Drug response varies between individuals owing to disease heterogeneity, environmental factors, and genetic factors. Genetic factors can affect both the pharmacokinetics and pharmacodynamics of a drug, leading to changes in local and systemic drug exposure and/or changes in the function of the drug target, altering drug response. Several pharmacogenetic biomarkers are already utilized in clinical practice and have been shown to improve clinical outcomes. However, a large number of other biomarkers have never made it beyond the discovery stage. Concerted effort is needed to improve the translation of pharmacogenetic biomarkers into clinical practice, and this will involve the use of standardized phenotyping and genotyping strategies, collaborative work, multidisciplinary approaches to identifying and replicating associations, and cooperation with industry to facilitate translation and commercialization. Acceptance of these approaches by clinicians, regulators, patients, and the public will be important in determining future success.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. Acad. Med. Sci 2013. Realising the Potential of Stratified Medicine. London: Acad. Med. Sci.
  2. Afdhal NH, McHutchison JG, Zeuzem S, Mangia A, Pawlotsky JM. 2.  et al. 2011. Hepatitis C pharmacogenetics: state of the art in 2010. Hepatology 53:336–45 [Google Scholar]
  3. Antoine DJ, Dear JW, Lewis PS, Platt V, Coyle J. 3.  et al. 2013. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology 58:777–87 [Google Scholar]
  4. Batchelor JR, Welsh KI, Tinoco RM, Dollery CT, Hughes GR. 4.  et al. 1980. Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility. Lancet 315:1107–9 [Google Scholar]
  5. Behr ER, Roden D. 5.  2013. Drug-induced arrhythmia: pharmacogenomic prescribing?. Eur. Heart J. 34:89–95 [Google Scholar]
  6. Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, McCluskey J. 6.  2012. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu. Rev. Pharmacol. Toxicol. 52:401–31 [Google Scholar]
  7. Brunham LR, Lansberg PJ, Zhang L, Miao F, Carter C. 7.  et al. 2011. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 12:233–37 [Google Scholar]
  8. Cappellini MD, Fiorelli G. 8.  2008. Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64–74 [Google Scholar]
  9. Carr DF, Chaponda M, Jorgensen AL, Castro EC, van Oosterhout JJ. 9.  et al. 2013. Association of human leukocyte antigen alleles and nevirapine hypersensitivity in a Malawian HIV-infected population. Clin. Infect. Dis. 56:1330–39 [Google Scholar]
  10. Carr DF, O'Meara H, Jorgensen AL, Campbell J, Hobbs M. 10.  et al. 2013. SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink. Clin. Pharmacol. Ther. 94:695–701 [Google Scholar]
  11. Cary KC, Cooperberg MR. 11.  2013. Biomarkers in prostate cancer surveillance and screening: past, present, and future. Ther. Adv. Urol. 5:318–29 [Google Scholar]
  12. Chantarangsu S, Mushiroda T, Mahasirimongkol S, Kiertiburanakul S, Sungkanuparph S. 12.  et al. 2009. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet. Genomics 19:139–46 [Google Scholar]
  13. Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF. 13.  et al. 2011. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364:1126–33 [Google Scholar]
  14. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC. 14.  et al. 2004. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486 [Google Scholar]
  15. Connor S. 15.  2003. Glaxo chief: Our drugs do not work on most patients. Independent Dec. 8. http://www.independent.co.uk/news/science/glaxo-chief-our-drugs-do-not-work-on-most-patients-575942.html
  16. Daly AK. 16.  2010. Genome-wide association studies in pharmacogenomics. Nat. Rev. Genet. 11:241–46 [Google Scholar]
  17. Daly AK. 17.  2012. Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annu. Rev. Pharmacol. Toxicol. 52:21–35 [Google Scholar]
  18. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I. 18.  et al. 2009. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41:816–19 [Google Scholar]
  19. Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM. 19.  2013. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am. Heart J. 165:1008–14 [Google Scholar]
  20. Davies EC, Green CF, Taylor S, Williamson PR, Mottram DR, Pirmohamed M. 20.  2009. Adverse drug reactions in hospital in-patients: a prospective analysis of 3695 patient-episodes. PLoS ONE 4:e4439 [Google Scholar]
  21. Dawson SJ, Rueda OM, Aparicio S, Caldas C. 21.  2013. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 32:617–28 [Google Scholar]
  22. Ding WY, Lee CK, Choon SE. 22.  2010. Cutaneous adverse drug reactions seen in a tertiary hospital in Johor, Malaysia. Int. J. Dermatol. 49:834–41 [Google Scholar]
  23. Donnan JR, Ungar WJ, Mathews M, Rahman P. 23.  2011. Systematic review of thiopurine methyltransferase genotype and enzymatic testing strategies. Ther. Drug Monit. 33:192–99 [Google Scholar]
  24. Donnelly LA, Doney AS, Tavendale R, Lang CC, Pearson ER. 24.  et al. 2011. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Ther. 89:210–16 [Google Scholar]
  25. Donzelli M, Derungs A, Serratore MG, Noppen C, Nezic L. 25.  et al. 2014. The Basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin. Pharmacokinet. 53:271–82 [Google Scholar]
  26. Drazen JM, Silverman EK, Lee TH. 26.  2000. Heterogeneity of therapeutic responses in asthma. Br. Med. Bull. 56:1054–70 [Google Scholar]
  27. Druker BJ. 27.  2002. Imatinib and chronic myeloid leukemia: validating the promise of molecularly targeted therapy. Eur. J. Cancer. 38:Suppl. 5S70–76 [Google Scholar]
  28. Edwards SG, Hubbard V, Aylett S, Wren D. 28.  1999. Concordance of primary generalised epilepsy and carbamazepine hypersensitivity in monozygotic twins. Postgrad. Med. J. 75:680–81 [Google Scholar]
  29. Evans DA. 29.  1968. Genetic variations in the acetylation of isoniazid and other drugs. Ann. N.Y. Acad. Sci. 151:723–33 [Google Scholar]
  30. Finkelman BS, Gage BF, Johnson JA, Brensinger CM, Kimmel SE. 30.  2011. Genetic warfarin dosing: tables versus algorithms. J. Am. Coll. Cardiol. 57:612–18 [Google Scholar]
  31. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF. 31.  et al. 2012. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367:1694–703 [Google Scholar]
  32. Fugger L, McVean G, Bell JI. 32.  2012. Genomewide association studies and common disease—realizing clinical utility. N. Engl. J. Med. 367:2370–71 [Google Scholar]
  33. Gallagher RM, Mason JR, Bird KA, Kirkham JJ, Peak M. 33.  et al. 2012. Adverse drug reactions causing admission to a paediatric hospital. PLoS ONE 7:e50127 [Google Scholar]
  34. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV. 34.  et al. 2009. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401 [Google Scholar]
  35. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 35.  2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–98 [Google Scholar]
  36. Harbour R, Miller J. 36.  2001. A new system for grading recommendations in evidence based guidelines. BMJ 323:334–36 [Google Scholar]
  37. Hautekeete ML, Horsmans Y, Van Waeyenberge C, Demanet C, Henrion J. 37.  et al. 1999. HLA association of amoxicillin-clavulanate–induced hepatitis. Gastroenterology 117:1181–86 [Google Scholar]
  38. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL. 38.  et al. 2002. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359:1121–22 [Google Scholar]
  39. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN. 39.  et al. 2013.. A catalog of published genome-wide association studies Accessed Dec. 6. Natl. Hum. Genome Res. Inst., Bethesda, MD. http://www.genome.gov/gwastudies
  40. Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T. 40.  et al. 2008. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 8:29–33 [Google Scholar]
  41. Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J. 41.  et al. 2012. Evidence-based management of anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141:e152S–84S [Google Scholar]
  42. Holmes MV, Shah T, Vickery C, Smeeth L, Hingorani AD, Casas JP. 42.  2009. Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies. PLoS ONE 4:e7960 [Google Scholar]
  43. Howard RL, Avery AJ, Slavenburg S, Royal S, Pipe G. 43.  et al. 2007. Which drugs cause preventable admissions to hospital? A systematic review. Br. J. Clin. Pharmacol. 63:136–47 [Google Scholar]
  44. Hughes AR, Brothers CH, Mosteller M, Spreen WR, Burns DK. 44.  2009. Genetic association studies to detect adverse drug reactions: abacavir hypersensitivity as an example. Pharmacogenomics 10:225–33 [Google Scholar]
  45. Hughes AR, Mosteller M, Bansal AT, Davies K, Haneline SA. 45.  et al. 2004. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 5:203–11 [Google Scholar]
  46. Hung SI, Chung WH, Jee SH, Chen WC, Chang YT. 46.  et al. 2006. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics 16:297–306 [Google Scholar]
  47. Hung SI, Chung WH, Liou LB, Chu CC, Lin M. 47.  et al. 2005. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl. Acad. Sci. USA 102:4134–39 [Google Scholar]
  48. Ingelman-Sundberg M. 48.  2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci. 25:193–200 [Google Scholar]
  49. Ingle JN, Schaid DJ, Goss PE, Liu M, Mushiroda T. 49.  et al. 2010. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J. Clin. Oncol. 28:4674–82 [Google Scholar]
  50. 50. Int. Warfarin Pharmacogenet. Consort 2009. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360:753–64 [Google Scholar]
  51. Ioannidis JP. 51.  2013. To replicate or not to replicate: the case of pharmacogenetic studies: Have pharmacogenomics failed, or do they just need larger-scale evidence and more replication?. Circ. Cardiovasc. Genet. 6:413–18 [Google Scholar]
  52. Jonas DE, McLeod HL. 52.  2009. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol. Sci. 30:375–86 [Google Scholar]
  53. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. 53.  2012. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS ONE 7:e44064 [Google Scholar]
  54. Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH. 54.  et al. 2013. Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl. Psychiatry 3:e223 [Google Scholar]
  55. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M. 55.  et al. 2008. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 9:1617–22 [Google Scholar]
  56. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL. 56.  et al. 2013. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N. Engl. J. Med. 369:2283–93 [Google Scholar]
  57. Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF. 57.  et al. 2007. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 8:186–195 [Google Scholar]
  58. Kittaneh M, Montero AJ, Gluck S. 58.  2013. Molecular profiling for breast cancer: a comprehensive review. Biomark. Cancer 5:61–70 [Google Scholar]
  59. Kornbluth A, Sachar DB. 59.  2010. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. Am. J. Gastroenterol. 105:501–23 [Google Scholar]
  60. Lai M, Afdhal NH. 60.  2012. Clinical utility of interleukin-28B testing in patients with genotype 1. Hepatology 56:367–72 [Google Scholar]
  61. Lazarou J, Pomeranz BH, Corey PN. 61.  1998. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–5 [Google Scholar]
  62. Lennard L, Van Loon JA, Weinshilboum RM. 62.  1989. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin. Pharmacol. Ther. 46:149–54 [Google Scholar]
  63. Lesko LJ. 63.  2008. The critical path of warfarin dosing: finding an optimal dosing strategy using pharmacogenetics. Clin. Pharmacol. Ther. 84:301–3 [Google Scholar]
  64. Liu M, Wang L, Bongartz T, Hawse JR, Markovic SN. 64.  et al. 2012. Aromatase inhibitors, estrogens and musculoskeletal pain: estrogen-dependent T-cell leukemia 1A (TCL1A) gene-mediated regulation of cytokine expression. Breast Cancer Res. 14:R41 [Google Scholar]
  65. Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T. 65.  et al. 2008. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 49:2087–91 [Google Scholar]
  66. Lupberger J, Felmlee DJ, Baumert TF. 66.  2013. Interferon-lambda polymorphisms and hepatitis C virus clearance revisited. Hepatology 58:439–41 [Google Scholar]
  67. Luzzatto L. 67.  2010. The rise and fall of the antimalarial Lapdap: a lesson in pharmacogenetics. Lancet 376:739–41 [Google Scholar]
  68. Madian AG, Wheeler HE, Jones RB, Dolan ME. 68.  2012. Relating human genetic variation to variation in drug responses. Trends Genet. 28:487–95 [Google Scholar]
  69. Mallal S, Nolan D, Witt C, Masel G, Martin AM. 69.  et al. 2002. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359:727–32 [Google Scholar]
  70. Mallal S, Phillips E, Carosi G, Molina JM, Workman C. 70.  et al. 2008. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 358:568–79 [Google Scholar]
  71. Mammen AL, Gaudet D, Brisson D, Christopher-Stine L, Lloyd TE. 71.  et al. 2012. Increased frequency of DRB1*11:01 in anti–hydroxymethylglutaryl-coenzyme A reductase–associated autoimmune myopathy. Arthritis Care Res. 64:1233–37 [Google Scholar]
  72. Man CB, Kwan P, Baum L, Yu E, Lau KM. 72.  et al. 2007. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48:1015–18 [Google Scholar]
  73. Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD. 73.  et al. 2013. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 502:377–80 [Google Scholar]
  74. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D. 74.  et al. 2011. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364:1134–43 [Google Scholar]
  75. McLeod HL. 75.  2013. Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339:1563–66 [Google Scholar]
  76. Mehta TY, Prajapati LM, Mittal B, Joshi CG, Sheth JJ. 76.  et al. 2009. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J. Dermatol. Venereol. Leprol. 75:579–82 [Google Scholar]
  77. Meyer UA. 77.  2004. Pharmacogenetics—five decades of therapeutic lessons from genetic diversity. Nat. Rev. Genet. 5:669–76 [Google Scholar]
  78. Meyer UA, Zanger UM, Schwab M. 78.  2013. Omics and drug response. Annu. Rev. Pharmacol. Toxicol. 53:475–502 [Google Scholar]
  79. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR. 79.  2007. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc. Natl. Acad. Sci. USA 104:13513–18 [Google Scholar]
  80. Motsinger-Reif AA, Jorgenson E, Relling MV, Kroetz DL, Weinshilboum R. 80.  et al. 2013. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet. Genomics 23:383–94 [Google Scholar]
  81. Moyer VA. 81. US Prev. Serv. Task Force 2012. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157:120–34 [Google Scholar]
  82. Nebert DW, Zhang G, Vesell ES. 82.  2013. Genetic risk prediction: individualized variability in susceptibility to toxicants. Annu. Rev. Pharmacol. Toxicol. 53:355–75 [Google Scholar]
  83. O'Donohue J, Oien KA, Donaldson P, Underhill J, Clare M. 83.  et al. 2000. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47:717–20 [Google Scholar]
  84. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M. 84.  et al. 2011. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum. Mol. Genet. 20:1034–41 [Google Scholar]
  85. Pavlos R, Mallal S, Phillips E. 85.  2012. HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics 13:1285–306 [Google Scholar]
  86. Perez-Andreu V, Teruel R, Corral J, Roldan V, Garcia-Barbera N. 86.  et al. 2012. miR-133a regulates vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), a key protein in the vitamin K cycle. Mol. Med. 18:1466–72 [Google Scholar]
  87. Pirmohamed M. 87.  2010. Acceptance of biomarker-based tests for application in clinical practice: criteria and obstacles. Clin. Pharmacol. Ther. 88:862–66 [Google Scholar]
  88. Pirmohamed M. 88.  2011. Pharmacogenetics: past, present and future. Drug Discov. Today 16:852–61 [Google Scholar]
  89. Pirmohamed M. 89.  2012. Genetics and the potential for predictive tests in adverse drug reactions. Chem. Immunol. Allergy 97:18–31 [Google Scholar]
  90. Pirmohamed M, Aithal GP, Behr E, Daly A, Roden D. 90.  2011. The phenotype standardization project: improving pharmacogenetic studies of serious adverse drug reactions. Clin. Pharmacol. Ther. 89:784–85 [Google Scholar]
  91. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH. 91.  et al. 2013. A randomized trial of genotype-guided dosing of warfarin. N. Engl. J. Med. 369:2294–303 [Google Scholar]
  92. Pirmohamed M, Hughes DA. 92.  2013. Pharmacogenetic tests: the need for a level playing field. Nat. Rev. Drug Discov. 12:3–4 [Google Scholar]
  93. Pirmohamed M, James S, Meakin S, Green C, Scott AK. 93.  et al. 2004. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329:15–19 [Google Scholar]
  94. Poste G. 94.  2011. Bring on the biomarkers. Nature 469:156–57 [Google Scholar]
  95. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H. 95.  et al. 2013. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 45:164–71 [Google Scholar]
  96. Province MA, Goetz MP, Brauch H, Flockhart DA, Hebert JM. 96.  et al. 2013. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. Clin. Pharmacol. Ther. 95:216–27 [Google Scholar]
  97. Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL. 97.  et al. 2012. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 92:87–95 [Google Scholar]
  98. Ramirez AH, Shaffer CM, Delaney JT, Sexton DP, Levy SE. 98.  et al. 2013. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 13:325–29 [Google Scholar]
  99. Rauch A, Kutalik Z, Descombes P, Cai T, Di Iulio J. 99.  et al. 2010. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138:1338–45 [Google Scholar]
  100. Rawlins M. 100.  2008. De testimonio: on the evidence for decisions about the use of therapeutic interventions. Lancet 372:2152–61 [Google Scholar]
  101. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH. 101.  et al. 2011. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89:387–91 [Google Scholar]
  102. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N. 102.  et al. 2014. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383:955–62 [Google Scholar]
  103. Saag M, Balu R, Phillips E, Brachman P, Martorell C. 103.  et al. 2008. High sensitivity of human leukocyte antigen–B*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin. Infect. Dis. 46:1111–18 [Google Scholar]
  104. Salama AK, Flaherty KT. 104.  2013. BRAF in melanoma: current strategies and future directions. Clin. Cancer Res. 19:4326–34 [Google Scholar]
  105. Schwab M, Schäffeler E, Marx C, Fischer C, Lang T. 105.  et al. 2002. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics 12:429–36 [Google Scholar]
  106. 106. SEARCH Collab. Group 2008. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359:789–99 [Google Scholar]
  107. Shuldiner AR, O'Connell JR, Bliden KP, Gandhi A, Ryan K. 107.  et al. 2009. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:849–57 [Google Scholar]
  108. Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X. 108.  et al. 2010. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42:711–14 [Google Scholar]
  109. Sorich MJ, Polasek TM, Wiese MD. 109.  2013. Challenges and limitations in the interpretation of systematic reviews: making sense of clopidogrel and CYP2C19 pharmacogenetics. Clin. Pharmacol. Ther. 94:376–82 [Google Scholar]
  110. Spear BB, Heath-Chiozzi M, Huff J. 110.  2001. Clinical application of pharmacogenetics. Trends Mol. Med. 7:201–4 [Google Scholar]
  111. Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ. 111.  et al. 2011. HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J. Clin. Oncol. 29:667–73 [Google Scholar]
  112. Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A. 112.  et al. 2005. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 293:1485–89 [Google Scholar]
  113. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M. 113.  et al. 2009. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet. 41:1100–4 [Google Scholar]
  114. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K. 114.  et al. 2009. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41:1105–9 [Google Scholar]
  115. Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH. 115.  et al. 2013. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J. Am. Coll. Cardiol. 62:2261–73 [Google Scholar]
  116. Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S. 116.  et al. 2009. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet. Genomics 19:704–9 [Google Scholar]
  117. Tassaneeyakul W, Tiamkao S, Jantararoungtong T, Chen P, Lin SY. 117.  et al. 2010. Association between HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia 51:926–30 [Google Scholar]
  118. Thiesen S, Conroy EJ, Bellis JR, Bracken LE, Mannix HL. 118.  et al. 2013. Incidence, characteristics and risk factors of adverse drug reactions in hospitalized children? A prospective observational cohort study of 6,601 admissions. BMC Med. 11:237 [Google Scholar]
  119. Thompson AJ, Muir AJ, Sulkowski MS, Ge D, Fellay J. 119.  et al. 2010. Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 139:120–29 [Google Scholar]
  120. Urban TJ. 120.  2013. Whole-genome sequencing in pharmacogenetics. Pharmacogenomics 14:345–48 [Google Scholar]
  121. Vatsis KP, Martell KJ, Weber WW. 121.  1991. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc. Natl. Acad. Sci. USA 88:6333–37 [Google Scholar]
  122. Vessell E, Penno M. 122.  1984. A new polymorphism of hepatic drug oxidation in man: family studies on rates of formation of antipyrine metabolites. Biochem. Soc. Trans. 12:74–78 [Google Scholar]
  123. von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q. 123.  et al. 2013. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar. J. 12:112 [Google Scholar]
  124. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR. 124.  et al. 2009. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54:1609–16 [Google Scholar]
  125. Wadelius M, Pirmohamed M. 125.  2007. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J. 7:99–111 [Google Scholar]
  126. Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ. 126.  et al. 2010. MGMT promoter methylation in malignant gliomas: ready for personalized medicine?. Nat. Rev. Neurol. 6:39–51 [Google Scholar]
  127. Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ. 127.  2013. Cancer pharmacogenomics: strategies and challenges. Nat. Rev. Genet. 14:23–34 [Google Scholar]
  128. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D. 128.  et al. 2007. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat. Rev. Drug Discov. 6:904–16 [Google Scholar]
  129. Wilke RA, Ramsey LB, Johnson SG, Maxwell WD, McLeod HL. 129.  et al. 2012. The Clinical Pharmacogenomics Implementation Consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92:112–17 [Google Scholar]
  130. Winter JW, Gaffney D, Shapiro D, Spooner RJ, Marinaki AM. 130.  et al. 2007. Assessment of thiopurine methyltransferase enzyme activity is superior to genotype in predicting myelosuppression following azathioprine therapy in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 25:1069–77 [Google Scholar]
  131. Yip VL, Marson AG, Jorgensen AL, Pirmohamed M, Alfirevic A. 131.  2012. HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin. Pharmacol. Ther. 92:757–65 [Google Scholar]
  132. Yip VL, Pirmohamed M. 132.  2013. Expanding role of pharmacogenomics in the management of cardiovascular disorders. Am. J. Cardiovasc. Drugs 13:151–62 [Google Scholar]
  133. Zhang FR, Liu H, Irwanto A, Fu XA, Li Y. 133.  et al. 2013. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N. Engl. J. Med. 369:1620–28 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error