Lactase persistence—the ability of adults to digest the lactose in milk—varies widely in frequency across human populations. This trait represents an adaptation to the domestication of dairying animals and the subsequent consumption of their milk. Five variants are currently known to underlie this phenotype, which is monogenic in Eurasia but mostly polygenic in Africa. Despite being a textbook example of regulatory convergent evolution and gene-culture coevolution, the story of lactase persistence is far from clear: Why are lactase persistence frequencies low in Central Asian herders but high in some African hunter-gatherers? Why was lactase persistence strongly selected for even though milk processing can reduce the amount of lactose? Are there other factors, outside of an advantage of caloric intake, that contributed to the selective pressure for lactase persistence? It is time to revisit what we know and still do not know about lactase persistence in humans.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahmad M, Flatz G. 1.  1984. Prevalence of primary adult lactose malabsorption in Pakistan. Hum. Hered. 34:69–75 [Google Scholar]
  2. Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M. 2.  et al. 2015. Population genomics of Bronze Age Eurasia. Nature 522:167–72 [Google Scholar]
  3. Arnold J, Diop M, Kodjovi M, Rozier J. 3.  1980. Lactose intolerance in adults in Senegal. C. R. Seances Soc. Biol. Fil. 174:983–92 [Google Scholar]
  4. Arola H, Tamm A. 4.  1994. Metabolism of lactose in the human body. Scand. J. Gastroenterol. Suppl. 202:21–25 [Google Scholar]
  5. Bayoumi RA, Flatz SD, Kuhnau W, Flatz G. 5.  1982. Beja and Nilotes: nomadic pastoralist groups in the Sudan with opposite distributions of the adult lactase phenotypes. Am. J. Phys. Anthropol. 58:173–78 [Google Scholar]
  6. Beall CM. 6.  2014. Adaptation to high altitude: phenotypes and genotypes. Annu. Rev. Anthropol. 43:251–72 [Google Scholar]
  7. Beja-Pereira A, Luikart G, England PR, Bradley DG, Jann OC. 7.  et al. 2003. Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nat. Genet. 35:311–13 [Google Scholar]
  8. Bellwood PS. 8.  2005. First Farmers: The Origins of Agricultural Societies Malden, MA: Blackwell [Google Scholar]
  9. Bernus E. 9.  1988. Seasonality, climatic fluctuations, and food supplies (Sahelian nomadic pastoral societies). Coping with Uncertainty in Food Supply I de Garine, GA Harrison 318–36 Oxford, UK: Clarendon [Google Scholar]
  10. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF. 10.  et al. 2004. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74:1111–20 [Google Scholar]
  11. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R. 11.  et al. 2015. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 16:191 [Google Scholar]
  12. Bloom G, Sherman P. 12.  2005. Dairying barriers affect the distribution of lactose malabsorption. Evol. Hum. Behav. 26:301–12 [Google Scholar]
  13. Bodley JH. 13.  2011. African cattle peoples: tribal pastoralists. Cultural Anthropology: Tribes, States, and the Global System99–128 Lanham, MD: AltaMira [Google Scholar]
  14. Bond JH, Levitt MD. 14.  1976. Quantitative measurement of lactose absorption. Gastroenterology 70:1058–62 [Google Scholar]
  15. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F. 15.  et al. 2016. The effect of host genetics on the gut microbiome. Nat. Genet. 48:1407–12 [Google Scholar]
  16. Breton G, Schlebusch CM, Lombard M, Sjodin P, Soodyall H, Jakobsson M. 16.  2014. Lactase persistence alleles reveal partial East African ancestry of southern African Khoe pastoralists. Curr. Biol. 24:852–58 [Google Scholar]
  17. Brussow H. 17.  2013. Nutrition, population growth and disease: a short history of lactose. Environ. Microbiol. 15:2154–61 [Google Scholar]
  18. Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG. 18.  2007. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. PNAS 104:3736–41 [Google Scholar]
  19. Campbell AK, Waud JP, Matthews SB. 19.  2005. The molecular basis of lactose intolerance. Sci. Prog. 88:157–202 [Google Scholar]
  20. Cavalli-Sforza LT, Strata A. 20.  1987. Double-blind study on the tolerance of four types of milk in lactose malabsorbers and absorbers. Hum. Nutr. Clin. Nutr. 41:19–30 [Google Scholar]
  21. Cook GC. 21.  1978. Did persistence of intestinal lactase into adult life originate on the Arabian peninsula?. Man 13:418–27 [Google Scholar]
  22. Cook GC, al-Torki MT. 22.  1975. High intestinal lactase concentrations in adult Arabs in Saudi Arabia. Br. Med. J 3:135–36 [Google Scholar]
  23. Cummings JH, Macfarlane GT. 23.  1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443–59 [Google Scholar]
  24. Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R. 24.  et al. 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468:166–70 [Google Scholar]
  25. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ. 25.  et al. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436:71–75 [Google Scholar]
  26. Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. 26.  2016. Mechanisms and therapeutic effectiveness of lactobacilli. J. Clin. Pathol. 69:187–203 [Google Scholar]
  27. Dunne J, Evershed RP, Salque M, Cramp L, Bruni S. 27.  et al. 2012. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486:390–94 [Google Scholar]
  28. Durham WH. 28.  1991. Cultural mediation: the evolution of adult lactose absorption. Coevolution: Genes, Culture and Human Diversity226–85 Stanford, CA: Stanford Univ. Press [Google Scholar]
  29. Enattah NS, Jensen TG, Nielsen M, Lewinski R, Kuokkanen M. 29.  et al. 2008. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am. J. Hum. Genet. 82:57–72 [Google Scholar]
  30. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I. 30.  2002. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 30:233–37 [Google Scholar]
  31. Enattah NS, Trudeau A, Pimenoff V, Maiuri L, Auricchio S. 31.  et al. 2007. Evidence of still-ongoing convergence evolution of the lactase persistence T-13910 alleles in humans. Am. J. Hum. Genet. 81:615–25 [Google Scholar]
  32. Evershed RP, Payne S, Sherratt AG, Copley MS, Coolidge J. 32.  et al. 2008. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455:528–31 [Google Scholar]
  33. Fang L, Ahn JK, Wodziak D, Sibley E. 33.  2012. The human lactase persistence-associated SNP −13910*T enables in vivo functional persistence of lactase promoter-reporter transgene expression. Hum. Genet. 131:1153–59 [Google Scholar]
  34. 34. FAO (Food Agric. Organ. UN). 2003. Transhumant Grazing Systems in Temperate Asia Plant Prod. Prot. Ser. No. 31 Rome: FAO [Google Scholar]
  35. 35. FAO (Food Agric. Organ. UN). 2013. Milk and Dairy Products in Human Nutrition Rome: FAO [Google Scholar]
  36. Flatz G. 36.  1987. Genetics of lactose digestion in humans. Adv. Hum. Genet. 16:1–77 [Google Scholar]
  37. Flatz G, Rotthauwe HW. 37.  1971. Evidence against nutritional adaption of tolerance to lactose. Humangenetik 13:118–25 [Google Scholar]
  38. Flatz G, Rotthauwe HW. 38.  1973. Lactose nutrition and natural selection. Lancet 302:76–77 [Google Scholar]
  39. Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM. 39.  et al. 2014. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514:445–49 [Google Scholar]
  40. Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S. 40.  et al. 2016. The genetic history of Ice Age Europe. Nature 534:200–5 [Google Scholar]
  41. Gallego Romero I, Basu Mallick C, Liebert A, Crivellaro F, Chaubey G. 41.  et al. 2012. Herders of Indian and European cattle share their predominant allele for lactase persistence. Mol. Biol. Evol. 29:249–60 [Google Scholar]
  42. Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G. 42.  et al. 2014. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5:5257 [Google Scholar]
  43. Gerbault P, Liebert A, Itan Y, Powell A, Currat M. 43.  et al. 2011. Evolution of lactase persistence: an example of human niche construction. Philos. Trans. R. Soc. Lond. B 366:863–77 [Google Scholar]
  44. Gerbault P, Moret C, Currat M, Sanchez-Mazas A. 44.  2009. Impact of selection and demography on the diffusion of lactase persistence. PLOS ONE 4:e6369 [Google Scholar]
  45. Gerbault P, Roffet-Salque M, Evershed RP, Thomas MG. 45.  2013. How long have adult humans been consuming milk?. IUBMB Life 65:983–90 [Google Scholar]
  46. Gilat T, Benaroya Y, Gelman-Malachi E, Adam A. 46.  1973. Genetics of primary adult lactase deficiency. Gastroenterology 64:562–68 [Google Scholar]
  47. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R. 47.  et al. 2016. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–43 [Google Scholar]
  48. Grant JD, Bezerra JA, Thompson SH, Lemen RJ, Koldovsky O, Udall JN Jr.. 48.  1989. Assessment of lactose absorption by measurement of urinary galactose. Gastroenterology 97:895–99 [Google Scholar]
  49. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S. 49.  et al. 2015. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:207–11 [Google Scholar]
  50. Harrison GG. 50.  1975. Primary adult lactase deficiency: a problem in anthropological genetics. Am. Anthropol. 77:812–35 [Google Scholar]
  51. He T, Priebe MG, Harmsen HJ, Stellaard F, Sun X. 51.  et al. 2006. Colonic fermentation may play a role in lactose intolerance in humans. J. Nutr. 136:58–63 [Google Scholar]
  52. He T, Priebe MG, Vonk RJ, Welling GW. 52.  2005. Identification of bacteria with beta-galactosidase activity in faeces from lactase non-persistent subjects. FEMS Microbiol. Ecol. 54:463–69 [Google Scholar]
  53. Hedrick PW. 53.  2011. Population genetics of malaria resistance in humans. Heredity 107:283–304 [Google Scholar]
  54. Hertzler SR, Savaiano DA. 54.  1996. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 64:232–36 [Google Scholar]
  55. Heyer E, Brazier L, Ségurel L, Hegay T, Austerlitz F. 55.  et al. 2011. Lactase persistence in central Asia: phenotype, genotype, and evolution. Hum. Biol. 83:379–92 [Google Scholar]
  56. Ho MW, Povey S, Swallow D. 56.  1982. Lactase polymorphism in adult British natives: estimating allele frequencies by enzyme assays in autopsy samples. Am. J. Hum. Genet. 34:650–57 [Google Scholar]
  57. Hofmanova Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y. 57.  et al. 2016. Early farmers from across Europe directly descended from Neolithic Aegeans. PNAS 113:6886–91 [Google Scholar]
  58. Holden C, Mace R. 58.  1997. Phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 69:605–28 [Google Scholar]
  59. Imtiaz F, Savilahti E, Sarnesto A, Trabzuni D, Al-Kahtani K. 59.  et al. 2007. The T/G 13915 variant upstream of the lactase gene (LCT) is the founder allele of lactase persistence in an urban Saudi population. J. Med. Genet 44:e89 [Google Scholar]
  60. Ingram CJ, Elamin MF, Mulcare CA, Weale ME, Tarekegn A. 60.  et al. 2007. A novel polymorphism associated with lactose tolerance in Africa: multiple causes for lactase persistence?. Hum. Genet. 120:779–88 [Google Scholar]
  61. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. 61.  2009. Lactose digestion and the evolutionary genetics of lactase persistence. Hum. Genet. 124:579–91 [Google Scholar]
  62. Ingram CJ, Raga TO, Tarekegn A, Browning SL, Elamin MF. 62.  et al. 2009. Multiple rare variants as a cause of a common phenotype: several different lactase persistence associated alleles in a single ethnic group. J. Mol. Evol. 69:579–88 [Google Scholar]
  63. Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG. 63.  2010. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol. 10:36 [Google Scholar]
  64. Itan Y, Powell A, Beaumont MA, Burger J, Thomas MG. 64.  2009. The origins of lactase persistence in Europe. PLOS Comput. Biol. 5:e1000491 [Google Scholar]
  65. Johnson JD, Simoons FJ, Hurwitz R, Grange A, Mitchell CH. 65.  et al. 1977. Lactose malabsorption among the Pima Indians of Arizona. Gastroenterology 73:1299–304 [Google Scholar]
  66. Jones BL, Raga TO, Liebert A, Zmarz P, Bekele E. 66.  et al. 2013. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep. Am. J. Hum. Genet. 93:538–44 [Google Scholar]
  67. Jones ER, Gonzalez-Fortes G, Connell S, Siska V, Eriksson A. 67.  et al. 2015. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6:8912 [Google Scholar]
  68. Key FM, Fu Q, Romagné F, Lachmann M, Andrés AM. 68.  2016. Human adaptation and population differentiation in the light of ancient genomes. Nat. Commun. 7:10775 [Google Scholar]
  69. Kohl PL. 69.  2007. The Making of Bronze Age Eurasia Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  70. Kolars JC, Levitt MD, Aouji M, Savaiano DA. 70.  1984. Yogurt—an autodigesting source of lactose. N. Engl. J. Med. 310:1–3 [Google Scholar]
  71. Krüttli A, Bouwman A, Akgül G, Della Casa P, Rühli F, Warinner C. 71.  2014. Ancient DNA analysis reveals high frequency of European lactase persistence allele (T-13910) in medieval central Europe. PLOS ONE 9:e86251 [Google Scholar]
  72. Kumari A, Catanzaro R, Marotta F. 72.  2011. Clinical importance of lactic acid bacteria: a short review. Acta Biomed 82:177–80 [Google Scholar]
  73. Kwak H, Lee W, Lee M. 73.  2012. Revisiting lactose as an enhancer of calcium absorption. Int. Dairy J. 22:147–51 [Google Scholar]
  74. Lacan M, Keyser C, Ricaut F-X, Brucato N, Duranthon F, Guilaine J. 74.  2011. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. PNAS 108:9788–91 [Google Scholar]
  75. Lacan M, Keyser C, Ricaut F-X, Brucato N, Tarrús J. 75.  et al. 2011. Ancient DNA suggests the leading role played by men in the Neolithic dissemination. PNAS 108:18255–59 [Google Scholar]
  76. Levitt MD, Donaldson RM. 76.  1970. Use of respiratory hydrogen (H2) excretion to detect carbohydrate malabsorption. J. Lab. Clin. Med. 75:937–45 [Google Scholar]
  77. Lewinsky RH, Jensen TG, Møller J, Stensballe A, Olsen J, Troelsen JT. 77.  2005. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 14:3945–53 [Google Scholar]
  78. Liebert A, Jones BL, Danielsen ET, Olsen AK, Swallow DM, Troelsen JT. 78.  2016. In vitro functional analyses of infrequent nucleotide variants in the lactase enhancer reveal different molecular routes to increased lactase promoter activity and lactase persistence. Ann. Hum. Genet. 80:307–18 [Google Scholar]
  79. Lisker R, Gonzalez B, Daltabuit M. 79.  1975. Recessive inheritance of the adult type of intestinal lactase deficiency. Am. J. Hum. Genet. 27:662–64 [Google Scholar]
  80. Lokki AI, Jarvela I, Israelsson E, Maiga B, Troye-Blomberg M. 80.  et al. 2011. Lactase persistence genotypes and malaria susceptibility in Fulani of Mali. Malaria J 10:9 [Google Scholar]
  81. Lomer MC, Parkes GC, Sanderson JD. 81.  2008. Review article: lactose intolerance in clinical practice—myths and realities. Aliment. Pharmacol. Ther. 27:93–103 [Google Scholar]
  82. MacHugh DE, Larson G, Orlando L. 82.  2017. Taming the past: ancient DNA and the study of animal domestication. Annu. Rev. Anim. Biosci. 5:329–51 [Google Scholar]
  83. Malmström H, Linderholm A, Lidén K, Storå J, Molnar P. 83.  et al. 2010. High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evol. Biol. 10:89 [Google Scholar]
  84. Martiniano R, Caffell A, Holst M, Hunter-Mann K, Montgomery J. 84.  et al. 2016. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat. Commun. 7:10326 [Google Scholar]
  85. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N. 85.  et al. 2015. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:499–503 [Google Scholar]
  86. McCracken RD. 86.  1971. Lactase deficiency: an example of dietary evolution. Curr. Anthropol. 12:479–517 [Google Scholar]
  87. McCracken RD. 87.  1971. Origins and implications of the distribution of adult lactase deficiency in human populations. J. Trop. Pediatr. Environ. Child Health 17:7–10 [Google Scholar]
  88. Métneki J, Czeizel A, Flatz SD, Flatz G. 88.  1984. A study of lactose absorption capacity in twins. Hum. Genet. 67:296–300 [Google Scholar]
  89. Murdock GP. 89.  1967. Ethnographic Atlas: a summary. Ethnology 6:109–236 [Google Scholar]
  90. Myles S, Bouzekri N, Haverfield E, Cherkaoui M, Dugoujon JM, Ward R. 90.  2005. Genetic evidence in support of a shared Eurasian-North African dairying origin. Hum. Genet. 117:34–42 [Google Scholar]
  91. Nagy D, Tömöry G, Csányi B, Bogácsi-Szabó E, Czibula Á. 91.  et al. 2011. Comparison of lactase persistence polymorphism in ancient and present-day Hungarian populations. Am. J. Phys. Anthropol. 145:262–69 [Google Scholar]
  92. Nakagome S, Alkorta-Aranburu G, Amato R, Howie B, Peter BM. 92.  et al. 2016. Estimating the ages of selection signals from different epochs in human history. Mol. Biol. Evol. 33:657–69 [Google Scholar]
  93. Newcomer AD, McGill DB. 93.  1966. Lactose tolerance tests in adults with normal lactase activity. Gastroenterology 50:340–46 [Google Scholar]
  94. Nordborg M, Tavare S. 94.  2002. Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90 [Google Scholar]
  95. Olalde I, Allentoft ME, Sánchez-Quinto F, Santpere G, Chiang CWK. 95.  et al. 2014. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507:225–28 [Google Scholar]
  96. Olds LC, Ahn JK, Sibley E. 96.  2011. −13915*G DNA polymorphism associated with lactase persistence in Africa interacts with Oct-1. Hum. Genet. 129:111–13 [Google Scholar]
  97. Olds LC, Sibley E. 97.  2003. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element. Hum. Mol. Genet. 12:2333–40 [Google Scholar]
  98. Orlando L. 98.  2016. Back to the roots and routes of dromedary domestication. PNAS 113:201606340 [Google Scholar]
  99. Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A. 99.  et al. 2009. The earliest horse harnessing and milking. Science 323:1332–35 [Google Scholar]
  100. Peng MS, He JD, Zhu CL, Wu SF, Jin JQ, Zhang YP. 100.  2012. Lactase persistence may have an independent origin in Tibetan populations from Tibet, China. J. Hum. Genet. 57:394–97 [Google Scholar]
  101. Peter BM, Huerta-Sanchez E, Nielsen R. 101.  2012. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLOS Genet 8:e1003011 [Google Scholar]
  102. Plantinga TS, Alonso S, Izagirre N, Hervella M, Fregel R. 102.  et al. 2012. Low prevalence of lactase persistence in Neolithic South-West Europe. Eur. J. Hum. Genet. 20:778–82 [Google Scholar]
  103. Prentice AM. 103.  2005. Starvation in humans: evolutionary background and contemporary implications. Mech. Ageing Dev. 126:976–81 [Google Scholar]
  104. Priehodova E, Abdelsawy A, Heyer E, Cerny V. 104.  2014. Lactase persistence variants in Arabia and in the African Arabs. Hum. Biol. 86:7–18 [Google Scholar]
  105. Qiu Q, Wang L, Wang K, Yang Y, Ma T. 105.  et al. 2015. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat. Commun. 6:10283 [Google Scholar]
  106. Rab SM, Baseer A. 106.  1976. High intestinal lactase concentration in adult Pakistanis. Br. Med. J 1:436 [Google Scholar]
  107. Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A. 107.  et al. 2014. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am. J. Hum. Genet. 94:496–510 [Google Scholar]
  108. Rocha J. 108.  2012. The evolution of lactase persistence. Anthropol. Porteguesa 29:121–37 [Google Scholar]
  109. Røed KH, Flagstad O, Nieminen M, Holand Ø, Dwyer MJ. 109.  et al. 2008. Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proc. R. Soc. B 275:1849–55 [Google Scholar]
  110. Ross AB, Johansson A, Ingman M, Gyllensten U. 110.  2006. Lifestyle, genetics, and disease in Sami. Croat. Med. J 47:553–65 [Google Scholar]
  111. Rossel S, Marshall F, Peters J, Pilgram T, Adams MD, O'Connor D. 111.  2008. Domestication of the donkey: timing, processes, and indicators. PNAS 105:3715–20 [Google Scholar]
  112. Sahi T. 112.  1974. The inheritance of selective adult-type lactose malabsorption. Scand. J. Gastroenterol. Suppl. 30:1–73 [Google Scholar]
  113. Sahi T. 113.  1978. Dietary lactose and the aetiology of human small-intestinal hypolactasia. Gut 19:1074–86 [Google Scholar]
  114. Sahi T. 114.  1994. Genetics and epidemiology of adult-type hypolactasia. Scand. J. Gastroenterol. Suppl. 202:7–20 [Google Scholar]
  115. Sahi T, Isokoski M, Jussila J, Launiala K, Pyorala K. 115.  1973. Recessive inheritance of adult-type lactose malabsorption. Lancet 302:823–26 [Google Scholar]
  116. Salque M, Bogucki PI, Pyzel J, Sobkowiak-Tabaka I, Grygiel R. 116.  et al. 2013. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:522–25 [Google Scholar]
  117. Savaiano DA, Levitt MD. 117.  1987. Milk intolerance and microbe-containing dairy foods. J. Dairy Sci. 70:397–406 [Google Scholar]
  118. Schaafsma G. 118.  2008. Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int. Dairy J. 18:458–65 [Google Scholar]
  119. Schlebusch CM, Sjodin P, Skoglund P, Jakobsson M. 119.  2013. Stronger signal of recent selection for lactase persistence in Maasai than in Europeans. Eur. J. Hum. Genet. 21:550–53 [Google Scholar]
  120. Scrimshaw NS, Murray EB. 120.  1988. The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. Am. J. Clin. Nutr. 48:1079–159 [Google Scholar]
  121. Seguin-Orlando A, Korneliussen TS, Sikora M, Malaspinas A-S, Manica A. 121.  et al. 2014. Genomic structure in Europeans dating back at least 36,200 years. Science 346:1113–18 [Google Scholar]
  122. Shaukat A, Levitt MD, Taylor BC, MacDonald R, Shamliyan TA. 122.  et al. 2010. Systematic review: effective management strategies for lactose intolerance. Ann. Intern. Med. 152:797–803 [Google Scholar]
  123. Simoons FJ. 123.  1969. Primary adult lactose intolerance and the milking habit: a problem in biological and cultural interrelations. I. Review of the medical research. Am. J. Dig. Dis. 14:819–36 [Google Scholar]
  124. Simoons FJ. 124.  1970. Primary adult lactose intolerance and the milking habit: a problem in biologic and cultural interrelations. II. A culture historical hypothesis. Am. J. Dig. Dis. 15:695–710 [Google Scholar]
  125. Simoons FJ. 125.  1970. The traditional limits of milking and milk use in southern Asia. Anthropos 65:557–93 [Google Scholar]
  126. Simoons FJ. 126.  1978. The geographic hypothesis and lactose malabsorption. A weighing of the evidence. Am. J. Dig. Dis. 23:963–80 [Google Scholar]
  127. Skoglund P, Malmström H, Omrak A, Raghavan M, Valdiosera C. 127.  et al. 2014. Genomic diversity and admixture differs for stone-age Scandinavian foragers and farmers. Science 344:747–50 [Google Scholar]
  128. Skoglund P, Malmström H, Raghavan M, Storå J, Hall P. 128.  et al. 2012. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336:466–69 [Google Scholar]
  129. Skovbjerg H, Sjöström H, Norén O. 129.  1981. Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur. J. Biochem. 114:653–61 [Google Scholar]
  130. Smith JM, Haigh J. 130.  1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:23–35 [Google Scholar]
  131. Suarez FL, Savaiano D, Arbisi P, Levitt MD. 131.  1997. Tolerance to the daily ingestion of two cups of milk by individuals claiming lactose intolerance. Am. J. Clin. Nutr. 65:1502–6 [Google Scholar]
  132. Swallow DM. 132.  2003. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37:197–219 [Google Scholar]
  133. Szilagyi A. 133.  2015. Adaptation to lactose in lactase non persistent people: effects on intolerance and the relationship between dairy food consumption and evolution of diseases. Nutrients 7:6751–79 [Google Scholar]
  134. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC. 134.  et al. 2007. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39:31–40 [Google Scholar]
  135. Tishkoff SA, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G. 135.  et al. 2001. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293:455–62 [Google Scholar]
  136. Torniainen S, Parker MI, Holmberg V, Lahtela E, Dandara C, Jarvela I. 136.  2009. Screening of variants for lactase persistence/non-persistence in populations from South Africa and Ghana. BMC Genet 10:31 [Google Scholar]
  137. Townley RR, Khaw KT, Shwachman H. 137.  1965. Quantitative assay of disaccharidase activities of small intestinal mucosal biopsy specimens in infancy and childhood. Pediatrics 36:911–21 [Google Scholar]
  138. Troelsen JT. 138.  2005. Adult-type hypolactasia and regulation of lactase expression. Biochim. Biophys. Acta 1723:19–32 [Google Scholar]
  139. Troelsen JT, Olsen J, Møller J, Sjöström H. 139.  2003. An upstream polymorphism associated with lactase persistence has increased enhancer activity. Gastroenterology 125:1686–94 [Google Scholar]
  140. Vigne J-D. 140.  2012. Elevage laitier au Néolithique. Dictionnaire des cultures alimentaires J-P Poulain 442–51 Paris: Press. Univ. France [Google Scholar]
  141. Voight BF, Kudaravalli S, Wen X, Pritchard JK. 141.  2006. A map of recent positive selection in the human genome. PLOS Biol 4:e72 [Google Scholar]
  142. Vonk RJ, Priebe MG, Koetse HA, Stellaard F, Lenoir-Wijnkoop I. 142.  et al. 2003. Lactose intolerance: analysis of underlying factors. Eur. J. Clin. Investig. 33:70–75 [Google Scholar]
  143. Wang Y, Harvey CB, Pratt WS, Sams VR, Sarner M. 143.  et al. 1995. The lactase persistence/non-persistence polymorphism is controlled by a cis-acting element. Hum. Mol. Genet. 4:657–62 [Google Scholar]
  144. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R. 144.  et al. 2014. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4:7104 [Google Scholar]
  145. Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M. 145.  et al. 2014. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. PNAS 111:4832–37 [Google Scholar]
  146. Witas HW, Płoszaj T, Jêdrychowska-Dañska K, Witas PJ, Masłowska A. 146.  et al. 2015. Hunting for the LCT-13910*T allele between the Middle Neolithic and the Middle Ages suggests its absence in dairying LBK people entering the Kuyavia region in the 8th millennium BP. PLOS ONE 10:1–24 [Google Scholar]
  147. Yongfa W, Yongshan Y, Jinjin X, Ruofu D, Flatz SD. 147.  et al. 1984. Prevalence of primary adult lactose malabsorption in three populations of northern China. Hum. Genet. 67:103–6 [Google Scholar]
  148. Zeder MA. 148.  2006. Documenting Domestication: New Genetic and Archaeological Paradigms Berkeley: Univ. Calif. Press [Google Scholar]
  149. Zhong Y, Priebe MG, Vonk RJ, Huang CY, Antoine JM. 149.  et al. 2004. The role of colonic microbiota in lactose intolerance. Dig. Dis. Sci. 49:78–83 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error