genome landscapes. Science 339:1546–58
    [Google Scholar]
  118. 118.
    Wang Y, Li L, Douville C, Cohen JD, Yen TT et al. 2018. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci. Transl. Med. 10:eaap8793
    [Google Scholar]
  119. 119.
    Weir HK, Anderson RN, Coleman King SM, Soman A, Thompson TD et al. 2016. Heart disease and cancer deaths—trends and projections in the United States, 1969–2020. Prev. Chronic Dis. 13:E157
    [Google Scholar]
  120. 120.
    Weiss GJ, Byron SA, Aldrich J, Sangal A, Barilla H et al. 2017. A prospective pilot study of genome-wide exome and transcriptome profiling in patients with small cell lung cancer progressing after first-line therapy. PLOS ONE 12:e0179170
    [Google Scholar]
  121. 121.
    Yaffe MB. 2013. The scientific drunk and the lamppost: massive sequencing efforts in cancer discovery and treatment. Sci. Signal. 6:pe13
    [Google Scholar]
  122. 122.
    Ye H, Meehan J, Tong W, Hong H 2015. Alignment of short reads: a crucial step for application of next-generation sequencing data in precision medicine. Pharmaceutics 7:523–41
    [Google Scholar]
  123. 123.
    Yohe S, Thyagarajan B. 2017. Review of clinical next-generation sequencing. Arch. Pathol. Lab. Med. 141:1544–57
    [Google Scholar]
  124. 124.
    Zavodna M, Bagshaw A, Brauning R, Gemmell NJ 2014. The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLOS ONE 9:e113862
    [Google Scholar]
  125. 125.
    Zehir A, Benayed R, Shah RH, Syed A, Middha S et al. 2017. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23:703–13
    [Google Scholar]
  126. 126.
    Zhu G, Benayed R, Ho C, Mullaney K, Sukhadia P et al. 2019. Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Mod. Pathol. 32:609–20
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083118-015034
Loading
/content/journals/10.1146/annurev-genom-083118-015034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error