1932

Abstract

The central preoccupation of human genetics is an effort to understand the genotypic basis of human phenotypic diversity. Although recent progress in identifying the genes that, when mutated, underlie major genetic diseases has been rapid, knowledge of the genetic influences on the vast range of variable, and at least partially heritable, traits that constitute the “normal” range of human phenotypic variation lags. Spectacular advances in our knowledge of human genetic variation have laid the groundwork for a synthesis of insights from medical genetics, population genetics, molecular evolution, and the study of human origins that places basic constraints on models of human genetic individuality. Balancing selection, local adaptation, mutation-selection balance, and founder effects have all extensively shaped contemporary genetic variation. Long-term-balancing selection appears largely to reflect the consequences of host-pathogen arms races. Local adaptation has been widespread—and involved responses to a plethora of selective pressures, some identifiable but most unknown. However, it appears to be a combination of mutation-selection balance and founder effects that largely accounts for genetic individuality. If true, this inference has major implications for future research programs in human genetics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090711-163825
2012-09-22
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/genom/13/1/annurev-genom-090711-163825.html?itemId=/content/journals/10.1146/annurev-genom-090711-163825&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 1000 Genomes Proj. Consort. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73 [Google Scholar]
  2. Allison AC. 2.  1954. The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria. Trans. R. Soc. Trop. Med. Hyg. 48:312–18 [Google Scholar]
  3. Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD. 3.  et al. 2009. Targets of balancing selection in the human genome. Mol. Biol. Evol. 26:2755–64 [Google Scholar]
  4. Asthana S, Schmidt S, Sunyaev S. 4.  2005. A limited role for balancing selection. Trends Genet. 21:30–32 [Google Scholar]
  5. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF. 5.  et al. 2010. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87:316–24 [Google Scholar]
  6. Beadle GW, Tatum EL. 6.  1941. Genetic control of biochemical reactions in Neurospora. Proc. Natl. Acad. Sci. USA 27:499–506 [Google Scholar]
  7. Beatty J. 7.  1987. Weighing the risks: stalemate in the classical/balance controversy. J. Hist. Biol. 20:289–319 [Google Scholar]
  8. Beaumont KA, Wong SS, Ainger SA, Liu YY, Patel MP. 8.  et al. 2011. Melanocortin MC1 receptor in human genetics and model systems. Eur. J. Pharmacol. 660:103–10 [Google Scholar]
  9. Biswas S, Akey JM. 9.  2006. Genomic insights into positive selection. Trends Genet. 22:437–46 [Google Scholar]
  10. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. 10.  2002. Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum. Mutat. 19:575–606 [Google Scholar]
  11. Bubb KL, Bovee D, Buckley D, Haugen E, Kibukawa M. 11.  et al. 2006. Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173:2165–77 [Google Scholar]
  12. Cagliani R, Fumagalli M, Biasin M, Piacentini L, Riva S. 12.  et al. 2010. Long-term balancing selection maintains trans-specific polymorphisms in the human TRIM5 gene. Hum. Genet. 128:577–88 [Google Scholar]
  13. Calafell F, Roubinet F, Ramírez-Soriano A, Saitou N, Bertranpetit J. 13.  et al. 2008. Evolutionary dynamics of the human ABO gene. Hum. Genet. 124:123–35 [Google Scholar]
  14. Campbell MC, Ranciaro A, Froment A, Hirbo J, Omar S. 14.  et al. 2012. Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol. Biol. Evol. 29:1141–53 [Google Scholar]
  15. Charlesworth D. 15.  2006. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2:e64 [Google Scholar]
  16. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R. 16.  et al. 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–72 [Google Scholar]
  17. Conrad DF, Keebler JEM, DePristo MA, Lindsay SJ, Zhang Y. 17.  et al. 2011. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43:712–14 [Google Scholar]
  18. Coventry A, Bull-Otterson LM, Liu X, Clark AG, Maxwell TJ. 18.  et al. 2010. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nat. Commun. 1:131 [Google Scholar]
  19. Crow JF. 19.  1998. 90 years ago: the beginning of hybrid maize. Genetics 148:923–28 [Google Scholar]
  20. Darwin C. 20.  1873. The Expression of the Emotions in Man and Animals New York: Appleton [Google Scholar]
  21. Davenport CB. 21.  2008 (1911). Heredity in Relation to Eugenics Reprinted in Davenport's Dream: 21st Century Reflections on Heredity and Eugenics, ed. JR Inglis, JA Witkowski. Cold Spring Harbor NY: Cold Spring Harb. Lab. [Google Scholar]
  22. Dobzhansky T. 22.  1955. A review of some fundamental concepts and problems of population genetics. Cold Spring Harb. Symp. Quant. Biol. 20:1–15 [Google Scholar]
  23. Dobzhansky T. 23.  1963. Evolutionary and population genetics. Science 142:1131–35 [Google Scholar]
  24. Donnelly MP, Paschou P, Grigorenko E, Gurwitz D, Barta C. 24.  et al. 2012. A global view of the OCA2-HERC2 region and pigmentation. Hum. Genet. 131:683–96 [Google Scholar]
  25. Duffy DL, Zhao ZZ, Sturm RA, Hayward NK, Martin NG. 25.  et al. 2010. Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J. Investig. Dermatol. 130:520–28 [Google Scholar]
  26. Edwards M, Bigham A, Tan J, Li S, Gozdzik A. 26.  et al. 2010. Association of the OCA2 polymorphism His615Arg with melanin content in East Asian populations: further evidence of convergent evolution of skin pigmentation. PLoS Genet. 6:e1000867 [Google Scholar]
  27. Eiberg H, Troelsen J, Nielsen M, Mikkelsen A, Mengel-From J. 27.  et al. 2008. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 123:177–87 [Google Scholar]
  28. Eöry L, Halligan DL, Keightley PD. 28.  2010. Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Mol. Biol. Evol. 27:177–92 [Google Scholar]
  29. Eyre-Walker A, Woolfit M, Phelps T. 29.  2006. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173:891–900 [Google Scholar]
  30. Falconer DS, Mackay TFC. 30.  1996. Introduction to Quantitative Genetics Harlow, UK: Pearson Educ. [Google Scholar]
  31. Fisher RA, Ford EB, Huxley J. 31.  1939. Taste-testing the anthropoid apes. Nature 144:750 [Google Scholar]
  32. Frisch A, Colombo R, Michaelovsky E, Karpati M, Goldman B. 32.  et al. 2004. Origin and spread of the 1278insTATC mutation causing Tay-Sachs disease in Ashkenazi Jews: genetic drift as a robust and parsimonious hypothesis. Hum. Genet. 114:366–76 [Google Scholar]
  33. Fumagalli M, Cagliani R, Pozzoli U, Riva S, Comi GP. 33.  et al. 2009. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res. 19:199–212 [Google Scholar]
  34. Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admettla A, Pattini L. 34.  et al. 2011. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7:e1002355 [Google Scholar]
  35. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM. 35.  et al. 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–34 [Google Scholar]
  36. Gillespie JH. 36.  2004. Population Genetics: A Concise Guide Baltimore: Johns Hopkins Univ. Press [Google Scholar]
  37. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S. 37.  et al. 2011. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43:860–63 [Google Scholar]
  38. Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L. 38.  et al. 2011. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet. 7:e1002334 [Google Scholar]
  39. Girirajan S, Campbell CD, Eichler EE. 39.  2011. Human copy number variation and complex genetic disease. Annu. Rev. Genet. 45:203–26 [Google Scholar]
  40. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT. 40.  et al. 2011. Demographic history and rare allele sharing among human populations. Proc. Natl. Acad. Sci. USA 108:11983–88 [Google Scholar]
  41. Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D. 41.  et al. 1998. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome 9:210–13 [Google Scholar]
  42. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. 42.  2011. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43:1031–34 [Google Scholar]
  43. Harding RM, Healy E, Ray AJ, Ellis NS, Flanagan N. 43.  et al. 2000. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66:1351–61 [Google Scholar]
  44. Hartl DL. 44.  2007. Principles of Population Genetics Sunderland, MA: Sinauer [Google Scholar]
  45. Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A. 45.  et al. 2011. Classic selective sweeps were rare in recent human evolution. Science 331:920–24 [Google Scholar]
  46. Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW. 46.  et al. 2011. The global distribution of the Duffy blood group. Nat. Commun. 2:266 [Google Scholar]
  47. Ingram CJE, Raga TO, Tarekegn A, Browning SL, Elamin MF. 47.  et al. 2009. Multiple rare variants as a cause of a common phenotype: several different lactase persistence associated alleles in a single ethnic group. J. Mol. Evol. 69:579–88 [Google Scholar]
  48. 48. Int. Consort. Blood Press. Genome-Wide Assoc. Stud. 2011. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–9 [Google Scholar]
  49. Itan Y, Jones BL, Ingram CJE, Swallow DM, Thomas MG. 49.  2010. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol. 10:36 [Google Scholar]
  50. Jablonski NG, Chaplin G. 50.  2010. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 107:Suppl. 28962–68 [Google Scholar]
  51. Jeffery KJ, Bangham CR. 51.  2000. Do infectious diseases drive MHC diversity?. Microbes Infect. 2:1335–41 [Google Scholar]
  52. Jensen TGK, Liebert A, Lewinsky R, Swallow DM, Olsen J. 52.  et al. 2011. The −14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity. Hum. Genet. 130:483–93 [Google Scholar]
  53. Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG. 53.  et al. 2008. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40:592–99 [Google Scholar]
  54. Kaplan F. 54.  1998. Tay-Sachs disease carrier screening: a model for prevention of genetic disease. Genet. Test. 2:271–92 [Google Scholar]
  55. Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM. 55.  2006. Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Res. 16:980–89 [Google Scholar]
  56. Kevles DJ. 56.  1985. In the Name of Eugenics: Genetics and the Uses of Human Heredity New York: Knopf [Google Scholar]
  57. Kim U-K, Jorgenson E, Coon H, Leppert M, Risch N. 57.  et al. 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–25 [Google Scholar]
  58. Kumar S, Hedges SB. 58.  1998. A molecular timescale for vertebrate evolution. Nature 392:917–20 [Google Scholar]
  59. Lamason RL, Mohideen M-APK, Mest JR, Wong AC, Norton HL. 59.  et al. 2005. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–86 [Google Scholar]
  60. Lander ES. 60.  1996. The new genomics: global views of biology. Science 274:536–39 [Google Scholar]
  61. Laval G, Patin E, Barreiro LB, Quintana-Murci L. 61.  2010. Formulating a historical and demographic model of recent human evolution based on resequencing data from noncoding regions. PLoS ONE 5:e10284 [Google Scholar]
  62. Lawlor DA, Ward FE, Ennis PD, Jackson AP, Parham P. 62.  1988. HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature 335:268–71 [Google Scholar]
  63. Lewinsky RH, Jensen TGK, Møller J, Stensballe A, Olsen J. 63.  et al. 2005. T−13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 14:3945–53 [Google Scholar]
  64. Li H, Durbin R. 64.  2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96 [Google Scholar]
  65. López C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. 65.  2010. Mechanisms of genetically-based resistance to malaria. Gene 467:1–12 [Google Scholar]
  66. Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. 66.  2011. Clan genomics and the complex architecture of human disease. Cell 147:32–43 [Google Scholar]
  67. Lynch M. 67.  2010. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107:961–68 [Google Scholar]
  68. Marsh SGE, Parham P, Barber LD. 68.  2000. The HLA FactsBook San Diego: Academic [Google Scholar]
  69. Marth GT, Czabarka E, Murvai J, Sherry ST. 69.  2004. The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166:351–72 [Google Scholar]
  70. Marth GT, Yu F, Indap AR, Garimella K, Gravel S. 70.  et al. 2011. The functional spectrum of low-frequency coding variation. Genome Biol. 12:R84 [Google Scholar]
  71. Mayer WE, Jonker M, Klein D, Ivanyi P, van Seventer G. 71.  et al. 1988. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J. 7:2765–74 [Google Scholar]
  72. McCarthy MI, Hirschhorn JN. 72.  2008. Genome-wide association studies: potential next steps on a genetic journey. Hum. Mol. Genet. 17:R156–65 [Google Scholar]
  73. Mead S, Stumpf MPH, Whitfield J, Beck JA, Poulter M. 73.  et al. 2003. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300:640–43 [Google Scholar]
  74. Mead S, Whitfield J, Poulter M, Shah P, Uphill J. 74.  et al. 2009. A novel protective prion protein variant that colocalizes with kuru exposure. N. Engl. J. Med. 361:2056–65 [Google Scholar]
  75. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS. 75.  et al. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79 [Google Scholar]
  76. Motulsky AG. 76.  1995. Jewish diseases and origins. Nat. Genet. 9:99–101 [Google Scholar]
  77. Muller HJ. 77.  1950. Our load of mutations. Am. J. Hum. Genet. 2:111–76 [Google Scholar]
  78. Muller HJ. 78.  1956. Genetic principles in human populations. Am. J. Psychiatry 113:481–91 [Google Scholar]
  79. Müller-Hill B. 79.  1988. Murderous Science: Elimination by Scientific Selection of Jews, Gypsies, and Others, Germany 1933–1945 Oxford, UK: Oxford Univ. Press [Google Scholar]
  80. Nachman MW, Crowell SL. 80.  2000. Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304 [Google Scholar]
  81. Need AC, Kasperaviciute D, Cirulli ET, Goldstein DB. 81.  2009. A genome-wide genetic signature of Jewish ancestry perfectly separates individuals with and without full Jewish ancestry in a large random sample of European Americans. Genome Biol. 10:R7 [Google Scholar]
  82. Neel JV. 82.  1962. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?. Am. J. Hum. Genet. 14:353–62 [Google Scholar]
  83. Norton HL, Kittles RA, Parra E, McKeigue P, Mao X. 83.  et al. 2007. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol. Biol. Evol. 24:710–22 [Google Scholar]
  84. Olson MV. 84.  1999. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64:18–23 [Google Scholar]
  85. Olson MV. 85.  2011. Genome-sequencing anniversary: what does a “normal” human genome look like?. Science 331:872 [Google Scholar]
  86. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ. 86.  et al. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43:585–89 [Google Scholar]
  87. Parra EJ. 87.  2007. Human pigmentation variation: evolution, genetic basis, and implications for public health. Am. J. Phys. Anthropol. 134:Suppl. 4585–105 [Google Scholar]
  88. Pauling L, Itano HA, Singer SJ, Wells IC. 88.  1949. Sickle cell anemia, a molecular disease. Science 110:543–48 [Google Scholar]
  89. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ. 89.  et al. 2009. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19:826–37 [Google Scholar]
  90. Pinker S. 90.  2002. The Blank Slate: The Modern Denial of Human Nature New York: Viking [Google Scholar]
  91. Poolman EM, Galvani AP. 91.  2007. Evaluating candidate agents of selective pressure for cystic fibrosis. J. R. Soc. Interface 4:91–98 [Google Scholar]
  92. Poulter M, Hollox E, Harvey CB, Mulcare C, Peuhkuri K. 92.  et al. 2003. The causal element for the lactase persistence/non-persistence polymorphism is located in a 1 Mb region of linkage disequilibrium in Europeans. Ann. Hum. Genet. 67:298–311 [Google Scholar]
  93. Pritchard JK. 93.  2001. Are rare variants responsible for susceptibility to complex diseases?. Am. J. Hum. Genet. 69:124–37 [Google Scholar]
  94. Pritchard JK. 94.  2011. Whole-genome sequencing data offer insights into human demography. Nat. Genet. 43:923–25 [Google Scholar]
  95. Pritchard JK, Pickrell JK, Coop G. 95.  2010. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20:R208–15 [Google Scholar]
  96. Raymond CK, Kas A, Paddock M, Qiu R, Zhou Y. 96.  et al. 2005. Ancient haplotypes of the HLA Class II region. Genome Res. 15:1250–57 [Google Scholar]
  97. Risch N, Tang H, Katzenstein H, Ekstein J. 97.  2003. Geographic distribution of disease mutations in the Ashkenazi Jewish population supports genetic drift over selection. Am. J. Hum. Genet. 72:812–22 [Google Scholar]
  98. Roach JC, Glusman G, Smit AFA, Huff CD, Hubley R. 98.  et al. 2010. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328:636–39 [Google Scholar]
  99. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P. 99.  et al. 2006. Positive natural selection in the human lineage. Science 312:1614–20 [Google Scholar]
  100. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E. 100.  et al. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–18 [Google Scholar]
  101. Saitou N, Yamamoto F. 101.  1997. Evolution of primate ABO blood group genes and their homologous genes. Mol. Biol. Evol. 14:399–411 [Google Scholar]
  102. Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T. 102.  et al. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350:2682–88 [Google Scholar]
  103. Seto NO, Compston CA, Evans SV, Bundle DR, Narang SA. 103.  et al. 1999. Donor substrate specificity of recombinant human blood group A, B and hybrid A/B glycosyltransferases expressed in Escherichia coli. Eur. J. Biochem. 259:770–75 [Google Scholar]
  104. Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ. 104.  et al. 2004. A high-density admixture map for disease gene discovery in African Americans. Am. J. Hum. Genet. 74:1001–13 [Google Scholar]
  105. Speakman JR. 105.  2006. Thrifty genes for obesity and the metabolic syndrome—time to call off the search?. Diabetes Vasc. Dis. Res. 3:7–11 [Google Scholar]
  106. Speakman JR. 106.  2008. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the “drifty gene” hypothesis. Int. J. Obes. 32:1611–17 [Google Scholar]
  107. Stewart CA, Horton R, Allcock RJN, Ashurst JL, Atrazhev AM. 107.  et al. 2004. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res. 14:1176–87 [Google Scholar]
  108. Sturm RA. 108.  2009. Molecular genetics of human pigmentation diversity. Hum. Mol. Genet. 18:R9–17 [Google Scholar]
  109. Sturm RA, Duffy DL, Zhao ZZ, Leite FPN, Stark MS. 109.  et al. 2008. A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am. J. Hum. Genet. 82:424–31 [Google Scholar]
  110. Suhre K, Shin S-Y, Petersen A-K, Mohney RP, Meredith D. 110.  et al. 2011. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60 [Google Scholar]
  111. Swallow DM. 111.  2003. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37:197–219 [Google Scholar]
  112. Takahata N, Nei M. 112.  1990. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–78 [Google Scholar]
  113. Tang K, Thornton KR, Stoneking M. 113.  2007. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol. 5:e171 [Google Scholar]
  114. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. 114.  1995. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10:224–28 [Google Scholar]
  115. Troelsen JT, Olsen J, Møller J, Sjöström H. 115.  2003. An upstream polymorphism associated with lactase persistence has increased enhancer activity. Gastroenterology 125:1686–94 [Google Scholar]
  116. Verrelli BC, McDonald JH, Argyropoulos G, Destro-Bisol G, Froment A. 116.  et al. 2002. Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am. J. Hum. Genet. 71:1112–28 [Google Scholar]
  117. Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S. 117.  et al. 2007. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am. J. Hum. Genet. 81:1104–10 [Google Scholar]
  118. Vissers LELM, de Ligt J, Gilissen C, Janssen I, Steehouwer M. 118.  et al. 2010. A de novo paradigm for mental retardation. Nat. Genet. 42:1109–12 [Google Scholar]
  119. Voight BF, Kudaravalli S, Wen X, Pritchard JK. 119.  2006. A map of recent positive selection in the human genome. PLoS Biol. 4:e72 [Google Scholar]
  120. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB. 120.  et al. 2008. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–43 [Google Scholar]
  121. Wang ET, Kodama G, Baldi P, Moyzis RK. 121.  2006. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA 103:135–40 [Google Scholar]
  122. Williams RJ. 122.  1956. Biochemical Individuality: The Basis for the Genetotrophic Concept New York: Wiley [Google Scholar]
  123. Wooding S, Bufe B, Grassi C, Howard MT, Stone AC. 123.  et al. 2006. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440:930–34 [Google Scholar]
  124. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B. 124.  et al. 2011. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43:864–68 [Google Scholar]
  125. Yampolsky LY, Kondrashov FA, Kondrashov AS. 125.  2005. Distribution of the strength of selection against amino acid replacements in human proteins. Hum. Mol. Genet. 14:3191–201 [Google Scholar]
  126. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK. 126.  et al. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42:565–69 [Google Scholar]
  127. Zimmerman PA, Woolley I, Masinde GL, Miller SM, McNamara DT. 127.  et al. 1999. Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea. Proc. Natl. Acad. Sci. USA 96:13973–77 [Google Scholar]
/content/journals/10.1146/annurev-genom-090711-163825
Loading
/content/journals/10.1146/annurev-genom-090711-163825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error