With more than 1,500 species, cichlid fishes provide textbook examples of recent and diverse adaptive radiations, rapid rates of speciation, and the parallel evolution of adaptive phenotypes among both recently and distantly related lineages. This extraordinary diversity has attracted considerable interest from researchers across several biological disciplines. Their broad phenotypic variation coupled with recent divergence makes cichlids an ideal model system for understanding speciation, adaptation, and phenotypic diversification. Genetic mapping, genome-wide analyses, and genome projects have flourished in the past decade and have added new insights on the question of why there are so many cichlids. These recent findings also show that the sharing of older DNA polymorphisms is extensive and suggest that linage sorting is incomplete and that adaptive introgression played a role in the African radiation. Here, we review the results of genetic and genomic research on cichlids in the past decade and suggest some potential avenues to further exploit the potential of the cichlid model system to provide a better understanding of the genomics of adaptation and speciation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albertson RC, Kocher TD. 1.  2006. Genetic and developmental basis of cichlid trophic diversity. Heredity 97:211–21 [Google Scholar]
  2. Albertson RC, Streelman JT, Kocher TD. 2.  2003. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proc. Natl. Acad. Sci. USA 100:5252–57 [Google Scholar]
  3. Andersson MB. 3.  1994. Sexual Selection Princeton, NJ: Princeton Univ. Press [Google Scholar]
  4. Arendt J, Reznick D. 4.  2008. Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation?. Trends Ecol. Evol. 23:26–32 [Google Scholar]
  5. Arnegard ME, Snoeks J. 5.  2001. New three-spotted cichlid species with hypertrophied lips (Teleostei: Cichlidae) from the deep waters of Lake Malaŵi/Nyasa, Africa. Copeia 2001:705–17 [Google Scholar]
  6. Barluenga M, Stolting KN, Salzburger W, Muschick M, Meyer A. 6.  2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719–23 [Google Scholar]
  7. Barrett RDH, Rogers SM, Schluter D. 7.  2008. Natural selection on a major armor gene in threespine stickleback. Science 322:255–57 [Google Scholar]
  8. Barson NJ, Knight ME, Turner GF. 8.  2007. The genetic architecture of male colour differences between a sympatric Lake Malawi cichlid species pair. J. Evol. Biol. 20:45–53 [Google Scholar]
  9. Baud A, Hermsen R, Guryev V, Stridh P, Graham D. 9.  et al. 2013. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nature Genetics 45:767–75 [Google Scholar]
  10. Bell G. 10.  1978. Evolution of anisogamy. J. Theor. Biol. 73:247–70 [Google Scholar]
  11. Bolnick DI, Fitzpatrick BM. 11.  2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38:459–87 [Google Scholar]
  12. Braasch I, Schartl M, Volff JN. 12.  2007. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol. Biol. 7:74 [Google Scholar]
  13. Carleton KL, Hofmann CM, Klisz C, Patel Z, Chircus LM. 13.  et al. 2010. Genetic basis of differential opsin gene expression in cichlid fishes. J. Evol. Biol. 23:840–53 [Google Scholar]
  14. Carroll SB. 14.  2005. Evolution at two levels: on genes and form. PLoS Biol. 3:1159–66 [Google Scholar]
  15. Carstens B, Lemmon AR, Lemmon EM. 15.  2012. The promises and pitfalls of next-generation sequencing data in phylogeography. Syst. Biol. 61:713–15 [Google Scholar]
  16. Chang AS, Noor MAF. 16.  2007. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions. Genetics 176:343–49 [Google Scholar]
  17. Cheng KC. 17.  2008. Skin color in fish and humans: impacts on science and society. Zebrafish 5:237–42 [Google Scholar]
  18. Cnaani A, Lee BY, Zilberman N, Ozouf-Costaz C, Hulata G. 18.  et al. 2008. Genetics of sex determination in tilapiine species. Sex. Dev. 2:43–54 [Google Scholar]
  19. Colombo M, Diepeveen ET, Muschick M, Santos ME, Indermaur A. 19.  et al. 2013. The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes. Mol. Ecol. 22:670–84 [Google Scholar]
  20. Coyne JA. 20.  1994. Ernst Mayr and the origin of species. Evolution 48:19–30 [Google Scholar]
  21. Coyne JA, Orr HA. 21.  1989. Patterns of speciation in Drosophila. Evolution 43:362–81 [Google Scholar]
  22. Coyne JA, Orr HA. 22.  2004. Speciation Sunderland, MA: Sinauer [Google Scholar]
  23. Darwin C. 23.  1871. The Descent of Man, and Selection in Relation to Sex London: Murray [Google Scholar]
  24. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 24.  2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499–510 [Google Scholar]
  25. Day JJ, Cotton JA, Barraclough TG. 25.  2008. Tempo and mode of diversification of Lake Tanganyika cichlid fishes. PLoS ONE 3:e1730 [Google Scholar]
  26. Devlin RH, Nagahama Y. 26.  2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364 [Google Scholar]
  27. Domingues VS, Poh Y-P, Peterson BK, Pennings PS, Jensen JD, Hoekstra HE. 27.  2012. Evidence of adaptation from ancestral variation in young populations of beach mice. Evolution 66:3209–23 [Google Scholar]
  28. Edwards SV. 28.  2009. Is a new and general theory of molecular systematics emerging?. Evolution 63:1–19 [Google Scholar]
  29. Elmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S. 29.  et al. 2010. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol. Ecol. 19:197–211 [Google Scholar]
  30. Elmer KR, Meyer A. 30.  2011. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26:298–306 [Google Scholar]
  31. Falconer DS, Mackay TFC. 31.  1996. Introduction to Quantitative Genetics Harlow, UK: Longman [Google Scholar]
  32. Fan SH, Elmer KR, Meyer A. 32.  2012. Genomics of adaptation and speciation in cichlid fishes: recent advances and analyses in African and Neotropical lineages. Philos. Trans. R. Soc. B 367:385–94 [Google Scholar]
  33. Feder JL, Flaxman SM, Egan SP, Comeault AA, Nosil P. 33.  2013. Geographic mode of speciation and genomic divergence. Annu. Rev. Ecol. Evol. Syst. 44:73–97 [Google Scholar]
  34. Feder JL, Nosil P. 34.  2009. Chromosomal inversions and species differences: When are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions?. Evolution 63:3061–75 [Google Scholar]
  35. Felsenstein J. 35.  1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals?. Evolution 35:124–38 [Google Scholar]
  36. Fishman L, Stathos A, Beardsley PM, Williams CF, Hill JP. 36.  2013. Chromosomal rearrangements and the genetics of reproductive barriers in Mimulos (monkey flowers). Evolution 67:2547–60 [Google Scholar]
  37. Fitzpatrick BM, Fordyce JA, Gavrilets S. 37.  2008. What, if anything, is sympatric speciation?. J. Evol. Biol. 21:1452–59 [Google Scholar]
  38. Fitzpatrick BM, Fordyce JA, Gavrilets S. 38.  2009. Pattern, process and geographic modes of speciation. J. Evol. Biol. 22:2342–47 [Google Scholar]
  39. Flint J, Mackay TFC. 39.  2009. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19:723–33 [Google Scholar]
  40. Foresti F, Oliveira C, Galetti PM Jr, de Almeida-Toledo LF. 40.  1993. Synaptonemal complex analysis in spermatocytes of tilapia, Oreochromis niloticus (Pisces, Cichlidae). Genome 36:1124–28 [Google Scholar]
  41. Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH. 41.  et al. 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc. R. Soc. B 280:20131733 [Google Scholar]
  42. Fryer G, Iles TD. 42.  1972. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution Edinburgh, Scotl: Oliver and Boyd [Google Scholar]
  43. Fukamachi S, Kinoshita M, Aizawa K, Oda S, Meyer A, Mitani H. 43.  2009. Dual control by a single gene of secondary sexual characters and mating preferences in medaka. BMC Biol. 7:64 [Google Scholar]
  44. Gerrard DT, Meyer A. 44.  2007. Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Mol. Biol. Evol. 24:2286–97 [Google Scholar]
  45. Grosenick L, Clement TS, Fernald RD. 45.  2007. Fish can infer social rank by observation alone. Nature 445:429–32 [Google Scholar]
  46. Gunter HM, Clabaut C, Salzburger W, Meyer A. 46.  2011. Identification and characterization of gene expression involved in the coloration of cichlid fish using microarray and qRT-PCR approaches. J. Mol. Evol. 72:127–37 [Google Scholar]
  47. Gunter HM, Fan SH, Xiong F, Franchini P, Fruciano C, Meyer A. 47.  2013. Shaping development through mechanical strain: the transcriptional basis of diet-induced phenotypic plasticity in a cichlid fish. Mol. Ecol. 22:4516–31 [Google Scholar]
  48. Heled J, Drummond AJ. 48.  2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27:570–80 [Google Scholar]
  49. Henning F, Jones JC, Franchini P, Meyer A. 49.  2013. Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genomics 14:171 [Google Scholar]
  50. Henning F, Renz AJ, Fukamachi S, Meyer A. 50.  2010. Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group. J. Mol. Evol. 70:405–12 [Google Scholar]
  51. Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ. 51.  2013. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 23:687–97 [Google Scholar]
  52. Hoekstra HE, Coyne JA. 52.  2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016 [Google Scholar]
  53. Hoekstra RF. 53.  1980. Why do organisms produce gametes of only 2 different sizes? Some theoretical aspects of the evolution of anisogamy. J. Theor. Biol. 87:785–93 [Google Scholar]
  54. Huang W, Richards S, Carbone MA, Zhu DH, Anholt RRH. 54.  et al. 2012. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc. Natl. Acad. Sci. USA 109:15553–59 [Google Scholar]
  55. Hulsey CD. 55.  2006. Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc. R. Soc. B 273:669–75 [Google Scholar]
  56. Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ. 56.  et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31:227–29 [Google Scholar]
  57. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E. 57.  et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61 [Google Scholar]
  58. Jones JC, Fan SH, Franchini P, Schartl M, Meyer A. 58.  2013. The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing. Mol. Ecol. 22:2986–3001 [Google Scholar]
  59. Joyce DA, Lunt DH, Genner MJ, Turner GF, Bills R, Seehausen O. 59.  2011. Repeated colonization and hybridization in Lake Malawi cichlids. Curr. Biol. 21:R108–9 [Google Scholar]
  60. Juntti SA, Hu CK, Fernald RD. 60.  2013. Tol2-mediated generation of a transgenic haplochromine cichlid, Astatotilapia burtoni. PLoS ONE 8:e77647 [Google Scholar]
  61. Kautt AF, Elmer KR, Meyer A. 61.  2012. Genomic signatures of divergent selection and speciation patterns in a “natural experiment”, the young parallel radiations of Nicaraguan crater lake cichlid fishes. Mol. Ecol. 21:4770–86 [Google Scholar]
  62. Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM. 62.  et al. 2013. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol. Ecol. 22:2848–63 [Google Scholar]
  63. Kirkpatrick M, Barton N. 63.  2006. Chromosome inversions, local adaptation and speciation. Genetics 173:419–34 [Google Scholar]
  64. Knowles LL, Kubatko LS. 64.  2010. Estimating Species Trees: Practical and Theoretical Aspects Hoboken, NJ: Wiley-Blackwell [Google Scholar]
  65. Kobayashi N, Watanabe M, Horiike T, Kohara Y, Okada N. 65.  2009. Extensive analysis of EST sequences reveals that all cichlid species in Lake Victoria share almost identical transcript sets. Gene 441:187–91 [Google Scholar]
  66. 66.  Deleted in proof
  67. Kocher T. 67.  2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nat. Rev. Genet. 5:288–98 [Google Scholar]
  68. Kocher T, Lee W-J, Sobolewska H, Penman D, McAndrew B. 68.  1998. A genetic linkage map of the cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148:1225–32 [Google Scholar]
  69. Kondrashov AS, Shpak M. 69.  1998. On the origin of species by means of assortative mating. Proc. R. Soc. B 265:2273–78 [Google Scholar]
  70. Konrad A, Teufel AI, Grahnen JA, Liberles DA. 70.  2011. Toward a general model for the evolutionary dynamics of gene duplicates. Genome Biol. Evol. 3:1197–209 [Google Scholar]
  71. Kronforst MR, Young LG, Kapan DD, McNeely C, O'Neill RJ, Gilbert LE. 71.  2006. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc. Natl. Acad. Sci. USA 103:6575–80 [Google Scholar]
  72. Kulathinal RJ, Stevison LS, Noor MAF. 72.  2009. The genomics of speciation in Drosophila: diversity, divergence, and introgression estimated using low-coverage genome sequencing. PLoS Genet. 5:e1000550 [Google Scholar]
  73. Kuraku S, Meyer A. 73.  2008. Genomic analysis of cichlid fish “natural mutants.”. Curr. Opin. Genet. Dev. 18:551–58 [Google Scholar]
  74. Kuroiwa A, Terai Y, Kobayashi N, Yoshida K, Suzuki M. 74.  et al. 2014. Construction of chromosome markers from the Lake Victoria cichlid Paralabidochromis chilotes and their application to comparative mapping. Cytogenet. Genome Res. 142:112–20 [Google Scholar]
  75. Lang M, Miyake T, Braasch I, Tinnemore D, Siegel N. 75.  et al. 2006. A BAC library of the East African haplochromine cichlid fish Astatotilapia burtoni. J. Exp. Zool. B 306:35–44 [Google Scholar]
  76. Lee BY, Coutanceau JP, Ozouf-Costaz C, D'Cotta H, Baroiller JF, Kocher TD. 76.  2011. Genetic and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus). Mar. Biotechnol. 13:557–62 [Google Scholar]
  77. Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE. 77.  et al. 2005. A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 170:237–44 [Google Scholar]
  78. Lemmon AR, Emme SA, Lemmon EM. 78.  2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61:727–44 [Google Scholar]
  79. Lemmon EM, Lemmon AR. 79.  2013. High-throughput genomic data in systematics and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44:99–121 [Google Scholar]
  80. Lewontin RC, Birch LC. 80.  1966. Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–36 [Google Scholar]
  81. Liem KF. 81.  1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22:425–41 [Google Scholar]
  82. Linnen CR, Poh YP, Peterson BK, Barrett RDH, Larson JG. 82.  et al. 2013. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339:1312–16 [Google Scholar]
  83. Loh Y-HE, Bezault E, Muenzel FM, Roberts RB, Swofford R. 83.  et al. 2013. Origins of shared genetic variation in African cichlids. Mol. Biol. Evol. 30:906–17 [Google Scholar]
  84. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF. 84.  et al. 2012. The Drosophila melanogaster Genetic Reference Panel. Nature 482:173–78 [Google Scholar]
  85. Mackay TFC, Stone EA, Ayroles JF. 85.  2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10:565–77 [Google Scholar]
  86. Maddison WP. 86.  1997. Gene trees in species trees. Syst. Biol. 46:523–36 [Google Scholar]
  87. Mallet J, Meyer A, Nosil P, Feder JL. 87.  2009. Space, sympatry and speciation. J. Evol. Biol. 22:2332–41 [Google Scholar]
  88. Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P. 88.  et al. 2013. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol. Ecol. 22:650–69 [Google Scholar]
  89. Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. 89.  2006. Speciation by hybridization in Heliconius butterflies. Nature 441:868–71 [Google Scholar]
  90. Mayr E. 90.  1963. Animal Species and Evolution Cambridge, MA: Belknap [Google Scholar]
  91. Mayr E. 91.  1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance Cambridge, MA: Belknap [Google Scholar]
  92. McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. 92.  2012. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 22:746–54 [Google Scholar]
  93. McGaugh SE, Noor MAF. 93.  2012. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Philos. Trans. R. Soc. B 367:422–29 [Google Scholar]
  94. Meyer A, Biermann CH, Ortí G. 94.  1993. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proc. R. Soc. B 252:231–36 [Google Scholar]
  95. Meyer A, Van de Peer Y. 95.  2003. “Natural selection merely modified while redundancy created”—Susumu Ohno's idea of the evolutionary importance of gene and genome duplications. J. Struct. Funct. Genomics 3:7–9 [Google Scholar]
  96. Miller AC, Obholzer ND, Shah AN, Megason SG, Moens CB. 96.  2013. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res. 23:679–86 [Google Scholar]
  97. Nachman MW, Payseur BA. 97.  2012. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos. Trans. R. Soc. B 367:409–21 [Google Scholar]
  98. Navarro A, Barton NH. 98.  2003. Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300:321–24 [Google Scholar]
  99. Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL. 99.  et al. 2013. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc. Natl. Acad. Sci. USA 110:12738–43 [Google Scholar]
  100. Noor MAF, Feder JL. 100.  2006. Speciation genetics: evolving approaches. Nat. Rev. Genet. 7:851–61 [Google Scholar]
  101. Nosil P. 101.  2012. Ecological Speciation New York: Oxford Univ. Press [Google Scholar]
  102. Nosil P, Feder JL. 102.  2013. Genome evolution and speciation: toward quantitative descriptions of pattern and process. Evolution 67:2461–67 [Google Scholar]
  103. Nosil P, Schluter D. 103.  2011. The genes underlying the process of speciation. Trends Ecol. Evol. 26:160–67 [Google Scholar]
  104. O'Quin CT, Drilea AC, Conte MA, Kocher TD. 104.  2013. Mapping of pigmentation QTL on an anchored genome assembly of the cichlid fish, Metriaclima zebra. BMC Genomics 14:287 [Google Scholar]
  105. O'Quin CT, Drilea AC, Roberts RB, Kocher TD. 105.  2012. A small number of genes underlie male pigmentation traits in Lake Malawi cichlid fishes. J. Exp. Zool. B 318B:199–208 [Google Scholar]
  106. O'Quin KE, Schulte JE, Patel Z, Kahn N, Naseer Z. 106.  et al. 2012. Evolution of cichlid vision via trans-regulatory divergence. BMC Evol. Biol. 12:251 [Google Scholar]
  107. Orr HA. 107.  1995. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–13 [Google Scholar]
  108. Orr HA. 108.  1998. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics 149:2099–104 [Google Scholar]
  109. Orr HA. 109.  2005. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:119–27 [Google Scholar]
  110. Perazzo GX, Noleto RB, Vicari MR, Gava A, Cestari MM. 110.  2013. Trends of karyotypical evolution in the pearl cichlid, Geophagus brasiliensis, from southern Brazil. Zoology 116:286–92 [Google Scholar]
  111. Poletto AB, Ferreira IA, Cabral-de-Mello DC, Nakajima RT, Mazzuchelli J. 111.  et al. 2010. Chromosome differentiation patterns during cichlid fish evolution. BMC Genet. 11:50 [Google Scholar]
  112. Presgraves DC. 112.  2008. Sex chromosomes and speciation in Drosophila. Trends Genet. 24:336–43 [Google Scholar]
  113. Recknagel H, Elmer KR, Meyer A. 113.  2013. A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq). G3 3:65–74 [Google Scholar]
  114. Reed RD, Papa R, Martin A, Hines HM, Counterman BA. 114.  et al. 2011. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137–41 [Google Scholar]
  115. Renn SCP, Aubin-Horth N, Hofmann HA. 115.  2004. Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics 6:42 [Google Scholar]
  116. Renn SCP, Aubin-Horth N, Hofmann HA. 116.  2008. Fish and chips: functional genomics of social plasticity in an African cichlid fish. J. Exp. Biol. 211:3041–56 [Google Scholar]
  117. Ricardo VM, Artoni RF, Moreira O, Bertollo LAC. 117.  2006. Basic and molecular cytogenetics in freshwater Cichlidae (Osteichthyes, Perciformes). Karyotypic conservationism and divergence. Caryologia 59:260–66 [Google Scholar]
  118. Rice WR, Hostert EE. 118.  1993. Laboratory experiments on speciation: What have we learned in 40 years?. Evolution 47:1637–53 [Google Scholar]
  119. Roberts RB, Ser JR, Kocher TD. 119.  2009. Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science 326:998–1001 [Google Scholar]
  120. Rockman MV. 120.  2012. The QTN program and the alleles that matter for evolution: All that's gold does not glitter. Evolution 66:1–17 [Google Scholar]
  121. Rosenberg NA. 121.  2014. Discordance of species trees with their most likely gene trees: a unifying principle. Mol. Biol. Evol. 30:2709–13 [Google Scholar]
  122. Salzburger W, Meyer A. 122.  2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–90 [Google Scholar]
  123. Salzburger W, Renn SCP, Steinke D, Braasch I, Hofmann HA, Meyer A. 123.  2008. Annotation of expressed sequence tags for the East African cichlid fish Astatotilapia burtoni and evolutionary analyses of cichlid ORFs. BMC Genomics 9:96 [Google Scholar]
  124. Sanetra M, Henning F, Fukamachi S, Meyer A. 124.  2009. A microsatellite-based genetic linkage map of the cichlid fish, Astatotilapia burtoni (Teleostei): a comparison of genetic architectures among rapidly speciating cichlids. Genetics 182:387–97 [Google Scholar]
  125. Schartl M. 125.  2014. Beyond the zebrafish: diverse fish species for modeling human disease. Dis. Models Mech. 7:181–92 [Google Scholar]
  126. Schluter D. 126.  2009. Evidence for ecological speciation and its alternative. Science 323:737–41 [Google Scholar]
  127. Seehausen O, Mayhew PJ, Van Alphen JJM. 127.  1999. Evolution of colour patterns in East African cichlid fish. J. Evol. Biol. 12:514–34 [Google Scholar]
  128. Seehausen O, Van Alphen JJM, Witte F. 128.  1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–11 [Google Scholar]
  129. Ser JR, Roberts RB, Kocher TD. 129.  2010. Multiple interacting loci control sex determination in Lake Malawi cichlid fish. Evolution 64:486–501 [Google Scholar]
  130. Servedio MR. 130.  2009. The role of linkage disequilibrium in the evolution of premating isolation. Heredity 102:51–56 [Google Scholar]
  131. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P. 131.  2011. Magic traits in speciation: “magic” but not rare?. Trends Ecol. Evol. 26:389–97 [Google Scholar]
  132. Shaw KL, Ellison CK, Oh KP, Wiley C. 132.  2011. Pleiotropy, “sexy” traits, and speciation. Behav. Ecol. 22:1154–55 [Google Scholar]
  133. Slate J. 133.  2013. From Beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67:1251–62 [Google Scholar]
  134. Smadja CM, Butlin RK. 134.  2011. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20:5123–40 [Google Scholar]
  135. Stelkens RB, Young KA, Seehausen O. 135.  2010. The accumulation of reproductive incompatibilities in African cichlid fish. Evolution 64:617–32 [Google Scholar]
  136. Stinchcombe JR, Hoekstra HE. 136.  2008. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–70 [Google Scholar]
  137. Streelman JT, Albertson RC, Kocher TD. 137.  2003. Genome mapping of the orange blotch colour pattern in cichlid fishes. Mol. Ecol. 12:2465–71 [Google Scholar]
  138. Sturmbauer C, Meyer A. 138.  1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358:578–81 [Google Scholar]
  139. Sturtevant AH. 139.  1938. Essays on evolution. III. On the origin of interspecific sterility. Q. Rev. Biol. 13:333–35 [Google Scholar]
  140. Templeton AR. 140.  2006. Population Genetics and Microevolutionary Theory Hoboken, NJ: Wiley-Liss [Google Scholar]
  141. Turelli M. 141.  1998. The causes of Haldane's rule. Science 282:889–91 [Google Scholar]
  142. Turelli M, Barton NH, Coyne JA. 142.  2001. Theory and speciation. Trends Ecol. Evol. 16:330–43 [Google Scholar]
  143. van Ooijen JW, Jansen J. 143.  2013. Genetic Mapping in Experimental Populations Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  144. Via S. 144.  2009. Natural selection in action during speciation. Proc. Natl. Acad. Sci. USA 106:9939–46 [Google Scholar]
  145. Via S, West J. 145.  2008. The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol. Ecol. 17:4334–45 [Google Scholar]
  146. Wagner CE, Harmon LJ, Seehausen O. 146.  2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–69 [Google Scholar]
  147. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S. 147.  et al. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 22:787–98 [Google Scholar]
  148. Wang Z, Gerstein M, Snyder M. 148.  2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63 [Google Scholar]
  149. Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD. 149.  et al. 2013. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2 [Google Scholar]
  150. Watanabe M, Kobayashi N, Shin-i T, Horiike T, Tateno Y. 150.  et al. 2004. Extensive analysis of ORF sequences from two different cichlid species in Lake Victoria provides molecular evidence for a recent radiation event of the Victoria species flock: identity of EST sequences between Haplochromis chilotes and Haplochromis sp. “Redtailsheller.”. Gene 343:263–69 [Google Scholar]
  151. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E. 151.  2003. Efficient target-selected mutagenesis in zebrafish. Genome Res. 13:2700–7 [Google Scholar]
  152. Williams GC. 152.  1975. Sex and Evolution Princeton, NJ: Princeton Univ. Press [Google Scholar]
  153. Willis SC, Farias IP, Ortí G. 153.  2014. Testing mitochondrial capture and deep coalescence in Amazonian cichlid fishes (Cichlidae: Cichla). Evolution 68:256–68 [Google Scholar]
  154. Willis SC, López-Fernández H, Montaña CG, Farias IP, Ortí G. 154.  2012. Species-level phylogeny of “Satan's perches” based on discordant gene trees (Teleostei: Cichlidae: Satanoperca Günther 1862). Mol. Phylogenet. Evol. 63:798–808 [Google Scholar]
  155. Wright S. 155.  1921. Systems of mating. III. Assortative mating based on somatic resemblance. Genetics 6:144–61 [Google Scholar]
  156. Yang JA, Benyamin B, McEvoy BP, Gordon S, Henders AK. 156.  et al. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42:565–69 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error