Genomic imprinting is an epigenetic process causing expression of a subset of genes in a parent-of-origin-specific manner. Among vertebrates, only therian mammals have been demonstrated to imprint, indicating that placentation and imprinting arose at similar time points in evolution and that imprinting may be involved in key mammal-specific processes. However, although several theories have been posited to explain the evolution of imprinting, each has shortcomings and none fully explains the wide variety of genes regulated by imprinting. In this review, we catalog the phenotypes associated with genetic mutation and overexpression at particular imprinted loci in order to consider the wide impact of imprinted genes on development. In addition to the well-described roles of imprinted genes in prenatal growth and placentation, more recent data emphasize that imprinted genes are critical for specific aspects of postnatal mammalian development involving adaptive processes, metabolism, and behavior.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abdallah BM, Ditzel N, Mahmood A, Isa A, Traustadottir GA. 1.  et al. 2011. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice. J. Bone Miner. Res. 26:1457–71 [Google Scholar]
  2. Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM. 2.  2007. Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev. Biol. 7:53 [Google Scholar]
  3. Andrieu D, Meziane H, Marly F, Angelats C, Fernandez PA, Muscatelli F. 3.  2006. Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev. Biol. 6:56 [Google Scholar]
  4. Apostolidou S, Abu-Amero S, O'Donoghue K, Frost J, Olafsdottir O. 4.  et al. 2007. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J. Mol. Med. 85:379–87 [Google Scholar]
  5. Appelbe OK, Yevtodiyenko A, Muniz-Talavera H, Schmidt JV. 5.  2013. Conditional deletions refine the embryonic requirement for Dlk1. Mech. Dev. 130:143–59 [Google Scholar]
  6. Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A. 6.  et al. 2012. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 44:788–92 [Google Scholar]
  7. Arnaud P, Monk D, Hitchins M, Gordon E, Dean W. 7.  et al. 2003. Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum. Mol. Genet. 12:1005–19 [Google Scholar]
  8. Arney KL. 8.  2003. H19 and Igf2—enhancing the confusion?. Trends Genet. 19:17–23 [Google Scholar]
  9. Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N. 9.  1991. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87 [Google Scholar]
  10. Bartolomei MS, Zemel S, Tilghman SM. 10.  1991. Parental imprinting of the mouse H19 gene. Nature 351:153–55 [Google Scholar]
  11. Barton SC, Surani MA, Norris ML. 11.  1984. Role of paternal and maternal genomes in mouse development. Nature 311:374–76 [Google Scholar]
  12. Bastepe M, Juppner H. 12.  2005. GNAS locus and pseudohypoparathyroidism. Horm. Res. 63:65–74 [Google Scholar]
  13. Beechey CV. 13.  2000. Peg1/Mest locates distal to the currently defined imprinting region on mouse proximal chromosome 6 and identifies a new imprinting region affecting growth. Cytogenet. Cell Genet. 90:309–14 [Google Scholar]
  14. Bennett WR, Crew TE, Slack JM, Ward A. 14.  2003. Structural-proliferative units and organ growth: effects of insulin-like growth factor 2 on the growth of colon and skin. Development 130:1079–88 [Google Scholar]
  15. Bischof JM, Stewart CL, Wevrick R. 15.  2007. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum. Mol. Genet. 16:2713–19 [Google Scholar]
  16. Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE. 16. Mouse Genome Database Group 2014. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res. 42:D810–17 [Google Scholar]
  17. Boelen A, Kwakkel J, Wieland CW, St Germain DL, Fliers E, Hernandez A. 17.  2009. Impaired bacterial clearance in type 3 deiodinase-deficient mice infected with Streptococcus pneumoniae. Endocrinology 150:1984–90 [Google Scholar]
  18. Boini KM, Graf D, Hennige AM, Koka S, Kempe DS. 18.  et al. 2009. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R1695–701 [Google Scholar]
  19. Brambilla R, Gnesutta N, Minichiello L, White G, Roylance AJ. 19.  et al. 1997. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390:281–86 [Google Scholar]
  20. Bressler J, Tsai TF, Wu MY, Tsai SF, Ramirez MA. 20.  et al. 2001. The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Nat. Genet. 28:232–40 [Google Scholar]
  21. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE. 21.  et al. 2001. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc. Natl. Acad. Sci. USA 98:2526–31 [Google Scholar]
  22. Cattanach BM. 22.  1986. Parental origin effects in mice. J. Embryol. Exp. Morphol. 97:Suppl.137–50 [Google Scholar]
  23. Cattanach BM, Beechey CV. 23.  1990. Autosomal and X-chromosome imprinting. Dev. Suppl. 1990:63–72 [Google Scholar]
  24. Cattanach BM, Beechey CV, Peters J. 24.  2004. Interactions between imprinting effects in the mouse. Genetics 168:397–413 [Google Scholar]
  25. Cattanach BM, Kirk M. 25.  1985. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–98 [Google Scholar]
  26. Cerrato F, Sparago A, Di Matteo I, Zou X, Dean W. 26.  et al. 2005. The two-domain hypothesis in Beckwith-Wiedemann syndrome: autonomous imprinting of the telomeric domain of the distal chromosome 7 cluster. Hum. Mol. Genet. 14:503–11 [Google Scholar]
  27. Champagne FA, Curley JP, Swaney WT, Hasen NS, Keverne EB. 27.  2009. Paternal influence on female behavior: the role of Peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav. Neurosci. 123:469–80 [Google Scholar]
  28. Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ. 28.  et al. 2010. Maternally-inherited Grb10 reduces placental size and efficiency. Dev. Biol. 337:1–8 [Google Scholar]
  29. Charalambous M, Ferron SR, da Rocha ST, Murray AJ, Rowland T. 29.  et al. 2012. Imprinted gene dosage is critical for the transition to independent life. Cell Metab. 15:209–21 [Google Scholar]
  30. Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A. 30.  2003. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc. Natl. Acad. Sci. USA 100:8292–97 [Google Scholar]
  31. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE. 31.  et al. 1998. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet. 18:53–55 [Google Scholar]
  32. Chen M, Gavrilova O, Liu J, Xie T, Deng C. 32.  et al. 2005. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc. Natl. Acad. Sci. USA 102:7386–91 [Google Scholar]
  33. Cheron G, Servais L, Wagstaff J, Dan B. 33.  2005. Fast cerebellar oscillation associated with ataxia in a mouse model of Angelman syndrome. Neuroscience 130:631–37 [Google Scholar]
  34. Chung WY, Yuan L, Feng L, Hensle T, Tycko B. 34.  1996. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors. Hum. Mol. Genet. 5:1101–8 [Google Scholar]
  35. Clapcott SJ, Peters J, Orban PC, Brambilla R, Graham CF. 35.  2003. Two ENU-induced mutations in Rasgrf1 and early mouse growth retardation. Mamm. Genome 14:495–505 [Google Scholar]
  36. Coan PM, Fowden AL, Constancia M, Ferguson-Smith AC, Burton GJ, Sibley CP. 36.  2008. Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J. Physiol. 586:5023–32 [Google Scholar]
  37. Constancia M, Angiolini E, Sandovici I, Smith P, Smith R. 37.  et al. 2005. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc. Natl. Acad. Sci. USA 102:19219–24 [Google Scholar]
  38. Constancia M, Dean W, Lopes S, Moore T, Kelsey G, Reik W. 38.  2000. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26:203–6 [Google Scholar]
  39. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A. 39.  et al. 2002. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–48 [Google Scholar]
  40. Coombes C, Arnaud P, Gordon E, Dean W, Coar EA. 40.  et al. 2003. Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus. Mol. Cell. Biol. 23:5475–88 [Google Scholar]
  41. Curley JP, Barton S, Surani A, Keverne EB. 41.  2004. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc. Biol. Sci. 271:1303–9 [Google Scholar]
  42. Curley JP, Pinnock SB, Dickson SL, Thresher R, Miyoshi N. 42.  et al. 2005. Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3. FASEB J. 19:1302–4 [Google Scholar]
  43. da Rocha ST, Charalambous M, Lin SP, Gutteridge I, Ito Y. 43.  et al. 2009. Gene dosage effects of the imprinted delta-like homologue 1 (Dlk1/Pref1) in development: implications for the evolution of imprinting. PLoS Genet. 5:e1000392 [Google Scholar]
  44. da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. 44.  2008. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 24:306–16 [Google Scholar]
  45. Davis E, Caiment F, Tordoir X, Cavaille J, Ferguson-Smith A. 45.  et al. 2005. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15:743–49 [Google Scholar]
  46. DeChiara TM, Efstratiadis A, Robertson EJ. 46.  1990. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80 [Google Scholar]
  47. DeChiara TM, Robertson EJ, Efstratiadis A. 47.  1991. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–59 [Google Scholar]
  48. Ding F, Li HH, Zhang S, Solomon NM, Camper SA. 48.  et al. 2008. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS ONE 3:e1709 [Google Scholar]
  49. Drake NM, Park YJ, Shirali AS, Cleland TA, Soloway PD. 49.  2009. Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1. Mamm. Genome 20:654–63 [Google Scholar]
  50. Dubose AJ, Smith EY, Yang TP, Johnstone KA, Resnick JL. 50.  2011. A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center. Hum. Mol. Genet. 20:3461–66 [Google Scholar]
  51. Duvillie B, Cordonnier N, Deltour L, Dandoy-Dron F, Itier JM. 51.  et al. 1997. Phenotypic alterations in insulin-deficient mutant mice. Proc. Natl. Acad. Sci. USA 94:5137–40 [Google Scholar]
  52. Eaton SA, Williamson CM, Ball ST, Beechey CV, Moir L. 52.  et al. 2012. New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism but not in suckling. Mol. Cell. Biol. 32:1017–29 [Google Scholar]
  53. Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ. 53.  et al. 2008. The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol. 6:e135 [Google Scholar]
  54. Ellinor PT, Moore RK, Patton KK, Ruskin JN, Pollak MR, Macrae CA. 54.  2004. Mutations in the long QT gene, KCNQ1, are an uncommon cause of atrial fibrillation. Heart 90:1487–88 [Google Scholar]
  55. Elso CM, Lu X, Culiat CT, Rutledge JC, Cacheiro NL. 55.  et al. 2004. Heightened susceptibility to chronic gastritis, hyperplasia and metaplasia in Kcnq1 mutant mice. Hum. Mol. Genet. 13:2813–21 [Google Scholar]
  56. Engemann S, Strodicke M, Paulsen M, Franck O, Reinhardt R. 56.  et al. 2000. Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet. 9:2691–706 [Google Scholar]
  57. Esquiliano DR, Guo W, Liang L, Dikkes P, Lopez MF. 57.  2009. Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta 30:693–99 [Google Scholar]
  58. Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M. 58.  2009. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 28:2812–24 [Google Scholar]
  59. Ferguson-Smith AC. 59.  2011. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12:565–75 [Google Scholar]
  60. Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA. 60.  1991. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351:667–70 [Google Scholar]
  61. Filson AJ, Louvi A, Efstratiadis A, Robertson EJ. 61.  1993. Rescue of the T-associated maternal effect in mice carrying null mutations in Igf-2 and Igf2r, two reciprocally imprinted genes. Development 118:731–36 [Google Scholar]
  62. Fiorica-Howells E, Hen R, Gingrich J, Li Z, Gershon MD. 62.  2002. 5-HT2A receptors: location and functional analysis in intestines of wild-type and 5-HT2A knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G877–93 [Google Scholar]
  63. Fisher RA, Hodges MD. 63.  2003. Genomic imprinting in gestational trophoblastic disease—a review. Placenta 24:S111–18 [Google Scholar]
  64. Fitzpatrick GV, Soloway PD, Higgins MJ. 64.  2002. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32:426–31 [Google Scholar]
  65. Flicek P, Amode MR, Barrell D, Beal K, Brent S. 65.  et al. 2011. Ensembl 2011. Nucleic Acids Res. 39:D800–6 [Google Scholar]
  66. Font de Mora J, Esteban LM, Burks DJ, Nuñez A, Garcés C. 66.  et al. 2003. Ras-GRF1 signaling is required for normal β-cell development and glucose homeostasis. EMBO J. 22:3039–49 [Google Scholar]
  67. Frank D, Fortino W, Clark L, Musalo R, Wang W. 67.  et al. 2002. Placental overgrowth in mice lacking the imprinted gene Ipl. Proc. Natl. Acad. Sci. USA 99:7490–95 [Google Scholar]
  68. Fujiwara K, Hasegawa K, Ohkumo T, Miyoshi H, Tseng YH, Yoshikawa K. 68.  2012. Necdin controls proliferation of white adipocyte progenitor cells. PLoS ONE 7:e30948 [Google Scholar]
  69. Gabriel JM, Merchant M, Ohta T, Ji Y, Caldwell RG. 69.  et al. 1999. A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and Angelman syndromes. Proc. Natl. Acad. Sci. USA 96:9258–63 [Google Scholar]
  70. Gardner RJ, Mackay DJ, Mungall AJ, Polychronakos C, Siebert R. 70.  et al. 2000. An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 9:589–96 [Google Scholar]
  71. Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE. 71.  et al. 2011. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469:534–38 [Google Scholar]
  72. Gasca S, Hill DP, Klingensmith J, Rossant J. 72.  1995. Characterization of a gene trap insertion into a novel gene, cordon-bleu, expressed in axial structures of the gastrulating mouse embryo. Dev. Genet. 17:141–54 [Google Scholar]
  73. Ge Y, Ohta T, Driscoll DJ, Nicholls RD, Kalra SP. 73.  2002. Anorexigenic melanocortin signaling in the hypothalamus is augmented in association with failure-to-thrive in a transgenic mouse model for Prader-Willi syndrome. Brain Res. 957:42–45 [Google Scholar]
  74. Georgiades P, Watkins M, Surani MA, Ferguson-Smith AC. 74.  2000. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development 127:4719–28 [Google Scholar]
  75. Gérard M, Hernandez L, Wevrick R, Stewart CL. 75.  1999. Disruption of the mouse necdin gene results in early post-natal lethality. Nat. Genet. 23:199–202 [Google Scholar]
  76. Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS. 76.  et al. 2005. A mouse model of Albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology 146:4697–709 [Google Scholar]
  77. Giddings SJ, King CD, Harman KD, Flood JF, Carnaghi LR. 77.  1994. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat. Genet. 6:310–13 [Google Scholar]
  78. Giese KP, Friedman E, Telliez JB, Fedorov NB, Wines M. 78.  et al. 2001. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 41:791–800 [Google Scholar]
  79. Golding MC, Magri LS, Zhang L, Lalone SA, Higgins MJ, Mann MR. 79.  2011. Depletion of Kcnq1ot1 non-coding RNA does not affect imprinting maintenance in stem cells. Development 138:3667–78 [Google Scholar]
  80. Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL. 80.  2009. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci. Transl. Med. 1:2ra6 [Google Scholar]
  81. Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A. 81.  et al. 2003. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J. Neurosci. 23:8836–43 [Google Scholar]
  82. Gould TD, Pfeifer K. 82.  1998. Imprinting of mouse Kvlqt1 is developmentally regulated. Hum. Mol. Genet. 7:483–87 [Google Scholar]
  83. Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL. 83.  1994. Essential role of Mash-2 in extraembryonic development. Nature 371:333–36 [Google Scholar]
  84. Hardouin SN, Guo R, Romeo PH, Nagy A, Aubin JE. 84.  2011. Impaired mesenchymal stem cell differentiation and osteoclastogenesis in mice deficient for Igf2-P2 transcripts. Development 138:203–13 [Google Scholar]
  85. Hasegawa K, Kawahara T, Fujiwara K, Shimpuku M, Sasaki T. 85.  et al. 2012. Necdin controls Foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. J. Neurosci. 32:5562–72 [Google Scholar]
  86. Hatada I, Mukai T. 86.  1995. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat. Genet. 11:204–6 [Google Scholar]
  87. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M. 87.  et al. 1996. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat. Genet. 14:171–73 [Google Scholar]
  88. Hernandez A, Fiering S, Martinez E, Galton VA, St Germain D. 88.  2002. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology 143:4483–86 [Google Scholar]
  89. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. 89.  2006. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J. Clin. Investig. 116:476–84 [Google Scholar]
  90. Hikichi T, Kohda T, Kaneko-Ishino T, Ishino F. 90.  2003. Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res. 31:1398–406 [Google Scholar]
  91. Holt LJ, Lyons RJ, Ryan AS, Beale SM, Ward A. 91.  et al. 2009. Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol. Endocrinol. 23:1406–14 [Google Scholar]
  92. Huso DL, Edie S, Levine MA, Schwindinger W, Wang Y. 92.  et al. 2011. Heterotopic ossifications in a mouse model of Albright hereditary osteodystrophy. PLoS ONE 6:e21755 [Google Scholar]
  93. Ischia R, Lovisetti-Scamihorn P, Hogue-Angeletti R, Wolkersdorfer M, Winkler H, Fischer-Colbrie R. 93.  1997. Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J. Biol. Chem. 272:11657–62 [Google Scholar]
  94. Ishida M, Moore GE. 94.  2013. The role of imprinted genes in humans. Mol. Asp. Med. 34:826–40 [Google Scholar]
  95. Itier JM, Tremp GL, Leonard JF, Multon MC, Ret G. 95.  et al. 1998. Imprinted gene in postnatal growth role. Nature 393:125–26 [Google Scholar]
  96. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL. 96.  et al. 1998. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:799–811 [Google Scholar]
  97. John RM, Ainscough JF, Barton SC, Surani MA. 97.  2001. Distant cis-elements regulate imprinted expression of the mouse p57Kip2 (Cdkn1c) gene: implications for the human disorder, Beckwith–Wiedemann syndrome. Hum. Mol. Genet. 10:1601–9 [Google Scholar]
  98. Johnson DR. 98.  1974. Hairpin-tail: a case of post-reductional gene action in the mouse egg. Genetics 76:795–805 [Google Scholar]
  99. Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S. 99.  et al. 1999. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum. Mol. Genet. 8:783–93 [Google Scholar]
  100. Kagami M, Nagai T, Fukami M, Yamazawa K, Ogata T. 100.  2007. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J. Assist. Reprod. Genet. 24:131–36 [Google Scholar]
  101. Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R. 101.  et al. 1995. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat. Genet. 11:52–59 [Google Scholar]
  102. Kato MV, Ikawa Y, Hayashizaki Y, Shibata H. 102.  1998. Paternal imprinting of mouse serotonin receptor 2A gene Htr2 in embryonic eye: a conserved imprinting regulation on the RB/Rb locus. Genomics 47:146–48 [Google Scholar]
  103. Kawahara M, Wu Q, Takahashi N, Morita S, Yamada K. 103.  et al. 2007. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat. Biotechnol. 25:1045–50 [Google Scholar]
  104. Kehlenbach RH, Matthey J, Huttner WB. 104.  1994. XLαs is a new type of G protein. Nature 372:804–9 [Google Scholar]
  105. Keverne EB, Curley JP. 105.  2008. Epigenetics, brain evolution and behaviour. Front. Neuroendocrinol. 29:398–412 [Google Scholar]
  106. Kim J, Ekram MB, Kim H, Faisal M, Frey WD. 106.  et al. 2012. Imprinting control region (ICR) of the Peg3 domain. Hum. Mol. Genet. 21:2677–87 [Google Scholar]
  107. King T, Bland Y, Webb S, Barton S, Brown NA. 107.  2002. Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev. Dyn. 225:212–15 [Google Scholar]
  108. Klemke M, Kehlenbach RH, Huttner WB. 108.  2001. Two overlapping reading frames in a single exon encode interacting proteins—a novel way of gene usage. EMBO J. 20:3849–60 [Google Scholar]
  109. Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H. 109.  et al. 2000. Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J. Neurosci. 20:2418–26 [Google Scholar]
  110. Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S. 110.  et al. 2007. The imprinted gene Magel2 regulates normal circadian output. Nat. Genet. 39:1266–72 [Google Scholar]
  111. Kuroiwa Y, Kaneko-Ishino T, Kagitani F, Kohda T, Li LL. 111.  et al. 1996. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat. Genet. 12:186–90 [Google Scholar]
  112. Kuwako K, Hosokawa A, Nishimura I, Uetsuki T, Yamada M. 112.  et al. 2005. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J. Neurosci. 25:7090–99 [Google Scholar]
  113. Lassi G, Ball ST, Maggi S, Colonna G, Nieus T. 113.  et al. 2012. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice. PLoS Genet. 8:e1002706 [Google Scholar]
  114. Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. 114.  1994. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 8:2953–63 [Google Scholar]
  115. Lee K, Villena JA, Moon YS, Kim KH, Lee S. 115.  et al. 2003. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J. Clin. Investig. 111:453–61 [Google Scholar]
  116. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G. 116.  et al. 2000. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J. Clin. Investig. 106:1447–55 [Google Scholar]
  117. Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. 117.  1998. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat. Genet. 20:163–69 [Google Scholar]
  118. Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM. 118.  1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39 [Google Scholar]
  119. Li JY, Chai BX, Zhang W, Wang H, Mulholland MW. 119.  2010. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype. Endocrinology 151:134–42 [Google Scholar]
  120. Li JY, Kuick R, Thompson RC, Misek DE, Lai YM. 120.  et al. 2005. Arcuate nucleus transcriptome profiling identifies ankyrin repeat and suppressor of cytokine signalling box-containing protein 4 as a gene regulated by fasting in central nervous system feeding circuits. J. Neuroendocrinol. 17:394–404 [Google Scholar]
  121. Li L-L, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA. 121.  1999. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:330–34 [Google Scholar]
  122. Lim AL, Ng S, Leow SC, Choo R, Ito M. 122.  et al. 2012. Epigenetic state and expression of imprinted genes in umbilical cord correlates with growth parameters in human pregnancy. J. Med. Genet. 49:689–97 [Google Scholar]
  123. Lin SP, Youngson N, Takada S, Seitz H, Reik W. 123.  et al. 2003. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35:97–102 [Google Scholar]
  124. Liu J, Chen M, Deng C, Bourc'his D, Nealon JG. 124.  et al. 2005. Identification of the control region for tissue-specific imprinting of the stimulatory G protein α-subunit. Proc. Natl. Acad. Sci. USA 102:5513–18 [Google Scholar]
  125. Liu Z, Segawa H, Aydin C, Reyes M, Erben RG. 125.  et al. 2011. Transgenic overexpression of the extra-large Gsα variant XLαs enhances Gsα-mediated responses in the mouse renal proximal tubule in vivo. Endocrinology 152:1222–33 [Google Scholar]
  126. Lopez MF, Dikkes P, Zurakowski D, Villa-Komaroff L. 126.  1996. Insulin-like growth factor II affects the appearance and glycogen content of glycogen cells in the murine placenta. Endocrinology 137:2100–8 [Google Scholar]
  127. Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM. 127.  2002. Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–38 [Google Scholar]
  128. Ludwig T, Eggenschwiler J, Fisher P, D'Ercole AJ, Davenport ML, Efstratiadis A. 128.  1996. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol. 177:517–35 [Google Scholar]
  129. Ma D, Shield JP, Dean W, Leclerc I, Knauf C. 129.  et al. 2004. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J. Clin. Investig. 114:339–48 [Google Scholar]
  130. Maecker HT, Levy S. 130.  1997. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J. Exp. Med. 185:1505–10 [Google Scholar]
  131. Mancini-DiNardo D, Steele SJ, Ingram RS, Tilghman SM. 131.  2003. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum. Mol. Genet. 12:283–94 [Google Scholar]
  132. Mancini-DiNardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM. 132.  2006. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20:1268–82 [Google Scholar]
  133. Mascarenhas MI, Parker A, Dzierzak E, Ottersbach K. 133.  2009. Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood 114:4645–53 [Google Scholar]
  134. Matsuoka S, Thompson JS, Edwards MC, Bartletta JM, Grundy P. 134.  et al. 1996. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc. Natl. Acad. Sci. USA 93:3026–30 [Google Scholar]
  135. McGrath J, Solter D. 135.  1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–83 [Google Scholar]
  136. Medina MC, Molina J, Gadea Y, Fachado A, Murillo M. 136.  et al. 2011. The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human β-cells and its targeted inactivation impairs insulin secretion. Endocrinology 152:3717–27 [Google Scholar]
  137. Menheniott TR, Woodfine K, Schulz R, Wood AJ, Monk D. 137.  et al. 2008. Genomic imprinting of Dopa decarboxylase in heart and reciprocal allelic expression with neighboring Grb10. Mol. Cell. Biol. 28:386–96 [Google Scholar]
  138. Mercer RE, Wevrick R. 138.  2009. Loss of Magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLoS ONE 4:e4291 [Google Scholar]
  139. Miura K, Kishino T, Li E, Webber H, Dikkes P. 139.  et al. 2002. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol. Dis. 9:149–59 [Google Scholar]
  140. Miyazaki T, Muller U, Campbell KS. 140.  1997. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 16:4217–25 [Google Scholar]
  141. Miyoshi N, Kuroiwa Y, Kohda T, Shitara H, Yonekawa H. 141.  et al. 1998. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc. Natl. Acad. Sci. USA 95:1102–7 [Google Scholar]
  142. Mizuno Y, Sotomaru Y, Katsuzawa Y, Kono T, Meguro M. 142.  et al. 2002. Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem. Biophys. Res. Commun. 290:1499–505 [Google Scholar]
  143. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. 143.  2010. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137:2493–99 [Google Scholar]
  144. Monk D, Wagschal A, Arnaud P, Muller PS, Parker-Katiraee L. 144.  et al. 2008. Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res. 18:1270–81 [Google Scholar]
  145. Monk D, Wakeling EL, Proud V, Hitchins M, Abu-Amero SN. 145.  et al. 2000. Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am. J. Hum. Genet. 66:36–46 [Google Scholar]
  146. Moon YS, Smas CM, Lee K, Villena JA, Kim KH. 146.  et al. 2002. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol. Cell. Biol. 22:5585–92 [Google Scholar]
  147. Moore T, Constancia M, Zubair M, Bailleul B, Feil R. 147.  et al. 1997. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc. Natl. Acad. Sci. USA 94:12509–14 [Google Scholar]
  148. Murrell A, Heeson S, Bowden L, Constancia M, Dean W. 148.  et al. 2001. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2:1101–6 [Google Scholar]
  149. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M. 149.  et al. 2000. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 9:3101–10 [Google Scholar]
  150. Nabetani A, Hatada I, Morisaki H, Oshimura M, Mukai T. 150.  1997. Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol. Cell. Biol. 17:789–98 [Google Scholar]
  151. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC. 151.  et al. 2008. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–20 [Google Scholar]
  152. Ng L, Hernandez A, He W, Ren T, Srinivas M. 152.  et al. 2009. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150:1952–60 [Google Scholar]
  153. Ng L, Lyubarsky A, Nikonov SS, Ma M, Srinivas M. 153.  et al. 2010. Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J. Neurosci. 30:3347–57 [Google Scholar]
  154. Nicholls RD, Knepper JL. 154.  2001. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu. Rev. Genomics Hum. Genet. 2:153–75 [Google Scholar]
  155. Oh R, Ho R, Mar L, Gertsenstein M, Paderova J. 155.  et al. 2008. Epigenetic and phenotypic consequences of a truncation disrupting the imprinted domain on distal mouse chromosome 7. Mol. Cell. Biol. 28:1092–103 [Google Scholar]
  156. Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T. 156.  et al. 2001. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics 73:232–37 [Google Scholar]
  157. Ono R, Nakamura K, Inoue K, Naruse M, Usami T. 157.  et al. 2006. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38:101–6 [Google Scholar]
  158. Ono R, Shiura H, Aburatani H, Kohda T, Kaneko-Ishino T, Ishino F. 158.  2003. Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res. 13:1696–705 [Google Scholar]
  159. Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D. 159.  et al. 1999. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proc. Natl. Acad. Sci. USA 96:3830–35 [Google Scholar]
  160. Piras G, El Kharroubi A, Kozlov S, Escalante-Alcalde D, Hernandez L. 160.  et al. 2000. Zac1 (Lot1), a potential tumor suppressor gene, and the gene for ε-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol. Cell. Biol. 20:3308–15 [Google Scholar]
  161. Plagge A, Gordon E, Dean W, Boiani R, Cinti S. 161.  et al. 2004. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nat. Genet. 36:818–26 [Google Scholar]
  162. Plagge A, Isles AR, Gordon E, Humby T, Dean W. 162.  et al. 2005. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol. Cell. Biol. 25:3019–26 [Google Scholar]
  163. Plass C, Shibata H, Kalcheva I, Mullins L, Kotelevtseva N. 163.  et al. 1996. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat. Genet. 14:106–9 [Google Scholar]
  164. Pravtcheva DD, Wise TL. 164.  1998. Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J. Exp. Zool. 281:43–57 [Google Scholar]
  165. Qian N, Frank D, O'Keefe D, Dao D, Zhao L. 165.  et al. 1997. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum. Mol. Genet. 6:2021–29 [Google Scholar]
  166. Raghunandan R, Ruiz-Hidalgo M, Jia Y, Ettinger R, Rudikoff E. 166.  et al. 2008. Dlk1 influences differentiation and function of β lymphocytes. Stem Cells Dev. 17:495–507 [Google Scholar]
  167. Reik W, Constancia M, Fowden A, Anderson N, Dean W. 167.  et al. 2003. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol. 547:35–44 [Google Scholar]
  168. Ren J, Lee S, Pagliardini S, Gérard M, Stewart CL. 168.  et al. 2003. Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice. J. Neurosci. 23:1569–73 [Google Scholar]
  169. Rentsendorj A, Mohan S, Szabo P, Mann JR. 169.  2010. A genomic imprinting defect in mice traced to a single gene. Genetics 186:917–27 [Google Scholar]
  170. Rivas A, Francis HW. 170.  2005. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol. Neurotol. 26:415–24 [Google Scholar]
  171. Rogers ED, Ramalie JR, McMurray EN, Schmidt JV. 171.  2012. Localizing transcriptional regulatory elements at the mouse Dlk1 locus. PLoS ONE 7:e36483 [Google Scholar]
  172. Sakajiri S, O'Kelly J, Yin D, Miller CW, Hofmann WK. 172.  et al. 2005. Dlk1 in normal and abnormal hematopoiesis. Leukemia 19:1404–10 [Google Scholar]
  173. Salas M, John R, Saxena A, Barton S, Frank D. 173.  et al. 2004. Placental growth retardation due to loss of imprinting of Phlda2. Mech. Dev. 121:1199–210 [Google Scholar]
  174. Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. 174.  2010. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 19:4895–905 [Google Scholar]
  175. Schulz R, Menheniott TR, Woodfine K, Wood AJ, Choi JD, Oakey RJ. 175.  2006. Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies. Nucleic Acids Res. 34:e88 [Google Scholar]
  176. Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A. 176.  1998. The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev. Dyn. 212:214–28 [Google Scholar]
  177. Schuster-Gossler K, Simon-Chazottes D, Guénet JL, Zachgo J, Gossler A. 177.  1996. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm. Genome 7:20–24 [Google Scholar]
  178. Searle AG, Beechey CV. 178.  1990. Genome imprinting phenomena on mouse chromosome 7. Genet. Res. 56:237–44 [Google Scholar]
  179. Seidl CI, Stricker SH, Barlow DP. 179.  2006. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J. 25:3565–75 [Google Scholar]
  180. Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M. 180.  et al. 2003. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat. Genet. 34:261–62 [Google Scholar]
  181. Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M. 181.  et al. 2008. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 40:243–48 [Google Scholar]
  182. Shin JY, Fitzpatrick GV, Higgins MJ. 182.  2008. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J. 27:168–78 [Google Scholar]
  183. Shiura H, Miyoshi N, Konishi A, Wakisaka-Saito N, Suzuki R. 183.  et al. 2005. Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem. Biophys. Res. Commun. 329:909–16 [Google Scholar]
  184. Shiura H, Nakamura K, Hikichi T, Hino T, Oda K. 184.  et al. 2009. Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal chromosome 11 leading to severe pre- and postnatal growth retardation. Hum. Mol. Genet. 18:1424–38 [Google Scholar]
  185. Shore EM, Ahn J, Jan de Beur S, Li M, Xu M. 185.  et al. 2002. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N. Engl. J. Med. 346:99–106 [Google Scholar]
  186. Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J. 186.  et al. 2004. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. USA 101:8204–8 [Google Scholar]
  187. Silva D, Venihaki M, Guo WH, Lopez MF. 187.  2006. Igf2 deficiency results in delayed lung development at the end of gestation. Endocrinology 147:5584–91 [Google Scholar]
  188. Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S. 188.  et al. 2007. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet. 3:e235 [Google Scholar]
  189. Sleutels F, Zwart R, Barlow DP. 189.  2002. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–13 [Google Scholar]
  190. Smith FM, Holt LJ, Garfield AS, Charalambous M, Koumanov F. 190.  et al. 2007. Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol. Cell. Biol. 27:5871–86 [Google Scholar]
  191. Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT. 191.  1997. Molecular basis of the long-QT syndrome associated with deafness. N. Engl. J. Med. 336:1562–67 [Google Scholar]
  192. Stefan M, Ji H, Simmons RA, Cummings DE, Ahima RS. 192.  et al. 2005. Hormonal and metabolic defects in a Prader-Willi syndrome mouse model with neonatal failure to thrive. Endocrinology 146:4377–85 [Google Scholar]
  193. Stefan M, Simmons RA, Bertera S, Trucco M, Esni F. 193.  et al. 2011. Global deficits in development, function, and gene expression in the endocrine pancreas in a deletion mouse model of Prader-Willi syndrome. Am. J. Physiol. Endocrinol. Metab. 300:E909–22 [Google Scholar]
  194. Steshina EY, Carr MS, Glick EA, Yevtodiyenko A, Appelbe OK, Schmidt JV. 194.  2006. Loss of imprinting at the Dlk1-Gtl2 locus caused by insertional mutagenesis in the Gtl2 5′ region. BMC Genet. 7:44 [Google Scholar]
  195. Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. 195.  2012. GRB10 imprinting is eutherian mammal specific. Mol. Biol. Evol. 29:3711–19 [Google Scholar]
  196. Sunahara S, Nakamura K, Nakao K, Gondo Y, Nagata Y, Katsuki M. 196.  2000. The oocyte-specific methylated region of the U2afbp-rs/U2af1-rs1 gene is dispensable for its imprinted methylation. Biochem. Biophys. Res. Commun. 268:590–95 [Google Scholar]
  197. Surani MA, Barton SC. 197.  1983. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222:1034–36 [Google Scholar]
  198. Surani MA, Barton SC, Norris ML. 198.  1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–50 [Google Scholar]
  199. Susaki E, Nakayama K, Yamasaki L, Nakayama KI. 199.  2009. Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc. Natl. Acad. Sci. USA 106:5192–97 [Google Scholar]
  200. Suzuki S, Ono R, Narita T, Pask AJ, Shaw G. 200.  et al. 2007. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3:e55 [Google Scholar]
  201. Suzuki S, Renfree MB, Pask AJ, Shaw G, Kobayashi S. 201.  et al. 2005. Genomic imprinting of IGF2, p57KIP2 and PEG1/MEST in a marsupial, the tammar wallaby. Mech. Dev. 122:213–22 [Google Scholar]
  202. Swaney WT, Curley JP, Champagne FA, Keverne EB. 202.  2007. Genomic imprinting mediates sexual experience-dependent olfactory learning in male mice. Proc. Natl. Acad. Sci. USA 104:6084–89 [Google Scholar]
  203. Swaney WT, Curley JP, Champagne FA, Keverne EB. 203.  2008. The paternally expressed gene Peg3 regulates sexual experience-dependent preferences for estrous odors. Behav. Neurosci. 122:963–73 [Google Scholar]
  204. Szeto IY, Barton SC, Keverne EB, Surani AM. 204.  2004. Analysis of imprinted murine Peg3 locus in transgenic mice. Mamm. Genome 15:284–95 [Google Scholar]
  205. Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G. 205.  et al. 2002. Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum. Mol. Genet. 11:77–86 [Google Scholar]
  206. Takada S, Tevendale M, Baker J, Georgiades P, Campbell E. 206.  et al. 2000. Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr. Biol. 10:1135–38 [Google Scholar]
  207. Takahashi K, Kobayashi T, Kanayama N. 207.  2000. p57Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. Mol. Hum. Reprod. 6:1019–25 [Google Scholar]
  208. Takahashi K, Nakayama K. 208.  2000. Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J. Biochem. 127:73–83 [Google Scholar]
  209. Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y. 209.  et al. 2009. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum. Mol. Genet. 18:1879–88 [Google Scholar]
  210. Tanaka M, Gertsenstein M, Rossant J, Nagy A. 210.  1997. Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev. Biol. 190:55–65 [Google Scholar]
  211. Tevendale M, Watkins M, Rasberry C, Cattanach B, Ferguson-Smith AC. 211.  2006. Analysis of mouse conceptuses with uniparental duplication/deficiency for distal chromosome 12: comparison with chromosome 12 uniparental disomy and implications for genomic imprinting. Cytogenet. Genome Res. 113:215–22 [Google Scholar]
  212. Tsai CE, Lin SP, Ito M, Takagi N, Takada S, Ferguson-Smith AC. 212.  2002. Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr. Biol. 12:1221–26 [Google Scholar]
  213. Tsai TF, Jiang YH, Bressler J, Armstrong D, Beaudet AL. 213.  1999. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 8:1357–64 [Google Scholar]
  214. Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. 214.  1997. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc. Natl. Acad. Sci. USA 94:10844–49 [Google Scholar]
  215. Tunster SJ, Tycko B, John RM. 215.  2010. The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol. Cell. Biol. 30:295–306 [Google Scholar]
  216. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K. 216.  et al. 2005. KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc. Natl. Acad. Sci. USA 102:17864–69 [Google Scholar]
  217. van Amerongen R, Nawijn M, Franca-Koh J, Zevenhoven J, van der Gulden H. 217.  et al. 2005. Frat is dispensable for canonical Wnt signaling in mammals. Genes Dev. 19:425–30 [Google Scholar]
  218. van de Sluis B, Muller P, Duran K, Chen A, Groot AJ. 218.  et al. 2007. Increased activity of hypoxia-inducible factor 1 is associated with early embryonic lethality in Commd1 null mice. Mol. Cell. Biol. 27:4142–56 [Google Scholar]
  219. Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S. 219.  et al. 2006. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11:711–22 [Google Scholar]
  220. Voikar V, Koks S, Vasar E, Rauvala H. 220.  2001. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol. Behav. 72:271–81 [Google Scholar]
  221. Waddell JN, Zhang P, Wen Y, Gupta SK, Yevtodiyenko A. 221.  et al. 2010. Dlk1 is necessary for proper skeletal muscle development and regeneration. PLoS ONE 5:e15055 [Google Scholar]
  222. Wadhawan S, Dickins B, Nekrutenko A. 222.  2008. Wheels within wheels: clues to the evolution of the Gnas and Gnal loci. Mol. Biol. Evol. 25:2745–57 [Google Scholar]
  223. Wang L, Balas B, Christ-Roberts CY, Kim RY, Ramos FJ. 223.  et al. 2007. Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol. Cell. Biol. 27:6497–505 [Google Scholar]
  224. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM. 224.  et al. 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12:17–23 [Google Scholar]
  225. Wang Y, Joh K, Masuko S, Yatsuki H, Soejima H. 225.  et al. 2004. The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Mol. Cell. Biol. 24:270–79 [Google Scholar]
  226. Wang ZQ, Fung MR, Barlow DP, Wagner EF. 226.  1994. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372:464–67 [Google Scholar]
  227. Weinstein LS, Yu S, Ecelbarger CA. 227.  2000. Variable imprinting of the heterotrimeric G protein Gsα-subunit within different segments of the nephron. Am. J. Physiol. Ren. Physiol. 278:F507–14 [Google Scholar]
  228. Weisstaub NV, Zhou M, Lira A, Lambe E, Gonzalez-Maeso J. 228.  et al. 2006. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313:536–40 [Google Scholar]
  229. Williamson CM, Ball ST, Dawson C, Mehta S, Beechey CV. 229.  et al. 2011. Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet. 7:e1001347 [Google Scholar]
  230. Williamson CM, Ball ST, Nottingham WT, Skinner JA, Plagge A. 230.  et al. 2004. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat. Genet. 36:894–99 [Google Scholar]
  231. Williamson CM, Beechey CV, Papworth D, Wroe SF, Wells CA. 231.  et al. 1998. Imprinting of distal mouse chromosome 2 is associated with phenotypic anomalies in utero. Genet. Res. 72:255–65 [Google Scholar]
  232. Williamson CM, Blake A, Thomas S, Beechey C, Hancock J. 232.  et al. 2014. Mouse imprinting data and references MRC Harwell, Oxfordshire, UK. http://www.har.mrc.ac.uk/research/genomic_imprinting
  233. Williamson CM, Schofield J, Dutton ER, Seymour A, Beechey CV. 233.  et al. 1996. Glomerular-specific imprinting of the mouse Gsα gene: How does this relate to hormone resistance in Albright hereditary osteodystrophy?. Genomics 36:280–87 [Google Scholar]
  234. Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P. 234.  et al. 2006. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat. Genet. 38:350–55 [Google Scholar]
  235. Wise TL, Pravatcheva DD. 235.  1997. Perinatal lethality in H19 enhancers-Igf2 transgenic mice. Mol. Reprod. Dev. 48:194–207 [Google Scholar]
  236. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP. 236.  1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–49 [Google Scholar]
  237. Wutz A, Theussl HC, Dausman J, Jaenisch R, Barlow DP, Wagner EF. 237.  2001. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 128:1881–87 [Google Scholar]
  238. Wylie AA, Pulford DJ, McVie-Wylie AJ, Waterland RA, Evans HK. 238.  et al. 2003. Tissue-specific inactivation of murine M6P/IGF2R. Am. J. Pathol. 162:321–28 [Google Scholar]
  239. Xie T, Chen M, Gavrilova O, Lai EW, Liu J, Weinstein LS. 239.  2008. Severe obesity and insulin resistance due to deletion of the maternal Gsα allele is reversed by paternal deletion of the Gsα imprint control region. Endocrinology 149:2443–50 [Google Scholar]
  240. Xie T, Plagge A, Gavrilova O, Pack S, Jou W. 240.  et al. 2006. The alternative stimulatory G protein α-subunit XLαs is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice. J. Biol. Chem. 281:18989–99 [Google Scholar]
  241. Yamamoto Y, Ishino F, Kaneko-Ishino T, Shiura H, Uchio-Yamada K. 241.  et al. 2008. Type 2 diabetes mellitus in a non-obese mouse model induced by Meg1/Grb10 overexpression. Exp. Anim. 57:385–95 [Google Scholar]
  242. Yamazawa K, Ogata T, Ferguson-Smith AC. 242.  2010. Uniparental disomy and human disease: an overview. Am. J. Med. Genet. C 154C:329–34 [Google Scholar]
  243. Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. 243.  1997. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 11:973–83 [Google Scholar]
  244. Yang T, Adamson TE, Resnick JL, Leff S, Wevrick R. 244.  et al. 1998. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat. Genet. 19:25–31 [Google Scholar]
  245. Yevtodiyenko A, Steshina EY, Farner SC, Levorse JM, Schmidt JV. 245.  2004. A 178-kb BAC transgene imprints the mouse Gtl2 gene and localizes tissue-specific regulatory elements. Genomics 84:277–87 [Google Scholar]
  246. Yokoi F, Dang MT, Li J, Li Y. 246.  2006. Myoclonus, motor deficits, alterations in emotional responses and monoamine metabolism in ε-sarcoglycan deficient mice. J. Biochem. 140:141–46 [Google Scholar]
  247. Yokoi F, Dang MT, Mitsui S, Li Y. 247.  2005. Exclusive paternal expression and novel alternatively spliced variants of ε-sarcoglycan mRNA in mouse brain. FEBS Lett. 579:4822–28 [Google Scholar]
  248. Yoon BJ, Herman H, Hu B, Park YJ, Lindroth A. 248.  et al. 2005. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol. Cell. Biol. 25:11184–90 [Google Scholar]
  249. Yoon BJ, Herman H, Sikora A, Smith LT, Plass C, Soloway PD. 249.  2002. Regulation of DNA methylation of Rasgrf1. Nat. Genet. 30:92–96 [Google Scholar]
  250. Youngson NA, Kocialkowski S, Peel N, Ferguson-Smith AC. 250.  2005. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J. Mol. Evol. 61:481–90 [Google Scholar]
  251. Yu S, Gavrilova O, Chen H, Lee R, Liu J. 251.  et al. 2000. Paternal versus maternal transmission of a stimulatory G-protein α subunit knockout produces opposite effects on energy metabolism. J. Clin. Investig. 105:615–23 [Google Scholar]
  252. Yu S, Yu D, Lee E, Eckhaus M, Lee R. 252.  et al. 1998. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. Proc. Natl. Acad. Sci. USA 95:8715–20 [Google Scholar]
  253. Yuasa S, Onizuka T, Shimoji K, Ohno Y, Kageyama T. 253.  et al. 2010. Zac1 is an essential transcription factor for cardiac morphogenesis. Circ. Res. 106:1083–91 [Google Scholar]
  254. Zhang MZ, Yao B, Wang S, Fan X, Wu G. 254.  et al. 2011. Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice. J. Clin. Investig. 121:2845–54 [Google Scholar]
  255. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H. 255.  et al. 1997. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–58 [Google Scholar]
  256. Zhang Z, Joh K, Yatsuki H, Wang Y, Arai Y. 256.  et al. 2006. Comparative analyses of genomic imprinting and CpG island-methylation in mouse Murr1 and human MURR1 loci revealed a putative imprinting control region in mice. Gene 366:77–86 [Google Scholar]
  257. Zhou QY, Quaife CJ, Palmiter RD. 257.  1995. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374:640–43 [Google Scholar]
  258. Zhou Y, Cheunsuchon P, Nakayama Y, Lawlor MW, Zhong Y. 258.  et al. 2010. Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137:2643–52 [Google Scholar]
  259. Zimprich A, Grabowski M, Asmus F, Naumann M, Berg D. 259.  et al. 2001. Mutations in the gene encoding ε-sarcoglycan cause myoclonus-dystonia syndrome. Nat. Genet. 29:66–69 [Google Scholar]
  260. Zwart R, Sleutels F, Wutz A, Schinkel AH, Barlow DP. 260.  2001. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev. 15:2361–66 [Google Scholar]
  261. Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP. 261.  2001. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol. Cell. Biol. 21:4188–96 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error