Mitochondrial disease is a challenging area of genetics because two distinct genomes can contribute to disease pathogenesis. It is also challenging clinically because of the myriad of different symptoms and, until recently, a lack of a genetic diagnosis in many patients. The last five years has brought remarkable progress in this area. We provide a brief overview of mitochondrial origin, function, and biology, which are key to understanding the genetic basis of mitochondrial disease. However, the primary purpose of this review is to describe the recent advances related to the diagnosis, genetic basis, and prevention of mitochondrial disease, highlighting the newly described disease genes and the evolving methodologies aimed at preventing mitochondrial DNA disease transmission.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alston CL, Compton AG, Formosa LE, Strecker V, Oláhová M. 1.  et al. 2016. Biallelic mutations in TMEM126B cause severe complex I deficiency with a variable clinical phenotype. Am. J. Hum. Genet. 99:217–27 [Google Scholar]
  2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR. 2.  et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65 [Google Scholar]
  3. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. 3.  1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23:147 [Google Scholar]
  4. Archibald JM. 4.  2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:R911–21 [Google Scholar]
  5. Arroyo JD, Jourdain AA, Calvo SE, Ballarano CA, Doench JG. 5.  et al. 2016. A Genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab 24:875–85 [Google Scholar]
  6. Barrow JJ, Balsa E, Verdeguer F, Tavares CD, Soustek MS. 6.  et al. 2016. Bromodomain inhibitors correct bioenergetic deficiency caused by mitochondrial disease complex I mutations. Mol. Cell 64:163–75 [Google Scholar]
  7. Blok MJ, van den Bosch BJ, Jongen E, Hendrickx A, de Die-Smulders CE. 7.  et al. 2009. The unfolding clinical spectrum of POLG mutations. J. Med. Genet 46776–85 [Google Scholar]
  8. Burki F. 8.  2016. Mitochondrial evolution: going, going, gone. Curr. Biol. 26:R410–12 [Google Scholar]
  9. Calvo SE, Clauser KR, Mootha VK. 9.  2016. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–57 [Google Scholar]
  10. Cao L, Shitara H, Horii T, Nagao Y, Imai H. 10.  et al. 2007. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39:386–90 [Google Scholar]
  11. Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA. 11.  et al. 2014. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab 19:1042–49 [Google Scholar]
  12. Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R. 12.  et al. 2016. Mechanism of super-assembly of respiratory complexes III and IV. Nature 539:579–82 [Google Scholar]
  13. Craven L, Herbert M, Murdoch A, Murphy J, Lawford Davies J, Turnbull DM. 13.  2016. Research into policy: a brief history of mitochondrial donation. Stem Cells 34:265–67 [Google Scholar]
  14. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL. 14.  et al. 2010. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85 [Google Scholar]
  15. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P. 15.  et al. 2008. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40:249–54 [Google Scholar]
  16. Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. 16.  2001. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann. Neurol. 49:377–83 [Google Scholar]
  17. de Laat P, Koene S, van den Heuvel LP, Rodenburg RJ, Janssen MC, Smeitink JA. 17.  2012. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A>G mutation. J. Inherit. Metab. Dis. 35:1059–69 [Google Scholar]
  18. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. 18.  2008. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83:254–60 [Google Scholar]
  19. Elson JL, Samuels DC, Turnbull DM, Chinnery PF. 19.  2001. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68:802–6 [Google Scholar]
  20. Ferlin T, Landrieu P, Rambaud C, Fernandez H, Dumoulin R. 20.  et al. 1997. Segregation of the G8993 mutant mitochondrial DNA through generations and embryonic tissues in a family at risk of Leigh syndrome. J. Pediatr. 131:447–49 [Google Scholar]
  21. Floyd BJ, Wilkerson EM, Veling MT, Minogue CE, Xia C. 21.  et al. 2016. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell 63:621–32 [Google Scholar]
  22. Galmiche L, Serre V, Beinat M, Assouline Z, Lebre AS. 22.  et al. 2011. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum. Mutat. 32:1225–31 [Google Scholar]
  23. Garone C, Garcia-Diaz B, Emmanuele V, Lopez LC, Tadesse S. 23.  et al. 2014. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol. Med. 6:1016–27 [Google Scholar]
  24. Ghezzi D, Baruffini E, Haack TB, Invernizzi F, Melchionda L. 24.  et al. 2012. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am. J. Hum. Genet. 90:1079–87 [Google Scholar]
  25. Ghezzi D, Saada A, D'Adamo P, Fernandez-Vizarra E, Gasparini P. 25.  et al. 2008. FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 83:415–23 [Google Scholar]
  26. Girardet A, Viart V, Plaza S, Daina G, De Rycke M. 26.  et al. 2016. The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus. Eur. J. Hum. Genet. 24:469–78 [Google Scholar]
  27. Goldman KN, Nazem T, Berkeley A, Palter S, Grifo JA. 27.  2016. Preimplantation genetic diagnosis (PGD) for monogenic disorders: the value of concurrent aneuploidy screening. J. Genet. Couns. 25:1327–37 [Google Scholar]
  28. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y. 28.  et al. 2016. Mitochondrial diseases. Nat. Rev. Dis. Primers 2:16080 [Google Scholar]
  29. Gorman GS, Grady JP, Ng Y, Schaefer AM, McNally RJ. 29.  et al. 2015. Mitochondrial donation—how many women could benefit?. N. Engl. J. Med. 372:885–87 [Google Scholar]
  30. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL. 30.  et al. 2015. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77:753–59 [Google Scholar]
  31. Gotz A, Tyynismaa H, Euro L, Ellonen P, Hyotylainen T. 31.  et al. 2011. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am. J. Hum. Genet. 88:635–42 [Google Scholar]
  32. Gu J, Wu M, Guo R, Yan K, Lei J. 32.  et al. 2016. The architecture of the mammalian respirasome. Nature 537:639–43 [Google Scholar]
  33. Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V. 33.  et al. 2010. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet. 42:1131–34 [Google Scholar]
  34. Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A. 34.  et al. 2012. Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. J. Med. Genet 49277–83 [Google Scholar]
  35. Harding AE, Holt IJ, Sweeney MG, Brockington M, Davis MB. 35.  1992. Prenatal diagnosis of mitochondrial DNA8993 T→G disease. Am. J. Hum. Genet. 50:629–33 [Google Scholar]
  36. Harel T, Yoon WH, Garone C, Gu S, Coban-Akdemir Z. 36.  et al. 2016. Recurrent de novo and biallelic variation of ATAD3A, encoding a mitochondrial membrane protein, results in distinct neurological syndromes. Am. J. Hum. Genet. 99:831–45 [Google Scholar]
  37. Hartmannová H, Piherová L, Tauchmannová K, Kidd K, Acott PD. 37.  et al. 2016. Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum. Mol. Genet. 25:4062–79 [Google Scholar]
  38. Heide H, Bleier L, Steger M, Ackermann J, Drose S. 38.  et al. 2012. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab 16:538–49 [Google Scholar]
  39. Heindryckx B, Neupane J, Vandewoestyne M, Christodoulou C, Jackers Y. 39.  et al. 2014. Mutation-free baby born from a mitochondrial encephalopathy, lactic acidosis and stroke-like syndrome carrier after blastocyst trophectoderm preimplantation genetic diagnosis. Mitochondrion 18:12–17 [Google Scholar]
  40. Hellebrekers DM, Wolfe R, Hendrickx AT, de Coo IF, de Die CE. 40.  et al. 2012. PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring. Hum. Reprod. Update 18:341–49 [Google Scholar]
  41. Holt IJ, Harding AE, Morgan-Hughes JA. 41.  1988. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–19 [Google Scholar]
  42. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S. 42.  et al. 2006. Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–36 [Google Scholar]
  43. 43. Hum. Fertil. Embryol. Auth. 2016. Scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2016 update Rep., Hum. Fertil. Embryol. Auth London: http://www.hfea.gov.uk/docs/Fourth_scientific_review_mitochondria_2016.PDF [Google Scholar]
  44. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM. 44.  et al. 2016. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534:383–86 [Google Scholar]
  45. Jacobs LJ, de Coo IF, Nijland JG, Galjaard RJ, Los FJ. 45.  et al. 2005. Transmission and prenatal diagnosis of the T9176C mitochondrial DNA mutation. Mol. Hum. Reprod. 11:223–28 [Google Scholar]
  46. Jain IH, Zazzeron L, Goli R, Alexa K, Schatzman-Bone S. 46.  et al. 2016. Hypoxia as a therapy for mitochondrial disease. Science 352:54–61 [Google Scholar]
  47. Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M. 47.  et al. 2013. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342:1524–28 [Google Scholar]
  48. Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R. 48.  et al. 2016. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540:270–75 [Google Scholar]
  49. Karnkowska A, Vacek V, Zubacova Z, Treitli SC, Petrzelkova R. 49.  et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26:1274–84 [Google Scholar]
  50. Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y. 50.  et al. 2016. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLOS Genet 12:e1005679 [Google Scholar]
  51. Kunze M, Berger J. 51.  2015. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front. Physiol. 6:259 [Google Scholar]
  52. Kytovuori L, Lipponen J, Rusanen H, Komulainen T, Martikainen MH, Majamaa K. 52.  2016. A novel mutation m.8561C>G in MT-ATP6/8 causing a mitochondrial syndrome with ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism. J. Neurol. 263:2188–95 [Google Scholar]
  53. Lake NJ, Compton AG, Rahman S, Thorburn DR. 53.  2016. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann. Neurol. 79:190–203 [Google Scholar]
  54. Leshinsky-Silver E, Perach M, Basilevsky E, Hershkovitz E, Yanoov-Sharav M. 54.  et al. 2003. Prenatal exclusion of Leigh syndrome due to T8993C mutation in the mitochondrial DNA. Prenat. Diagn. 23:31–33 [Google Scholar]
  55. Letts JA, Fiedorczuk K, Sazanov LA. 55.  2016. The architecture of respiratory supercomplexes. Nature 537:644–48 [Google Scholar]
  56. Lieber DS, Calvo SE, Shanahan K, Slate NG, Liu S. 56.  et al. 2013. Targeted exome sequencing of suspected mitochondrial disorders. Neurology 80:1762–70 [Google Scholar]
  57. Lightowlers RN, Taylor RW, Turnbull DM. 57.  2015. Mutations causing mitochondrial disease: What is new and what challenges remain?. Science 349:1494–99 [Google Scholar]
  58. Long C, Amoasii L, Bassel-Duby R, Olson EN. 58.  2016. Genome editing of monogenic neuromuscular diseases: a systematic review. JAMA Neurol 73:1349–55 [Google Scholar]
  59. Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D. 59.  et al. 2013. mtDNA variation and analysis using Mitomap and Mitomaster. Curr. Protoc. Bioinform. 44:1.23.1–26 [Google Scholar]
  60. Ma H, O'Neil RC, Marti Gutierrez N, Hariharan M, Zhang ZZ. 60.  et al. 2017. Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20:112–19 [Google Scholar]
  61. Malkki H. 61.  2016. Huntington disease: selective deactivation of Huntington disease mutant allele by CRISPR-Cas9 gene editing. Nat. Rev. Neurol. 12:614–15 [Google Scholar]
  62. Marchington D, Malik S, Banerjee A, Turner K, Samuels D. 62.  et al. 2010. Information for genetic management of mtDNA disease: sampling pathogenic mtDNA mutants in the human germline and in placenta. J. Med. Genet 47257–61 [Google Scholar]
  63. Mayr JA, Haack TB, Freisinger P, Karall D, Makowski C. 63.  et al. 2015. Spectrum of combined respiratory chain defects. J. Inherit. Metab. Dis. 38:629–40 [Google Scholar]
  64. McCann BJ, Tuppen HA, Kusters B, Lammens M, Smeitink JA. 64.  et al. 2015. A novel mitochondrial DNA m.7507A>G mutation is only pathogenic at high levels of heteroplasmy. Neuromuscul. Disord. 25:262–67 [Google Scholar]
  65. McGrath J, Solter D. 65.  1983. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–2 [Google Scholar]
  66. Mitalipov S, Amato P, Parry S, Falk MJ. 66.  2014. Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep 7:935–37 [Google Scholar]
  67. Monnot S, Gigarel N, Samuels DC, Burlet P, Hesters L. 67.  et al. 2011. Segregation of mtDNA throughout human embryofetal development: m.3243A>G as a model system. Hum. Mutat. 32:116–25 [Google Scholar]
  68. Nesbitt V, Alston CL, Blakely EL, Fratter C, Feeney CL. 68.  et al. 2014. A national perspective on prenatal testing for mitochondrial disease. Eur. J. Hum. Genet. 22:1255–59 [Google Scholar]
  69. Nicholls TJ, Minczuk M. 69.  2014. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol. 56:175–81 [Google Scholar]
  70. Olivo PD, Van de Walle MJ, Laipis PJ, Hauswirth WW. 70.  1983. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306:400–2 [Google Scholar]
  71. Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L. 71.  et al. 2013. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493:632–37 [Google Scholar]
  72. Pyle A, Hudson G, Wilson IJ, Coxhead J, Smertenko T. 72.  et al. 2015. Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans. PLOS Genet 11:e1005040 [Google Scholar]
  73. Raap AK, Jahangir Tafrechi RS, van de Rijke FM, Pyle A, Wahlby C. 73.  et al. 2012. Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells. PLOS ONE 7:e52080 [Google Scholar]
  74. Rahman S, Poulton J, Marchington D, Suomalainen A. 74.  2001. Decrease of 3243 A→G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am. J. Hum. Genet. 68:238–40 [Google Scholar]
  75. Sallevelt SC, de Die-Smulders CE, Hendrickx AT, Hellebrekers DM, de Coo IF. 75.  et al. 2017. De novo mtDNA point mutations are common and have a low recurrence risk. J. Med. Genet 5473–83 [Google Scholar]
  76. Sallevelt SC, Dreesen JC, Drusedau M, Spierts S, Coonen E. 76.  et al. 2013. Preimplantation genetic diagnosis in mitochondrial DNA disorders: challenge and success. J. Med. Genet 50125–32 [Google Scholar]
  77. Sánchez-Caballero L, Ruzzenente B, Bianchi L, Assouline Z, Barcia G. 77.  et al. 2016. Mutations in complex I assembly factor TMEM126B result in muscle weakness and isolated complex I deficiency. Am. J. Hum. Genet. 99:208–16 [Google Scholar]
  78. Sato A, Kono T, Nakada K, Ishikawa K, Inoue S. 78.  et al. 2005. Gene therapy for progeny of mito-mice carrying pathogenic mtDNA by nuclear transplantation. PNAS 102:16765–70 [Google Scholar]
  79. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. 79.  1990. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61:931–37 [Google Scholar]
  80. Simpson JL, Rechitsky S. 80.  2017. Preimplantation diagnosis and other modern methods for prenatal diagnosis. J. Steroid Biochem. Mol. Biol. 165:124–30 [Google Scholar]
  81. Skladal D, Halliday J, Thorburn DR. 81.  2003. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–12 [Google Scholar]
  82. Smeets HJ, Sallevelt SC, Dreesen JC, de Die-Smulders CE, de Coo IF. 82.  2015. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann. N.Y. Acad. Sci. 1350:29–36 [Google Scholar]
  83. Stefely JA, Kwiecien NW, Freiberger EC, Richards AL, Jochem A. 83.  et al. 2016. Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol. 34:1191–97 [Google Scholar]
  84. Steffann J, Frydman N, Gigarel N, Burlet P, Ray PF. 84.  et al. 2006. Analysis of mtDNA variant segregation during early human embryonic development: a tool for successful NARP preimplantation diagnosis. J. Med. Genet 43244–47 [Google Scholar]
  85. Steffann J, Gigarel N, Corcos J, Bonniere M, Encha-Razavi F. 85.  et al. 2007. Stability of the m.8993T→G mtDNA mutation load during human embryofetal development has implications for the feasibility of prenatal diagnosis in NARP syndrome. J. Med. Genet 44664–69 [Google Scholar]
  86. Stehling O, Lill R. 86.  2013. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb. Perspect. Biol. 5:a011312 [Google Scholar]
  87. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE. 87.  et al. 2016. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538:123–26 [Google Scholar]
  88. Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM. 88.  et al. 2013. Towards germline gene therapy of inherited mitochondrial diseases. Nature 493:627–31 [Google Scholar]
  89. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L. 89.  et al. 2009. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461:367–72 [Google Scholar]
  90. Tang S, Wang J, Zhang VW, Li FY, Landsverk M. 90.  et al. 2013. Transition to next generation analysis of the whole mitochondrial genome: a summary of molecular defects. Hum. Mutat. 34:882–93 [Google Scholar]
  91. Tetreault M, Fahiminiya S, Antonicka H, Mitchell GA, Geraghty MT. 91.  et al. 2015. Whole-exome sequencing identifies novel ECHS1 mutations in Leigh syndrome. Hum. Genet. 134:981–91 [Google Scholar]
  92. Thompson K, Majd H, Dallabona C, Reinson K, King MS. 92.  et al. 2016. Recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number. Am. J. Hum. Genet. 99:860–76 [Google Scholar]
  93. Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT Jr. 93.  2012. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil. Steril. 98:1236–40 [Google Scholar]
  94. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. 94.  2009. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 1797:113–28 [Google Scholar]
  95. Vandewoestyne M, Heindryckx B, De Gheselle S, Lepez T, Neupane J. 95.  et al. 2012. Poor correlation between polar bodies and blastomere mutation load in a patient with m.3243A>G tRNALeu(UUR) point mutation. Mitochondrion 12:477–79 [Google Scholar]
  96. Wai T, Teoli D, Shoubridge EA. 96.  2008. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40:1484–88 [Google Scholar]
  97. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG. 97.  et al. 1988. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242:1427–30 [Google Scholar]
  98. Wang C, Youle RJ. 98.  2009. The role of mitochondria in apoptosis. Annu. Rev. Genet. 43:95–118 [Google Scholar]
  99. Wang T, Sha H, Ji D, Zhang HL, Chen D. 99.  et al. 2014. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell 157:1591–604 [Google Scholar]
  100. White SL, Collins VR, Wolfe R, Cleary MA, Shanske S. 100.  et al. 1999. Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am. J. Hum. Genet. 65:474–82 [Google Scholar]
  101. Wilson IJ, Carling PJ, Alston CL, Floros VI, Pyle A. 101.  et al. 2016. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Hum. Mol. Genet. 25:1031–41 [Google Scholar]
  102. Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. 102.  2015. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J. Inherit. Metab. Dis. 38:437–43 [Google Scholar]
  103. Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G. 103.  et al. 2016. Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18:749–54 [Google Scholar]
  104. Yatsuga S, Suomalainen A. 104.  2012. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum. Mol. Genet. 21:526–35 [Google Scholar]
  105. Zhang J, Liu H, Luo S, Chavez-Badiola A, Liu Z. 105.  et al. 2016. First live birth using human oocytes reconstituted by spindle nuclear transfer for mitochondrial DNA mutation causing Leigh syndrome. Fertil. Steril. 106:e375–76 [Google Scholar]
  106. Zhou Q, Li H, Li H, Nakagawa A, Lin JL. 106.  et al. 2016. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 353:394–99 [Google Scholar]
  107. Zhu Z, Yao J, Johns T, Fu K, De Bie I. 107.  et al. 1998. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 20:337–43 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error