Over the last few years, the field of hereditary connective tissue disorders has changed tremendously. This review highlights exciting insights into three prototypic disorders affecting the soft connective tissue: Ehlers-Danlos syndrome, pseudoxanthoma elasticum, and cutis laxa. For each of these disorders, the identification and characterization of several novel but related conditions or subtypes have widened the phenotypic spectrum. In parallel, the vast underlying molecular network connecting these phenotypes is progressively being uncovered. Identification and characterization (both clinical and molecular) of new phenotypes within the connective tissue disorder spectrum are often key to further unraveling the pathways involved in connective tissue biology and delineating the clinical spectrum and pathophysiology of the disorders. Although difficult challenges remain, recent findings have expanded our pathophysiological understanding and may lead to targeted therapies in the near future.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Auer-Grumbach M, Weger M, Fink-Puches R, Papic L, Frohlich E. 1.  et al. 2011. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. Brain 134:1839–52 [Google Scholar]
  2. Baldwin AK, Simpson A, Steer R, Cain SA, Kielty CM. 2.  2013. Elastic fibres in health and disease. Expert Rev. Mol. Med. 15:e8 [Google Scholar]
  3. Basel-Vanagaite L, Sarig O, Hershkovitz D, Fuchs-Telem D, Rapaport D. 3.  et al. 2009. RIN2 deficiency results in macrocephaly, alopecia, cutis laxa, and scoliosis: MACS syndrome. Am. J. Hum. Genet. 85:254–63 [Google Scholar]
  4. Baumann M, Giunta C, Krabichler B, Rüschendorf F, Zoppi N. 4.  et al. 2012. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am. J. Hum. Genet. 90:201–16 [Google Scholar]
  5. Baumgartner MR, Hu CA, Almashanu S, Steel G. 5.  2000. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding Δ1-pyrroline-5-carboxylate synthase. Hum. Mol. Genet. 9:2853–58 [Google Scholar]
  6. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG. 6.  et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–18 [Google Scholar]
  7. Beighton P, De Paepe A, Hall JG, Hollister DW, Pope FM. 7.  et al. 1992. Molecular nosology of heritable disorders of connective tissue. Am. J. Med. Genet. 42:431–48 [Google Scholar]
  8. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. 8.  1998. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Am. J. Med. Genet. 77:31–37 [Google Scholar]
  9. Bicknell LS, Pitt J, Aftimos S, Ramadas R, Maw MA, Robertson SP. 9.  2008. A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur. J. Hum. Genet. 16:1176–86 [Google Scholar]
  10. Birk DE. 10.  2001. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–37 [Google Scholar]
  11. Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF. 11.  1990. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 95:649–57 [Google Scholar]
  12. Bönnemann CG. 12.  2011. The collagen VI-related myopathies: muscle meets its matrix. Nat. Rev. Neurol. 7:379–90 [Google Scholar]
  13. Brampton C, Yamaguchi Y, Vanakker O, Van Laer L, Chen L-H. 13.  et al. 2011. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum. Cell Cycle 10:1810–20 [Google Scholar]
  14. Brandsma CA, van den Berge M, Postma DS, Jonker MR, Brouwer S. 14.  et al. 2015. A large lung gene expression study identifying fibulin-5 as a novel player in tissue repair in COPD. Thorax 70:21–32 [Google Scholar]
  15. Brooke BS, Habashi JP, Judge DP. 15.  2008. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358:2787–95 [Google Scholar]
  16. Burch GH, Gong Y, Liu W, Dettman RW, Curry CJ. 16.  et al. 1997. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat. Genet. 17:104–8 [Google Scholar]
  17. Byers PH, Murray ML. 17.  2014. Ehlers-Danlos syndrome: a showcase of conditions that lead to understanding matrix biology. Matrix Biol. 33:10–15 [Google Scholar]
  18. Cabral WA, Makareeva E, Colige A, Letocha AD, Ty JM. 18.  et al. 2005. Mutations near amino end of α1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J. Biol. Chem. 280:19259–69 [Google Scholar]
  19. Cabral WA, Makareeva E, Letocha AD, Scribanu N, Fertala A. 19.  et al. 2007. Y-position cysteine substitution in type I collagen (α1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers-Danlos syndrome phenotype. Hum. Mutat. 28:396–405 [Google Scholar]
  20. Callewaert BL, Renard M, Hucthagowder V, Albrecht B, Hausser I. 20.  et al. 2011. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum. Mutat. 32:445–55 [Google Scholar]
  21. Callewaert BL, Su C-T, Van Damme T, Vlummens P, Malfait F. 21.  et al. 2013. Comprehensive clinical and molecular analysis of 12 families with type 1 recessive cutis laxa. Hum. Mutat. 34:111–21 [Google Scholar]
  22. Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K. 22.  et al. 2008. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum. Mutat. 29:150–58 [Google Scholar]
  23. Christiano AM, Uitto J. 23.  1994. Molecular pathology of the elastic fibers. J. Investig. Dermatol. 103:53S–57S [Google Scholar]
  24. Cohn RD, van Erp C. 24.  2007. Angiotensin II type 1 receptor blockade attenuates TGF-β-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13:204–10 [Google Scholar]
  25. Colige A, Sieron AL, Li SW, Schwarze U, Petty E. 25.  et al. 1999. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am. J. Hum. Genet. 65:308–17 [Google Scholar]
  26. Costrop LM, Vanakker OM, Van Laer L, Le Saux O, Martin L. 26.  et al. 2010. Novel deletions causing pseudoxanthoma elasticum underscore the genomic instability of the ABCC6 region. J. Hum. Genet. 55:112–17 [Google Scholar]
  27. Dabovic B, Robertson IB, Zilberberg L, Vassallo M, Davis EC, Rifkin DB. 27.  2014. Function of latent TGFβ binding protein 4 and fibulin 5 in elastogenesis and lung development. J. Cell. Physiol. 230:226–36 [Google Scholar]
  28. Davis EE, Frangakis S, Katsanis N. 28.  2014. Interpreting human genetic variation with in vivo zebrafish assays. Biochim. Biophys. Acta 1842:1960–70 [Google Scholar]
  29. De Paepe A, Malfait F. 29.  2012. The Ehlers-Danlos syndrome, a disorder with many faces. Clin. Genet. 82:1–11 [Google Scholar]
  30. de Vega S, Iwamoto T, Yamada Y. 30.  2009. Fibulins: multiple roles in matrix structures and tissue functions. Cell. Mol. Life Sci. 66:1890–902 [Google Scholar]
  31. Faiyaz-Ul-Haque M, Zaidi SHE, Al-Ali M, Al-Mureikhi MS, Kennedy S. 31.  et al. 2004. A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am. J. Med. Genet. A 128A:39–45 [Google Scholar]
  32. Fischer B. 32.  2012. Further characterization of ATP6V0A2-related autosomal recessive cutis laxa. Hum. Genet. 131:1761–73 [Google Scholar]
  33. Fischer B, Callewaert B, Schröter P, Coucke PJ, Schlack C. 33.  et al. 2014. Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. Mol. Genet. Metab. 112:310–16 [Google Scholar]
  34. Flanigan KM, Ceco E, Lamar K-M, Kaminoh Y, Dunn DM. 34.  et al. 2013. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann. Neurol. 73:481–88 [Google Scholar]
  35. Gensure RC, Mäkitie O, Barclay C, Chan C, DePalma SR. 35.  et al. 2005. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J. Clin. Investig. 115:1250–57 [Google Scholar]
  36. Giunta C, Elçioglu NH, Albrecht B, Eich G, Chambaz C. 36.  et al. 2008. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome—an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am. J. Hum. Genet. 82:1290–305 [Google Scholar]
  37. Gordon MK, Hahn RA. 37.  2010. Collagens. Cell Tissue Res. 339:247–57 [Google Scholar]
  38. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL. 38.  et al. 2006. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–21 [Google Scholar]
  39. Hadj-Rabia S, Callewaert BL, Bourrat E, Kempers M, Plomp AS. 39.  et al. 2013. Twenty patients including 7 probands with autosomal dominant cutis laxa confirm clinical and molecular homogeneity. Orphanet J. Rare Dis. 8:36 [Google Scholar]
  40. Hautala T, Heikkinen J, Kivirikko KI, Myllylä R. 40.  1993. A large duplication in the gene for lysyl hydroxylase accounts for the type VI variant of Ehlers-Danlos syndrome in two siblings. Genomics 15:399–404 [Google Scholar]
  41. Hendig D, Arndt M, Szliska C, Kleesiek K, Gotting C. 41.  2007. SPP1 promoter polymorphisms: identification of the first modifier gene for pseudoxanthoma elasticum. Clin. Chem. 53:829–36 [Google Scholar]
  42. Hennies HC. 42.  2008. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat. Genet. 40:1410–12 [Google Scholar]
  43. Hernández A, Aguirre-Negrete MG, González-Flores S, Reynoso-Luna MC, Fragoso R. 43.  et al. 1986. Ehlers-Danlos features with progeroid facies and mild mental retardation. Further delineation of the syndrome. Clin. Genet. 30:456–61 [Google Scholar]
  44. Hersh CP, Demeo DL, Lazarus R, Celedón JC, Raby BA. 44.  et al. 2006. Genetic association analysis of functional impairment in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173:977–84 [Google Scholar]
  45. Hornstrup LS, Tybjærg-Hansen A, Haase CL, Nordestgaard BG, Sillesen H. 45.  et al. 2011. Heterozygosity for R1141X in ABCC6 and risk of ischemic vascular disease. Circ. Cardiovasc. Genet. 4:534–41 [Google Scholar]
  46. Hosen MJ, Coucke PJ, Le Saux O, De Paepe A, Vanakker OM. 46.  2014. Perturbation of specific pro-mineralizing signalling pathways in human and murine pseudoxanthoma elasticum. Orphanet J. Rare Dis. 9:66 [Google Scholar]
  47. Hosen MJ, Van Nieuwerburgh F, Steyaert W, Deforce D, Martin L. 47.  et al. 2015. Efficiency of exome sequencing for the molecular diagnosis of pseudoxanthoma elasticum. J. Investig. Dermatol. 135:992–98 [Google Scholar]
  48. Hosen MJ, Zubaer A, Thapa S, Khadka B, De Paepe A, Vanakker OM. 48.  2014. Molecular docking simulations provide insights in the substrate binding sites and possible substrates of the ABCC6 transporter. PLOS ONE 9e10 2779
  49. Hovnanian A. 49.  2010. Modifier genes in pseudoxanthoma elasticum: novel insights from the Ggcx mouse model. J. Mol. Med. 88:149–53 [Google Scholar]
  50. Hu Q, Reymond J-L, Pinel N, Zabot M-T, Urban Z. 50.  2006. Inflammatory destruction of elastic fibers in acquired cutis laxa is associated with missense alleles in the elastin and fibulin-5 genes. J. Investig. Dermatol. 126:283–90 [Google Scholar]
  51. Hubmacher D, Tiedemann K, Reinhardt DP. 51.  2006. Fibrillins: from biogenesis of microfibrils to signaling functions. Curr. Top. Dev. Biol. 75:93–123 [Google Scholar]
  52. Hucthagowder V. 52.  2009. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum. Mol. Genet. 18:2149–65 [Google Scholar]
  53. Hucthagowder V, Sausgruber N, Kim KH, Angle B, Marmorstein LY, Urban Z. 53.  2006. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am. J. Hum. Genet. 78:1075–80 [Google Scholar]
  54. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ. 54.  et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31:227–29 [Google Scholar]
  55. Janecke AR, Baenziger JU, Müller T, Dündar M. 55.  2011. Loss of dermatan-4-sulfotransferase 1 (D4ST1/CHST14) function represents the first dermatan sulfate biosynthesis defect, “dermatan sulfate-deficient adducted thumb-clubfoot syndrome.”. Hum. Mutat. 32:484–85 [Google Scholar]
  56. Jansen RS, Duijst S, Mahakena S, Sommer D, Szeri F. 56.  et al. 2014. ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler. Thromb. Vasc. Biol. 34:1985–89 [Google Scholar]
  57. Jeong J, Walker JM, Wang F, Park JG, Palmer AE. 57.  et al. 2012. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. PNAS 109:E3530–38 [Google Scholar]
  58. Jiang Q, Uitto J. 58.  2006. Pseudoxanthoma elasticum: a metabolic disease?. J. Investig. Dermatol. 126:1440–41 [Google Scholar]
  59. Kaler SG. 59.  2011. ATP7A-related copper transport diseases—emerging concepts and future trends. Nat. Rev. Neurol. 7:15–29 [Google Scholar]
  60. Kaler SG, Gallo LK, Proud VK, Percy AK, Mark Y. 60.  et al. 1994. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat. Genet. 8:195–202 [Google Scholar]
  61. Kariminejad A, Bozorgmehr B, Najafi A, Khoshaeen A, Ghalandari M. 61.  et al. 2014. Retinitis pigmentosa, cutis laxa, and pseudoxanthoma elasticum-like skin manifestations associated with GGCX mutations. J. Investig. Dermatol. 134:2331–38 [Google Scholar]
  62. Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JFB. 62.  et al. 2010. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am. J. Hum. Genet. 86:343–52 [Google Scholar]
  63. Kielty CM. 63.  2006. Elastic fibres in health and disease. Expert Rev. Mol. Med. 8:1–23 [Google Scholar]
  64. Kielty CM, Sherratt MJ, Marson A, Baldock C. 64.  2005. Fibrillin microfibrils. Adv. Protein Chem. 70:405–36 [Google Scholar]
  65. Kivuva EC, Parker MJ, Cohen MC, Wagner BE, Sobey G. 65.  2008. De Barsy syndrome: a review of the phenotype. Clin. Dysmorphol. 17:99–107 [Google Scholar]
  66. Kornak U, Reynders E, Dimopoulou A, van Reeuwijk J, Fischer B. 66.  et al. 2008. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat. Genet. 40:32–34 [Google Scholar]
  67. Kosho T. 67.  2013. Discovery and delineation of dermatan 4-O-sulfotransferase-1 (D4ST1)-deficient Ehlers-Danlos syndrome. Current Genetics in Dermatology N Oiso, chap. 6 Rijeka, Croat: InTech [Google Scholar]
  68. Krane SM, Pinnell SR, Erbe RW. 68.  1972. Lysyl-protocollagen hydroxylase deficiency in fibroblasts from siblings with hydroxylysine-deficient collagen. PNAS 69:2899–903 [Google Scholar]
  69. Krishnan N, Dickman MB, Becker DF. 69.  2008. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic. Biol. Med. 44:671–81 [Google Scholar]
  70. Kuzaj P, Kuhn J, Dabisch-Ruthe M, Faust I, Gotting C. 70.  et al. 2014. ABCC6—a new player in cellular cholesterol and lipoprotein metabolism?. Lipids Health Dis. 13:118 [Google Scholar]
  71. Kuzaj P, Kuhn J, Michalek RD, Karoly ED, Faust I. 71.  et al. 2014. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls. PLOS ONE 9:e108336 [Google Scholar]
  72. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ. 72.  et al. 2014. Atenolol versus losartan in children and young adults with Marfan's syndrome. N. Engl. J. Med. 371:2061–71 [Google Scholar]
  73. Lau WL, Liu S, Vaziri ND. 73.  2014. Chronic kidney disease results in deficiency of ABCC6, the novel inhibitor of vascular calcification. Am. J. Nephrol. 40:51–55 [Google Scholar]
  74. Le Saux O, Beck K, Sachsinger C, Silvestri C, Treiber C. 74.  et al. 2001. A spectrum of ABCC6 mutations is responsible for pseudoxanthoma elasticum. Am. J. Hum. Genet. 69:749–64 [Google Scholar]
  75. Le Saux O, Urban Z, Tschuch C, Csiszar K, Bacchelli B. 75.  et al. 2000. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat. Genet. 25:223–27 [Google Scholar]
  76. Li Q, Grange DK, Armstrong NL, Whelan AJ, Hurley MY. 76.  et al. 2009. Mutations in the GGCX and ABCC6 genes in a family with pseudoxanthoma elasticum-like phenotypes. J. Investig. Dermatol. 129:553–63 [Google Scholar]
  77. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E. 77.  et al. 2012. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 44:922–27 [Google Scholar]
  78. Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM. 78.  et al. 1993. Type V collagen: molecular structure and fibrillar organization of the chicken α1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J. Cell Biol. 121:1181–89 [Google Scholar]
  79. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M. 79.  et al. 2005. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37:275–81 [Google Scholar]
  80. Loeys BL, Van Maldergem L, Mortier G, Coucke P, Gerniers S. 80.  et al. 2002. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum. Mol. Genet. 11:2113–18 [Google Scholar]
  81. Malfait F, Coucke P, Symoens S, Loeys B, Nuytinck L, De Paepe A. 81.  2005. The molecular basis of classic Ehlers-Danlos syndrome: a comprehensive study of biochemical and molecular findings in 48 unrelated patients. Hum. Mutat. 25:28–37 [Google Scholar]
  82. Malfait F, De Coster P, Hausser I, van Essen AJ, Franck P. 82.  et al. 2004. The natural history, including orofacial features of three patients with Ehlers-Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am. J. Med. Genet. A 131:18–28 [Google Scholar]
  83. Malfait F, Kariminejad A, Van Damme T, Gauche C, Syx D. 83.  et al. 2013. Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am. J. Hum. Genet. 92:935–45 [Google Scholar]
  84. Malfait F, Symoens S, De Backer J, Hermanns-Lê T, Sakalihasan N. 84.  et al. 2007. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 28:387–95 [Google Scholar]
  85. Malfait F, Syx D, Vlummens P, Symoens S, Nampoothiri S. 85.  et al. 2010. Musculocontractural Ehlers-Danlos syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum. Mutat. 31:1233–39 [Google Scholar]
  86. Markova D, Zou Y, Ringpfeil F, Sasaki T, Kostka G. 86.  et al. 2003. Genetic heterogeneity of cutis laxa: a heterozygous tandem duplication within the fibulin-5 (FBLN5) gene. Am. J. Hum. Genet. 72:998–1004 [Google Scholar]
  87. McKusick VA. 87.  1956. Heritable Disorders of Connective Tissue St. Louis, MO: Mosby
  88. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. 88.  2008. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26:695–701 [Google Scholar]
  89. Minamitani T, Ariga H, Matsumoto K-I. 89.  2004. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp. Cell Res. 297:49–60 [Google Scholar]
  90. Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A. 90.  et al. 2010. Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum. Mutat. 31:966–74 [Google Scholar]
  91. Müller T, Mizumoto S, Suresh I, Komatsu Y, Vodopiutz J. 91.  et al. 2013. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum. Mol. Genet. 22:3761–72 [Google Scholar]
  92. Myllyharju J, Kivirikko KI. 92.  2001. Collagens and collagen-related diseases. Ann. Med. 33:7–21 [Google Scholar]
  93. Nakajima M, Mizumoto S, Miyake N, Kogawa R, Iida A. 93.  et al. 2013. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am. J. Hum. Genet. 92:927–34 [Google Scholar]
  94. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE. 94.  et al. 2003. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33:407–11 [Google Scholar]
  95. Nitschke Y, Baujat G, Botschen U, Wittkampf T, Moulin du M. 95.  et al. 2012. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am. J. Hum. Genet. 90:25–39 [Google Scholar]
  96. Nonaka R, Sato F, Wachi H. 96.  2014. Domain 36 of tropoelastin in elastic fiber formation. Biol. Pharm. Bull. 37:698–702 [Google Scholar]
  97. Okajima T, Fukumoto S, Furukawa K, Urano T. 97.  1999. Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J. Biol. Chem. 274:28841–44 [Google Scholar]
  98. Papke CL, Yanagisawa H. 98.  2014. Fibulin-4 and fibulin-5 in elastogenesis and beyond: insights from mouse and human studies. Matrix Biol. 37:142–49 [Google Scholar]
  99. Pasquali-Ronchetti I, Garcia-Fernandez MI, Boraldi F, Quaglino D, Gheduzzi D. 99.  et al. 2006. Oxidative stress in fibroblasts from patients with pseudoxanthoma elasticum: possible role in the pathogenesis of clinical manifestations. J. Pathol. 208:54–61 [Google Scholar]
  100. Pénisson-Besnier I, Allamand V, Beurrier P, Martin L, Schalkwijk J. 100.  et al. 2013. Compound heterozygous mutations of the TNXB gene cause primary myopathy. Neuromuscul. Disord. 23:664–69 [Google Scholar]
  101. Pepin MG, Byers PH. 101.  2011. Ehlers-Danlos syndrome type IV. GeneReviews RA Pagon, MP Adam, HH Ardinger, TD Bird, CR Dolan et al. Seattle: Univ. Wash http://www.ncbi.nlm.nih.gov/books/NBK1494 [Google Scholar]
  102. Pepin MG, Schwarze U, Superti Furga A, Byers PH. 102.  2000. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N. Engl. J. Med. 342:673–80 [Google Scholar]
  103. Petris MJ, Strausak D, Mercer J. 103.  2000. The Menkes copper transporter is required for the activation of tyrosinase. Hum. Mol. Genet. 9:2845–51 [Google Scholar]
  104. Pfendner EG, Vanakker OM, Terry SF, Vourthis S, McAndrew PE. 104.  et al. 2007. Mutation detection in the ABCC6 gene and genotype-phenotype analysis in a large international case series affected by pseudoxanthoma elasticum. J. Med. Genet. 44:621–28 [Google Scholar]
  105. Pinnell SR, Krane SM, Kenzora JE, Glimcher MJ. 105.  1972. A heritable disorder of connective tissue. Hydroxylysine-deficient collagen disease. N. Engl. J. Med. 286:1013–20 [Google Scholar]
  106. Pomozi V, Le Saux O, Brampton C, Apana A, Iliás A. 106.  et al. 2013. ABCC6 is a basolateral plasma membrane protein. Circ. Res. 112:e148–51 [Google Scholar]
  107. Quentin E, Gladen A, Rodén L, Kresse H. 107.  1990. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. PNAS 87:1342–46 [Google Scholar]
  108. Ramirez F, Sakai LY, Rifkin DB, Dietz HC. 108.  2007. Extracellular microfibrils in development and disease. Cell. Mol. Life Sci. 64:2437–46 [Google Scholar]
  109. Renard M, Holm T, Veith R, Callewaert BL, Ades LC. 109.  et al. 2010. Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur. J. Hum. Genet. 18:895–901 [Google Scholar]
  110. Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC. 110.  et al. 2009. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet. 41:1016–21 [Google Scholar]
  111. Ross JM, McIntire LV, Moake JL, Kuo HJ, Qian RQ. 111.  et al. 1998. Fibrillin containing elastic microfibrils support platelet adhesion under dynamic shear conditions. Thromb. Haemost. 79:155–61 [Google Scholar]
  112. Sandri C, Caccavari F, Valdembri D, Camillo C, Veltel S. 112.  et al. 2012. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res. 22:1479–501 [Google Scholar]
  113. Schalkwijk J, Zweers MC, Steijlen PM, Dean WB, Taylor G. 113.  et al. 2001. A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N. Engl. J. Med. 345:1167–75 [Google Scholar]
  114. Schön S, Schulz V, Prante C, Hendig D, Szliska C. 114.  et al. 2006. Polymorphisms in the xylosyltransferase genes cause higher serum XT-I activity in patients with pseudoxanthoma elasticum (PXE) and are involved in a severe disease course. J. Med. Genet. 43:745–49 [Google Scholar]
  115. Schwarze U, Atkinson M, Hoffman GG, Greenspan DS, Byers PH. 115.  2000. Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am. J. Hum. Genet. 66:1757–65 [Google Scholar]
  116. Schwarze U, Hata R-I, McKusick VA, Shinkai H, Hoyme HE. 116.  et al. 2004. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am. J. Hum. Genet. 74:917–30 [Google Scholar]
  117. Shimizu K, Okamoto N, Miyake N, Taira K, Sato Y. 117.  et al. 2011. Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: observation of two additional patients and comprehensive review of 20 reported patients. Am. J. Med. Genet. A 155A:1949–58 [Google Scholar]
  118. Shoulders MD, Raines RT. 118.  2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929–58 [Google Scholar]
  119. Sowa A-K, Kaiser FJ, Eckhold J, Kessler T, Aherrahrou R. 119.  et al. 2013. Functional interaction of osteogenic transcription factors Runx2 and Vdr in transcriptional regulation of Opn during soft tissue calcification. Am. J. Pathol. 183:66–68 [Google Scholar]
  120. Steinmann B, Gitzelmann R, Vogel A, Grant ME, Harwood R, Sear CH. 120.  1975. Ehlers-Danlos syndrome in two siblings with deficient lysyl hydroxylase activity in cultured skin fibroblasts but only mild hydroxylysine deficit in skin. Helv. Paediatr. Acta 30:255–74 [Google Scholar]
  121. Steinmann B, Tuderman L, Peltonen L, Martin GR, McKusick VA, Prockop DJ. 121.  1980. Evidence for a structural mutation of procollagen type I in a patient with the Ehlers-Danlos syndrome type VII. J. Biol. Chem. 255:8887–93 [Google Scholar]
  122. Stone EM, Braun TA, Russell SR, Kuehn MH, Lotery AJ. 122.  et al. 2004. Missense variations in the fibulin 5 gene and age-related macular degeneration. N. Engl. J. Med. 351:346–53 [Google Scholar]
  123. Sweatt A, Sane DC, Hutson SM, Wallin R. 123.  2003. Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J. Thromb. Haemost. 1:178–85 [Google Scholar]
  124. Symoens S, Renard M, Bonod-Bidaud C, Syx D, Vaganay E. 124.  et al. 2011. Identification of binding partners interacting with the α1-N-propeptide of type V collagen. Biochem. J. 433:371–81 [Google Scholar]
  125. Symoens S, Syx D, Malfait F, Callewaert BL, De Backer J. 125.  et al. 2012. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum. Mutat. 33:1485–93 [Google Scholar]
  126. Syx D, Malfait F, Van Laer L, Hellemans J, Hermanns-Lê T. 126.  et al. 2010. The RIN2 syndrome: a new autosomal recessive connective tissue disorder caused by deficiency of Ras and Rab interactor 2 (RIN2). Hum. Genet. 128:79–88 [Google Scholar]
  127. Todorovic V, Rifkin DB. 127.  2012. LTBPs, more than just an escort service. J. Cell. Biochem. 113:410–18 [Google Scholar]
  128. Tsipouras P, Byers PH, Schwartz RC, Chu ML, Weil D. 128.  et al. 1986. Ehlers-Danlos syndrome type IV: cosegregation of the phenotype to a COL3A1 allele of type III procollagen. Hum. Genet. 74:41–46 [Google Scholar]
  129. Urbán Z, Hucthagowder V, Schürmann N, Todorovic V, Zilberberg L. 129.  et al. 2009. Mutations in LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am. J. Hum. Genet. 85:593–605 [Google Scholar]
  130. Urbán Z, Riazi S, Seidl TL, Katahira J, Smoot LB. 130.  et al. 2002. Connection between elastin haploinsufficiency and increased cell proliferation in patients with supravalvular aortic stenosis and Williams-Beuren syndrome. Am. J. Hum. Genet. 71:30–44 [Google Scholar]
  131. van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM. 131.  et al. 2011. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43:121–26 [Google Scholar]
  132. Vanakker OM, Leroy BP, Coucke P, Bercovitch LG, Uitto J. 132.  et al. 2008. Novel clinico-molecular insights in pseudoxanthoma elasticum provide an efficient molecular screening method and a comprehensive diagnostic flowchart. Hum. Mutat. 29:205 [Google Scholar]
  133. Vanakker OM, Leroy BP, Schurgers LJ, Vermeer C, Coucke PJ, De Paepe A. 133.  2011. Atypical presentation of pseudoxanthoma elasticum with abdominal cutis laxa: evidence for a spectrum of ectopic calcification disorders?. Am. J. Med. Genet. 155:2855–59 [Google Scholar]
  134. Vanakker OM, Martin L, Gheduzzi D, Leroy BP, Loeys BL. 134.  et al. 2007. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J. Investig. Dermatol. 127:581–87 [Google Scholar]
  135. Vanakker OM, Martin L, Schurgers LJ, Quaglino D, Costrop L. 135.  et al. 2010. Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome. Lab. Investig. 90:895–905 [Google Scholar]
  136. Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R. 136.  et al. 2006. Collagen XII interacts with avian tenascin-X through its NC3 domain. J. Biol. Chem. 281:27461–70 [Google Scholar]
  137. Wang Z, Yang Z, He X, Tu J. 137.  2009. Aggrecanases gene inhibition in chondrocytes: a new possible strategy to relieve immune rejection of transplants. Med. Hypotheses 72:196–98 [Google Scholar]
  138. Watzka M, Geisen C, Scheer M, Wieland R, Wiegering V. 138.  et al. 2014. Bleeding and non-bleeding phenotypes in patients with GGCX gene mutations. Thromb. Res. 134:856–65 [Google Scholar]
  139. Wempe F, De-Zolt S, Koli K, Bangsow T, Parajuli N. 139.  et al. 2010. Inactivation of sestrin 2 induces TGF-β signaling and partially rescues pulmonary emphysema in a mouse model of COPD. Dis. Models Mech. 3:246–53 [Google Scholar]
  140. Wenstrup RJ, Florer JB, Willing MC, Giunta C, Steinmann B. 140.  et al. 2000. COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am. J. Hum. Genet. 66:1766–76 [Google Scholar]
  141. Werneck CC, Vicente CP, Weinberg JS, Shifren A, Pierce RA. 141.  et al. 2008. Mice lacking the extracellular matrix protein MAGP1 display delayed thrombotic occlusion following vessel injury. Blood 111:4137–44 [Google Scholar]
  142. Willaert A, Khatri S, Callewaert BL, Coucke PJ, Crosby SD. 142.  et al. 2012. GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFβ signaling. Hum. Mol. Genet. 21:1248–59 [Google Scholar]
  143. Wu X, Steet RA, Bohorov O, Bakker J, Newell J. 143.  et al. 2004. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat. Med. 10:518–23 [Google Scholar]
  144. Zarbock R, Hendig D, Szliska C, Kleesiek K, Gotting C. 144.  2009. Vascular endothelial growth factor gene polymorphisms as prognostic markers for ocular manifestations in pseudoxanthoma elasticum. Hum. Mol. Genet. 18:3344–51 [Google Scholar]
  145. Zarbock R, Hendig D, Szliska C, Kleesiek K, Gotting C. 145.  2010. Analysis of MMP2 promoter polymorphisms in patients with pseudoxanthoma elasticum. Clin. Chim. Acta 411:1487–90 [Google Scholar]
  146. Zhang MC, He L, Giro M, Yong SL, Tiller GE, Davidson JM. 146.  1999. Cutis laxa arising from frameshift mutations in exon 30 of the elastin gene (ELN). J. Biol. Chem. 274:981–86 [Google Scholar]
  147. Ziegler SG, Ferreira CR, Pinkerton AB, Millan JL, Gahl WA, Dietz HC. 147.  2014. Novel insights regarding the pathogenesis and treatment of pseudoxanthoma elasticum Presented at Am. Soc. Hum. Genet. Meet., San Diego, CA, Oct. 18–22
  148. Zou Y, Zwolanek D, Izu Y, Gandhy S, Schreiber G. 148.  et al. 2014. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum. Mol. Genet. 23:2339–52 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error