Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson RG, Brown MS, Goldstein JL. 1.  1977. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10:351–64 [Google Scholar]
  2. Anderson RG, Goldstein JL, Brown MS. 2.  1976. Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc. Natl. Acad. Sci. USA 73:2434–38 [Google Scholar]
  3. Andersson HC, Kratz L, Kelley R. 3.  2002. Desmosterolosis presenting with multiple congenital anomalies and profound developmental delay. Am. J. Med. Genet. 113:315–19 [Google Scholar]
  4. Battaile KP, Steiner RD. 4.  2000. Smith-Lemli-Opitz syndrome: the first malformation syndrome associated with defective cholesterol synthesis. Mol. Genet. Metab. 71:154–62 [Google Scholar]
  5. Bhatti HN, Khera RA. 5.  2012. Biological transformations of steroidal compounds: a review. Steroids 77:1267–90 [Google Scholar]
  6. Björkbom A, Róg T, Kaszuba K, Kurita M, Yamaguchi S. 6.  et al. 2010. Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol. Biophys. J. 99:3300–8 [Google Scholar]
  7. Blohm TR, Stevens VL, Kariya T, Alig HN. 7.  1970. Effects of clomiphene cis and trans isomers on sterol metabolism in the rat. Biochem. Pharmacol. 19:2231–41 [Google Scholar]
  8. Boadu E, Francis GA. 8.  2006. The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J. Mol. Med. 84:266–75 [Google Scholar]
  9. Boadu E, Nelson RC, Francis GA. 9.  2012. ABCA1-dependent mobilization of lysosomal cholesterol requires functional Niemann-Pick C2 but not Niemann-Pick C1 protein. Biochim. Biophys. Acta 1821:396–404 [Google Scholar]
  10. Briscoe J, Therond PP. 10.  2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–29 [Google Scholar]
  11. Brown MS, Goldstein JL. 11.  1975. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6:307–16 [Google Scholar]
  12. Brunetti-Pierri N, Corso G, Rossi M, Ferrari P, Balli F. 12.  et al. 2002. Lathosterolosis, a novel multiple-malformation/mental retardation syndrome due to deficiency of 3β-hydroxysteroid-Δ5-desaturase. Am. J. Hum. Genet. 71:952–58 [Google Scholar]
  13. Brunham LR, Singaraja RR, Hayden MR. 13.  2006. Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu. Rev. Nutr. 26:105–29 [Google Scholar]
  14. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D. 14.  et al. 1997. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–31 [Google Scholar]
  15. Charman M, Kennedy BE, Osborne N, Karten B. 15.  2010. MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick type C1 protein. J. Lipid Res. 51:1023–34 [Google Scholar]
  16. Chen LL, Wang GZ, Zhang HY. 16.  2007. Sterol biosynthesis and prokaryotes-to-eukaryotes evolution. Biochem. Biophys. Res. Commun. 363:885–88 [Google Scholar]
  17. Choi HY, Karten B, Chan T, Vance JE, Greer WL. 17.  et al. 2003. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J. Biol. Chem. 278:32569–77 [Google Scholar]
  18. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. 18.  2002. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–8 [Google Scholar]
  19. Clayton P, Mills K, Keeling J, FitzPatrick D. 19.  1996. Desmosterolosis: a new inborn error of cholesterol biosynthesis. Lancet 348:404 [Google Scholar]
  20. Correa-Cerro LS, Wassif CA, Kratz L, Miller GF, Munasinghe JP. 20.  et al. 2006. Development and characterization of a hypomorphic Smith-Lemli-Opitz syndrome mouse model and efficacy of simvastatin therapy. Hum. Mol. Genet. 15:839–51 [Google Scholar]
  21. Cox T, Lachmann R, Hollak C, Aerts J, van Weely S. 21.  et al. 2000. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355:1481–85 [Google Scholar]
  22. Davies BS, Rine J. 22.  2006. A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174:191–201 [Google Scholar]
  23. Diaz-Stransky A, Tierney E. 23.  2012. Cognitive and behavioral aspects of Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. C 160C:295–300 [Google Scholar]
  24. Dietschy JM, Turley SD. 24.  2001. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12:105–12 [Google Scholar]
  25. Dietschy JM, Turley SD. 25.  2004. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45:1375–97 [Google Scholar]
  26. Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V. 26.  et al. 2009. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front. Neuroendocrinol. 30:259–301 [Google Scholar]
  27. Elliot-Smith E, Speak AO, Lloyd-Evans E, Smith DA, Spoel AC. 27.  et al. 2008. Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol. Genet. Metab. 94:204–11 [Google Scholar]
  28. Fitzky BU, Witsch-Baumgartner M, Erdel M, Lee JN, Paik YK. 28.  et al. 1998. Mutations in the Δ7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome. Proc. Natl. Acad. Sci. USA 95:8181–86 [Google Scholar]
  29. FitzPatrick DR, Keeling JW, Evans MJ, Kan AE, Bell JE. 29.  et al. 1998. Clinical phenotype of desmosterolosis. Am. J. Med. Genet. 75:145–52 [Google Scholar]
  30. Fliesler SJ, Richards MJ, Miller C, Peachey NS, Cenedella RJ. 30.  2000. Retinal structure and function in an animal model that replicates the biochemical hallmarks of desmosterolosis. Neurochem. Res. 25:685–94 [Google Scholar]
  31. Fredrickson DS. 31.  1964. The inheritance of high density lipoprotein deficiency (Tangier disease). J. Clin. Investig. 43:228–36 [Google Scholar]
  32. Fredrickson DS, Altrocchi OH, Avioli LV, Goodman DS, Goodman HC. 32.  1961. Tangier disease: combined clinical staff conference at the National Institute of Health. Ann. Intern. Med 551016–31 [Google Scholar]
  33. Freeman KA, Eagle R, Merkens LS, Sikora D, Pettit-Kekel K. 33.  et al. 2013. Challenging behavior in Smith-Lemli-Opitz syndrome: initial test of biobehavioral influences. Cogn. Behav. Neurol. 26:23–29 [Google Scholar]
  34. Frolov A, Zielinski SE, Crowley JR, Dudley-Rucker N, Schaffer JE, Ory DS. 34.  2003. NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol-derived oxysterols. J. Biol. Chem. 278:25517–25 [Google Scholar]
  35. Galea AM, Brown AJ. 35.  2009. Special relationship between sterols and oxygen: Were sterols an adaptation to aerobic life?. Free Radic. Biol. Med. 47:880–89 [Google Scholar]
  36. Gibbons GF. 36.  2002. From gallstones to genes: two hundred years of sterol research. A tribute to George J. Schroepfer Jr. Lipids 37:1153–62 [Google Scholar]
  37. Goedeke L, Fernández-Hernando C. 37.  2012. Regulation of cholesterol homeostasis. Cell. Mol. Life Sci. 69:915–30 [Google Scholar]
  38. Goldstein JL, Brown MS. 38.  1974. Binding and degradation of low density lipoproteins by cultured human fibroblasts: comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249:5153–62 [Google Scholar]
  39. Gondre-Lewis MC, Petrache HI, Wassif CA, Harries D, Parsegian A. 39.  et al. 2006. Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J. Cell Sci. 119:1876–85 [Google Scholar]
  40. Groen AK, Bloks VW, Bandsma RH, Ottenhoff R, Chimini G, Kuipers F. 40.  2001. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J. Clin. Investig. 108:843–50 [Google Scholar]
  41. Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O. 41.  et al. 2009. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20:2083–95 [Google Scholar]
  42. Gulati S, Liu Y, Munkacsi AB, Wilcox L, Sturley SL. 42.  2010. Sterols and sphingolipids: dynamic duo or partners in crime?. Prog. Lipid Res. 49:353–65 [Google Scholar]
  43. Hannun YA, Obeid LM. 43.  2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9:139–50 [Google Scholar]
  44. Hayashi H, Campenot RB, Vance DE, Vance JE. 44.  2004. Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J. Biol. Chem. 279:14009–15 [Google Scholar]
  45. He M, Kratz LE, Michel JJ, Vallejo AN, Ferris L. 45.  et al. 2011. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. J. Clin. Investig. 121:976–84 [Google Scholar]
  46. Herman GE. 46.  2000. X-linked dominant disorders of cholesterol biosynthesis in man and mouse. Biochim. Biophys. Acta 1529:357–73 [Google Scholar]
  47. Ho AC, Fung CW, Siu TS, Ma OC, Lam CW. 47.  et al. 2014. Lathosterolosis: a disorder of cholesterol biosynthesis resembling Smith-Lemli-Opitz Syndrome. JIMD Rep. 12:129–34 [Google Scholar]
  48. Hoffman HN, Fredrickson DS. 48.  1965. Tangier disease (familial high density lipoprotein deficiency): clinical and genetic features in two adults. Am. J. Med. 39:582–93 [Google Scholar]
  49. Holland KA, Holland IB. 49.  2005. Adventures with ABC-proteins: highly conserved ATP-dependent transporters. Acta Microbiol. Immunol. Hung. 52:309–22 [Google Scholar]
  50. Hughes AL, Todd BL, Espenshade PJ. 50.  2005. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120:831–42 [Google Scholar]
  51. Huynh KK, Gershenzon E, Grinstein S. 51.  2008. Cholesterol accumulation by macrophages impairs phagosome maturation. J. Biol. Chem. 283:35745–55 [Google Scholar]
  52. Imrie J, Dasgupta S, Besley GT, Harris C, Heptinstall L. 52.  et al. 2007. The natural history of Niemann-Pick disease type C in the UK. J. Inherit. Metab. Dis. 30:51–59 [Google Scholar]
  53. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. 53.  2008. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 105:15287–92 [Google Scholar]
  54. Irons M, Elias ER, Salen G, Tint GS, Batta AK. 54.  1993. Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet 341:1414 [Google Scholar]
  55. Jenkins KT, Merkens LS, Tubb MR, Myatt L, Davidson WS. 55.  et al. 2008. Enhanced placental cholesterol efflux by fetal HDL in Smith-Lemli-Opitz syndrome. Mol. Genet. Metab. 94:240–47 [Google Scholar]
  56. Jeyakumar M, Butters TD, Cortina-Borja M, Hunnam V, Proia RL. 56.  et al. 1999. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc. Natl. Acad. Sci. USA 96:6388–93 [Google Scholar]
  57. Jurevics H, Morell P. 57.  1995. Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64:895–901 [Google Scholar]
  58. Khachadurian AK. 58.  1964. The inheritance of essential familial hypercholesterolemia. Am. J. Med. 37:402–7 [Google Scholar]
  59. Kolovou GD, Mikhailidis DP, Anagnostopoulou KK, Daskalopoulou SS, Cokkinos DV. 59.  2006. Tangier disease four decades of research: a reflection of the importance of HDL. Curr. Med. Chem. 13:771–82 [Google Scholar]
  60. Krakowiak PA, Wassif CA, Kratz L, Cozma D, Kovarova M. 60.  et al. 2003. Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency. Hum. Mol. Genet. 12:1631–41 [Google Scholar]
  61. Kuehnle K, Crameri A, Kalin RE, Luciani P, Benvenuti S. 61.  et al. 2008. Prosurvival effect of DHCR24/seladin-1 in acute and chronic responses to oxidative stress. Mol. Cell. Biol. 28:539–50 [Google Scholar]
  62. Lachmann RH. 62.  2003. Miglustat. Oxford GlycoSciences/Actelion. Curr. Opin. Investig. Drugs 4:472–79 [Google Scholar]
  63. Lachmann RH. 63.  2006. Miglustat: substrate reduction therapy for glycosphingolipid lysosomal storage disorders. Drugs Today 42:29–38 [Google Scholar]
  64. Lamb DC, Jackson CJ, Warrilow AG, Manning NJ, Kelly DE, Kelly SL. 64.  2007. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis. Mol. Biol. Evol. 24:1714–21 [Google Scholar]
  65. Légaré C, Thabet M, Gatti JL, Sullivan R. 65.  2006. HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: consequence of vasectomy. Mol. Hum. Reprod. 12:461–68 [Google Scholar]
  66. Lemaire-Ewing S, Lagrost L, Neel D. 66.  2012. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis 221:303–10 [Google Scholar]
  67. Liscum L, Faust JR. 67.  1989. The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-β-[2-(diethylamino)ethoxy]androst-5-en-17-one. J. Biol. Chem. 264:11796–806 [Google Scholar]
  68. Liu Y, Tang C. 68.  2012. Regulation of ABCA1 functions by signaling pathways. Biochim. Biophys. Acta 1821:522–29 [Google Scholar]
  69. Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E. 69.  et al. 2008. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14:1247–55 [Google Scholar]
  70. Lloyd-Evans E, Platt FM. 70.  2010. Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 11:419–28 [Google Scholar]
  71. Lossinsky AS, Shivers RR. 71.  2004. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Histol. Histopathol. 19:535–64 [Google Scholar]
  72. Marcos J, Guo LW, Wilson WK, Porter FD, Shackleton C. 72.  2004. The implications of 7-dehydrosterol-7-reductase deficiency (Smith-Lemli-Opitz syndrome) to neurosteroid production. Steroids 69:51–60 [Google Scholar]
  73. Mauch DH, Nägler K, Schumacher S, Goritz C, Müller EC. 73.  et al. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–57 [Google Scholar]
  74. McLean KJ, Hans M, Munro AW. 74.  2012. Cholesterol, an essential molecule: diverse roles involving cytochrome P450 enzymes. Biochem. Soc. Trans. 40:587–93 [Google Scholar]
  75. Milunsky JM, Maher TA, Metzenberg AB. 75.  2003. Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi-Hunermann-Happle syndrome and a mutation in EBP. Am. J. Med. Genet. A 116A:249–54 [Google Scholar]
  76. Mineo C, Shaul PW. 76.  2012. Functions of scavenger receptor class B, type I in atherosclerosis. Curr. Opin. Lipidol. 23:487–93 [Google Scholar]
  77. Morgan AJ, Platt FM, Lloyd-Evans E, Galione A. 77.  2011. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem. J. 439:349–74 [Google Scholar]
  78. Müller C. 78.  1938. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 89:75–84 [Google Scholar]
  79. Munro S. 79.  2003. Lipid rafts: elusive or illusive?. Cell 115:377–88 [Google Scholar]
  80. Natowicz MR, Evans JE. 80.  1994. Abnormal bile acids in the Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. 50:364–67 [Google Scholar]
  81. Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT. 81.  et al. 2000. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290:2298–301 [Google Scholar]
  82. Nes WD. 82.  2011. Biosynthesis of cholesterol and other sterols. Chem. Rev. 111:6423–51 [Google Scholar]
  83. Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM. 83.  et al. 2001. Cellular localization and trafficking of the human ABCA1 transporter. J. Biol. Chem. 276:27584–90 [Google Scholar]
  84. Neufeld EB, Stonik JA, Demosky SJ Jr, Knapper CL, Combs CA. 84.  et al. 2004. The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. J. Biol. Chem. 279:15571–78 [Google Scholar]
  85. Nofer JR, Remaley AT. 85.  2005. Tangier disease: still more questions than answers. Cell. Mol. Life Sci. 62:2150–60 [Google Scholar]
  86. Nowaczyk MJ, Tan M, Hamid JS, Allanson JE. 86.  2012. Smith-Lemli-Opitz syndrome: objective assessment of facial phenotype. Am. J. Med. Genet. A 158A:1020–28 [Google Scholar]
  87. Nowaczyk MJ, Waye JS, Douketis JD. 87.  2006. DHCR7 mutation carrier rates and prevalence of the RSH/Smith-Lemli-Opitz syndrome: Where are the patients?. Am. J. Med. Genet. A 140:2057–62 [Google Scholar]
  88. Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. 88.  2002. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41:66–97 [Google Scholar]
  89. Ono K. 89.  2012. Current concept of reverse cholesterol transport and novel strategy for atheroprotection. J. Cardiol. 60:339–43 [Google Scholar]
  90. Oosterwijk JC, Mansour S, van Noort G, Waterham HR, Hall CM, Hennekam RC. 90.  2003. Congenital abnormalities reported in Pelger-Huet homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J. Med. Genet. 40:937–41 [Google Scholar]
  91. Oram JF. 91.  2002. Molecular basis of cholesterol homeostasis: lessons from Tangier disease and ABCA1. Trends Mol. Med. 8:168–73 [Google Scholar]
  92. Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. 92.  2012. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol. Genet. Metab. 106:330–44 [Google Scholar]
  93. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. 93.  2007. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 6:765–72 [Google Scholar]
  94. Pfrieger FW. 94.  2003. Outsourcing in the brain: Do neurons depend on cholesterol delivery by astrocytes?. BioEssays 25:72–78 [Google Scholar]
  95. Pike LJ. 95.  2004. Lipid rafts: heterogeneity on the high seas. Biochem. J. 378:281–92 [Google Scholar]
  96. Platt FM, Jeyakumar M. 96.  2008. Substrate reduction therapy. Acta Paediatr. Suppl. 97:88–93 [Google Scholar]
  97. Platt FM, Neises GR, Dwek RA, Butters TD. 97.  1994. N-Butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269:8362–65 [Google Scholar]
  98. Platt FM, Neises GR, Reinkensmeier G, Townsend MJ, Perry VH. 98.  et al. 1997. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276:428–31 [Google Scholar]
  99. Porter FD. 99.  2008. Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 16:535–41 [Google Scholar]
  100. Porter FD, Herman GE. 100.  2011. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 52:6–34 [Google Scholar]
  101. Puntoni M, Sbrana F, Bigazzi F, Sampietro T. 101.  2012. Tangier disease: epidemiology, pathophysiology, and management. Am. J. Cardiovasc. Drugs 12:303–11 [Google Scholar]
  102. Quelin C, Loget P, Verloes A, Bazin A, Bessieres B. 102.  et al. 2012. Phenotypic spectrum of fetal Smith-Lemli-Opitz syndrome. Eur. J. Med. Genet. 55:81–90 [Google Scholar]
  103. Reeves VL, Thomas CM, Smart EJ. 103.  2012. Lipid rafts, caveolae and GPI-linked proteins. Adv. Exp. Med. Biol. 729:3–13 [Google Scholar]
  104. Remaley AT, Rust S, Rosier M, Knapper C, Naudin L. 104.  et al. 1999. Human ATP-binding cassette transporter 1 (ABC1): genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc. Natl. Acad. Sci. USA 96:12685–90 [Google Scholar]
  105. Riobo NA. 105.  2012. Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer. Curr. Opin. Pharmacol. 12:736–41 [Google Scholar]
  106. Rosenfeld E, Beauvoit B, Blondin B, Salmon JM. 106.  2003. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics. Appl. Environ. Microbiol. 69:113–21 [Google Scholar]
  107. Russell DW. 107.  2009. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 50:Suppl.S120–25 [Google Scholar]
  108. Rust S, Rosier M, Funke H, Real J, Amoura Z. 108.  et al. 1999. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 22:352–55 [Google Scholar]
  109. Sahoo D, Trischuk TC, Chan T, Drover VA, Ho S. 109.  et al. 2004. ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytes. J. Lipid Res. 45:1122–31 [Google Scholar]
  110. Sampietro T, Puntoni M, Bigazzi F, Pennato B, Sbrana F. 110.  et al. 2009. Images in cardiovascular medicine: Tangier disease in severely progressive coronary and peripheral artery disease. Circulation 119:2741–42 [Google Scholar]
  111. Schaaf CP, Koster J, Katsonis P, Kratz L, Shchelochkov OA. 111.  et al. 2011. Desmosterolosis—phenotypic and molecular characterization of a third case and review of the literature. Am. J. Med. Genet. A 155A:1597–604 [Google Scholar]
  112. Shackleton CH. 112.  2012. Role of a disordered steroid metabolome in the elucidation of sterol and steroid biosynthesis. Lipids 47:1–12 [Google Scholar]
  113. Smith DW, Lemli L, Opitz JM. 113.  1964. A newly recognized syndrome of multiple congenital anomalies. J. Pediatr. 64:210–17 [Google Scholar]
  114. Speak AO, te Vruchte D, Davis LC, Morgan AJ, Smith DA. 114.  et al. 2013. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood 123:51–60 [Google Scholar]
  115. Steck TL, Lange Y. 115.  2010. Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol. 20:680–87 [Google Scholar]
  116. Strickland DK, Gonias SL, Argraves WS. 116.  2002. Diverse roles for the LDL receptor family. Trends Endocrinol. Metab. 13:66–74 [Google Scholar]
  117. Summons RE, Bradley AS, Jahnke LL, Waldbauer JR. 117.  2006. Steroids, triterpenoids and molecular oxygen. Philos. Trans. R. Soc. Lond. B 361:951–68 [Google Scholar]
  118. Svoboda MD, Christie JM, Eroglu Y, Freeman KA, Steiner RD. 118.  2012. Treatment of Smith-Lemli-Opitz syndrome and other sterol disorders. Am. J. Med. Genet. C 160C:285–94 [Google Scholar]
  119. Takahashi K, Kimura Y, Nagata K, Yamamoto A, Matsuo M, Ueda K. 119.  2005. ABC proteins: key molecules for lipid homeostasis. Med. Mol. Morphol. 38:2–12 [Google Scholar]
  120. Tint GS, Irons M, Elias ER, Batta AK, Frieden R. 120.  et al. 1994. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N. Engl. J. Med. 330:107–13 [Google Scholar]
  121. Tsutsui K. 121.  2012. Neurosteroid biosynthesis and action during cerebellar development. Cerebellum 11:414–15 [Google Scholar]
  122. Tusnady GE, Sarkadi B, Simon I, Varadi A. 122.  2006. Membrane topology of human ABC proteins. FEBS Lett. 580:1017–22 [Google Scholar]
  123. van Meer G, Halter D, Sprong H, Somerharju P, Egmond MR. 123.  2006. ABC lipid transporters: extruders, flippases, or flopless activators?. FEBS Lett. 580:1171–77 [Google Scholar]
  124. Vanier MT. 124.  1999. Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem. Res. 24:481–89 [Google Scholar]
  125. Vanier MT. 125.  2010. Niemann-Pick disease type C. Orphanet J. Rare Dis. 5:16 [Google Scholar]
  126. Vaughan AM, Oram JF. 126.  2006. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J. Lipid Res. 47:2433–43 [Google Scholar]
  127. Verheijen MHG, Camargo N, Verdier V, Nadra K, de Preux Charles AS. 127.  et al. 2009. SCAP is required for timely and proper myelin membrane synthesis. Proc. Natl. Acad. Sci. USA 106:21383–88 [Google Scholar]
  128. Waage-Baudet H, Lauder JM, Dehart DB, Kluckman K, Hiller S. 128.  et al. 2003. Abnormal serotonergic development in a mouse model for the Smith-Lemli-Opitz syndrome: implications for autism. Int. J. Dev. Neurosci. 21:451–59 [Google Scholar]
  129. Walkley SU. 129.  2009. Pathogenic cascades in lysosomal disease: why so complex?. J. Inherit. Metab. Dis. 32:181–89 [Google Scholar]
  130. Wassif CA, Brownson KE, Sterner AL, Forlino A, Zerfas PM. 130.  et al. 2007. HEM dysplasia and ichthyosis are likely laminopathies and not due to 3β-hydroxysterol Δ14-reductase deficiency. Hum. Mol. Genet. 16:1176–87 [Google Scholar]
  131. Wassif CA, Maslen C, Kachilele-Linjewile S, Lin D, Linck LM. 131.  et al. 1998. Mutations in the human sterol Δ7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am. J. Hum. Genet. 63:55–62 [Google Scholar]
  132. Wassif CA, Vied D, Tsokos M, Connor WE, Steiner RD, Porter FD. 132.  2002. Cholesterol storage defect in RSH/Smith-Lemli-Opitz syndrome fibroblasts. Mol. Genet. Metab. 75:325–34 [Google Scholar]
  133. Wassif CA, Zhu P, Kratz L, Krakowiak PA, Battaile KP. 133.  et al. 2001. Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith-Lemli-Opitz syndrome. Hum. Mol. Genet. 10:555–64 [Google Scholar]
  134. Waterham HR, Koster J, Mooyer P, Noort Gv G, Kelley RI. 134.  et al. 2003. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the lamin B receptor gene. Am. J. Hum. Genet. 72:1013–17 [Google Scholar]
  135. Waterham HR, Koster J, Romeijn GJ, Hennekam RC, Vreken P. 135.  et al. 2001. Mutations in the 3β-hydroxysterol Δ24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am. J. Hum. Genet. 69:685–94 [Google Scholar]
  136. Waterham HR, Wijburg FA, Hennekam RCM, Vreken P, Poll-The BT. 136.  et al. 1998. Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene. Am. J. Hum. Genet. 63:329–38 [Google Scholar]
  137. Wraith JE, Imrie J. 137.  2009. New therapies in the management of Niemann-Pick type C disease: clinical utility of miglustat. Ther. Clin. Risk Manag. 5:877–87 [Google Scholar]
  138. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. 138.  2007. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J. Biol. Chem. 282:23525–31 [Google Scholar]
  139. Yamamoto T, Davis CG, Brown MS, Schneider WJ, Casey ML. 139.  et al. 1984. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39:27–38 [Google Scholar]
  140. Zervas M, Somers KL, Thrall MA, Walkley SU. 140.  2001. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol. 11:1283–87 [Google Scholar]
  141. Zhu R, Ou Z, Ruan X, Gong J. 141.  2012. Role of liver X receptors in cholesterol efflux and inflammatory signaling. Mol. Med. Rep. 5:895–900 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error