Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the agents behind devastating historical plagues, identifying the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the fundamental concepts and theoretical framework of the discipline, then discuss applied methodologies for pathogen identification and microbiome characterization from archaeological samples. We give special attention to the process of identifying, validating, and authenticating ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and precautions to guide future research in the field.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Achtman M. 1.  2008. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62:53–70 [Google Scholar]
  2. Achtman M, Wagner M. 2.  2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6:431–40 [Google Scholar]
  3. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. 3.  2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186:2629–35 [Google Scholar]
  4. Allentoft ME, Collins M, Harker D, Haile J, Oskam CL. 4.  et al. 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. Biol. Sci. 279:4724–33 [Google Scholar]
  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 5.  1990. Basic local alignment search tool. J. Mol. Biol. 215:403–10 [Google Scholar]
  6. Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ. 6.  2013. metaBEETL: high-throughput analysis of heterogeneous microbial populations from shotgun DNA sequences. BMC Bioinform 14:Suppl. 5S2 [Google Scholar]
  7. Andersen K, Bird KL, Rasmussen M, Haile J, Breuning-Madsen H. 7.  et al. 2012. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 21:1966–79 [Google Scholar]
  8. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM. 8.  et al. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. . Science 297:1301–10 [Google Scholar]
  9. Avila-Arcos MC, Cappellini E, Romero-Navarro JA, Wales N, Moreno-Mayar JV. 9.  et al. 2011. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA. Sci. Rep. 1:74 [Google Scholar]
  10. Bapteste E, O'Malley MA, Beiko RG, Ereshefsky M, Gogarten JP. 10.  et al. 2009. Prokaryotic evolution and the tree of life are two different things. Biol. Direct 4:34 [Google Scholar]
  11. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ. 11.  et al. 2017. GenBank. Nucleic Acids Res 45:D37–42 [Google Scholar]
  12. Biagini P, Theves C, Balaresque P, Geraut A, Cannet C. 12.  et al. 2012. Variola virus in a 300-year-old Siberian mummy. N. Engl. J. Med. 367:2057–59 [Google Scholar]
  13. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N. 13.  et al. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–97 [Google Scholar]
  14. Bos KI, Herbig A, Sahl J, Waglechner N, Fourment M. 14.  et al. 2016. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife 5:e12994 [Google Scholar]
  15. Bos KI, Jager G, Schuenemann VJ, Vagene AJ, Spyrou MA. 15.  et al. 2015. Parallel detection of ancient pathogens via array-based DNA capture. Philos. Trans. R. Soc. Lond. B 370:20130375 [Google Scholar]
  16. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N. 16.  et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–10 [Google Scholar]
  17. Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J. 17.  et al. 2007. Patterns of damage in genomic DNA sequences from a Neandertal. PNAS 104:14616–21 [Google Scholar]
  18. Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R. 18.  et al. 2007. Novel high-resolution characterization of ancient DNA reveals C >U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res 35:5717–28 [Google Scholar]
  19. Buchfink B, Xie C, Huson DH. 19.  2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59–60 [Google Scholar]
  20. Burbano HA, Hodges E, Green RE, Briggs AW, Krause J. 20.  et al. 2010. Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328:723–25 [Google Scholar]
  21. Camanocha A, Dewhirst FE. 21.  2014. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J. Oral Microbiol. 6:25468 [Google Scholar]
  22. Cambier CJ, Falkow S, Ramakrishnan L. 22.  2014. Host evasion and exploitation schemes of Mycobacterium tuberculosis. . Cell 159:1497–509 [Google Scholar]
  23. Cano RJ, Tiefenbrunner F, Ubaldi M, Del Cueto C, Luciani S. 23.  et al. 2000. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am. J. Phys. Anthropol. 112:297–309 [Google Scholar]
  24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD. 24.  et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–36 [Google Scholar]
  25. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO. 25.  et al. 2004. Insights into the evolution of Yersiniapestis through whole-genome comparison with Yersinia pseudotuberculosis. . PNAS 101:13826–31 [Google Scholar]
  26. Chan JZ, Sergeant MJ, Lee OY, Minnikin DE, Besra GS. 26.  et al. 2013. Metagenomic analysis of tuberculosis in a mummy. N. Engl. J. Med. 369:289–90 [Google Scholar]
  27. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. 27.  2010. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010:baq013 [Google Scholar]
  28. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 28.  2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–87 [Google Scholar]
  29. Cohan FM. 29.  2002. What are bacterial species?. Annu. Rev. Microbiol. 56:457–87 [Google Scholar]
  30. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA. 30.  et al. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–96 [Google Scholar]
  31. Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C. 31.  et al. 2017. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol. Ecol. Resour. 71:508–22 [Google Scholar]
  32. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A. 32.  et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. PNAS 110:15758–63 [Google Scholar]
  33. Dabney J, Meyer M, Pääbo S. 33.  2013. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5:a012567 [Google Scholar]
  34. de la Cruz F, Davies J. 34.  2000. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–33 [Google Scholar]
  35. de Meeus T, Durand P, Renaud F. 35.  2003. Species concepts: What for?. Trends Parasitol 19:425–27 [Google Scholar]
  36. Deagle BE, Eveson JP, Jarman SN. 36.  2006. Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front. Zool. 3:11 [Google Scholar]
  37. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL. 37.  et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–72 [Google Scholar]
  38. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC. 38.  et al. 2010. The human oral microbiome. J. Bacteriol. 192:5002–17 [Google Scholar]
  39. Doolittle WF. 39.  1999. Phylogenetic classification and the universal tree. Science 284:2124–29 [Google Scholar]
  40. Doolittle WF, Papke RT. 40.  2006. Genomics and the bacterial species problem. Genome Biol 7:116 [Google Scholar]
  41. Drancourt M, Raoult D. 41.  2004. Molecular detection of Yersinia pestis in dental pulp. Microbiology 150:263–64 [Google Scholar]
  42. Duggan AT, Perdomo MF, Piombino-Mascali D, Marciniak S, Poinar D. 42.  et al. 2016. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 26:3407–12 [Google Scholar]
  43. Edgar RC. 43.  2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–61 [Google Scholar]
  44. Everitt RG, Didelot X, Batty EM, Miller RR, Knox K. 44.  et al. 2014. Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. . Nat. Commun. 5:3956 [Google Scholar]
  45. Falkinham JO III. 45.  2015. Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 36:35–41 [Google Scholar]
  46. Fantini E, Gianese G, Giuliano G, Fiore A. 46.  2015. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing. Methods Mol. Biol. 1231:77–90 [Google Scholar]
  47. Feldman M, Harbeck M, Keller M, Spyrou MA, Rott A. 47.  et al. 2016. A high-coverage Yersinia pestis genome from a sixth-century Justinianic Plague victim. Mol. Biol. Evol. 33:2911–23 [Google Scholar]
  48. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST. 48.  et al. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–95 [Google Scholar]
  49. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF. 49.  et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [Google Scholar]
  50. Fodor AA, DeSantis TZ, Wylie KM, Badger JH, Ye Y. 50.  et al. 2012. The “most wanted” taxa from the human microbiome for whole genome sequencing. PLOS ONE 7:e41294 [Google Scholar]
  51. Freney J, Kloos WE, Hajek V, Webster JA, Bes M. 51.  et al. 1999. Recommended minimal standards for description of new staphylococcal species. Int. J. Syst. Bacteriol. 49:489–502 [Google Scholar]
  52. Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA. 52.  et al. 2013. DNA analysis of an early modern human from Tianyuan Cave, China. PNAS 110:2223–27 [Google Scholar]
  53. Fukushima H, Gomyoda M. 53.  1991. Intestinal carriage of Yersinia pseudotuberculosis by wild birds and mammals in Japan. Appl. Environ. Microbiol. 57:1152–55 [Google Scholar]
  54. Gansauge MT, Meyer M. 54.  2013. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8:737–48 [Google Scholar]
  55. Gengler S, Laudisoit A, Batoko H, Wattiau P. 55.  2015. Long-term persistence of Yersinia pseudotuberculosis in entomopathogenic nematodes. PLOS ONE 10:e0116818 [Google Scholar]
  56. Gilbert JA, Jansson JK, Knight R. 56.  2014. The Earth Microbiome project: successes and aspirations. BMC Biol 12:69 [Google Scholar]
  57. Gilbert MT, Cuccui J, White W, Lynnerup N, Titball RW. 57.  et al. 2004. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150:341–54 [Google Scholar]
  58. Gilbert MT, Cuccui J, White W, Lynnerup N, Titball RW. 58.  et al. 2004. Response to Drancourt and Raoult. Microbiology 150:264–65 [Google Scholar]
  59. Ginolhac A, Rasmussen M, Gilbert MT, Willerslev E, Orlando L. 59.  2011. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27:2153–55 [Google Scholar]
  60. Glaeser SP, Kampfer P. 60.  2015. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst. Appl. Microbiol. 38:237–45 [Google Scholar]
  61. Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H. 61.  et al. 2013. Self-organization of bacterial biofilms is facilitated by extracellular DNA. PNAS 110:11541–46 [Google Scholar]
  62. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM. 62.  et al. 2009. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27:182–89 [Google Scholar]
  63. Gogarten JP, Townsend JP. 63.  2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3:679–87 [Google Scholar]
  64. Green RE, Briggs AW, Krause J, Prüfer K, Burbano HA. 64.  et al. 2009. The Neandertal genome and ancient DNA authenticity. EMBO J 28:2494–502 [Google Scholar]
  65. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U. 65.  et al. 2010. A draft sequence of the Neandertal genome. Science 328:710–22 [Google Scholar]
  66. Gribaldo S, Brochier C. 66.  2009. Phylogeny of prokaryotes: Does it exist and why should we care?. Res. Microbiol. 160:513–21 [Google Scholar]
  67. Hall-Stoodley L, Costerton JW, Stoodley P. 67.  2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95–108 [Google Scholar]
  68. Hashimoto JG, Stevenson BS, Schmidt TM. 68.  2003. Rates and consequences of recombination between rRNA operons. J. Bacteriol. 185:966–72 [Google Scholar]
  69. Hauswedell H, Singer J, Reinert K. 69.  2014. Lambda: the local aligner for massive biological data. Bioinformatics 30:i349–-55 [Google Scholar]
  70. He X, McLean JS, Edlund A, Yooseph S, Hall AP. 70.  et al. 2015. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. PNAS 112:244–49 [Google Scholar]
  71. Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. 71.  2016. MALT: fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. bioRxiv 050559. https://doi.org/10.1101/050559 [Crossref]
  72. Hey J. 72.  2006. On the failure of modern species concepts. Trends Ecol. Evol. 21:447–50 [Google Scholar]
  73. Heyn P, Stenzel U, Briggs AW, Kircher M, Hofreiter M, Meyer M. 73.  2010. Road blocks on paleogenomes—polymerase extension profiling reveals the frequency of blocking lesions in ancient DNA. Nucleic Acids Res 38:e161 [Google Scholar]
  74. Higashi S, Barreto AMS, Cantão ME, de Vasconcelos ATR. 74.  2012. Analysis of composition-based metagenomic classification. BMC Genom 13:Suppl. 5S1 [Google Scholar]
  75. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN. 75.  et al. 2007. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39:1522–27 [Google Scholar]
  76. Hruska K, Kaevska M. 76.  2012. Mycobacteria in water, soil, plants and air: a review. Vet. Med. 57:623–79 [Google Scholar]
  77. Hughes J, Bohannan BJ. 77.  2004. Application of ecological diversity statistics in microbial ecology. Molecular Microbial Ecology Manual GA Kowalchuk, FJ de Bruijn, IM Head, ADL Akkermans, JD van Elsas 1321–44 Dordrecht, Neth: Kluwer Acad, 2nd ed.. [Google Scholar]
  78. 78. Hum. Microbiome Proj. Consort. 2012. A framework for human microbiome research. Nature 486:215–21 [Google Scholar]
  79. 79. Hum. Microbiome Proj. Consort. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  80. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M. 80.  et al. 2016. MEGAN Community Edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 12:e1004957 [Google Scholar]
  81. Jalava K, Hakkinen M, Valkonen M, Nakari UM, Palo T. 81.  et al. 2006. An outbreak of gastrointestinal illness and erythema nodosum from grated carrots contaminated with Yersinia pseudotuberculosis. . J. Infect. Dis. 194:1209–16 [Google Scholar]
  82. Johnston M. 82.  2016. Joshua Lederberg on bacterial recombination. Genetics 203:613–14 [Google Scholar]
  83. Jonsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L. 83.  2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29:1682–84 [Google Scholar]
  84. Kampfer P, Buczolits S, Albrecht A, Busse HJ, Stackebrandt E. 84.  2003. Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrumgallinifaecis sp. nov. Int. J. Syst. Evol. Microbiol. 53:893–96 [Google Scholar]
  85. Kay GL, Sergeant MJ, Giuffra V, Bandiera P, Milanese M. 85.  et al. 2014. Recovery of a medieval Brucella melitensis genome using shotgun metagenomics. mBio 5:e01337–14 [Google Scholar]
  86. Kerpedjiev P, Frellsen J, Lindgreen S, Krogh A. 86.  2014. Adaptable probabilistic mapping of short reads using position specific scoring matrices. BMC Bioinform 15:1 [Google Scholar]
  87. Kim M, Oh H-S, Park S-C, Chun J. 87.  2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64:346–51 [Google Scholar]
  88. Kircher M, Sawyer S, Meyer M. 88.  2012. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40:e3 [Google Scholar]
  89. Kitahara K, Miyazaki K. 89.  2013. Revisiting bacterial phylogeny: natural and experimental evidence for horizontal gene transfer of 16S rRNA. Mob. Genet. Elem. 3:e24210 [Google Scholar]
  90. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 90.  2001. rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res 29:181–84 [Google Scholar]
  91. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC. 91.  et al. 2011. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8:761–63 [Google Scholar]
  92. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. 92.  2013. The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38 [Google Scholar]
  93. Koehler A, Karch H, Beikler T, Flemmig TF, Suerbaum S, Schmidt H. 93.  2003. Multilocus sequence analysis of Porphyromonas gingivalis indicates frequent recombination. Microbiology 149:2407–15 [Google Scholar]
  94. Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N. 94.  et al. 2010. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol. 20:231–36 [Google Scholar]
  95. Kucera RB, Nichols NM. 95.  2008. DNA-dependent DNA polymerases. Curr. Protoc. Mol. Biol. 84:3.5.1–19 [Google Scholar]
  96. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. 96.  2011. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinform. 36:10.7.1–20 [Google Scholar]
  97. Langmead B, Salzberg SL. 97.  2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357–59 [Google Scholar]
  98. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA. 98.  1992. International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision Washington, DC: ASM Press
  99. Lawrence JG, Hendrickson H. 99.  2003. Lateral gene transfer: When will adolescence end?. Mol. Microbiol. 50:739–49 [Google Scholar]
  100. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. 100.  2016. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 40:95–99 [Google Scholar]
  101. Lederberg J, McCray AT. 101.  2001. ’Ome sweet ’omics—a genealogical treasury of words. The Scientist8
  102. Lee ZM, Bussema C III, Schmidt TM. 102.  2009. rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–93 [Google Scholar]
  103. Lefebure T, Stanhope MJ. 103.  2007. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8:R71 [Google Scholar]
  104. Li H, Durbin R. 104.  2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–60 [Google Scholar]
  105. Lindahl T. 105.  1993. Instability and decay of the primary structure of DNA. Nature 362:709–15 [Google Scholar]
  106. Lindgreen S, Adair KL, Gardner PP. 106.  2016. An evaluation of the accuracy and speed of metagenome analysis tools. Sci. Rep. 6:19233 [Google Scholar]
  107. Linz B, Balloux F, Moodley Y, Manica A, Liu H. 107.  et al. 2007. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445:915–18 [Google Scholar]
  108. Locey KJ, Lennon JT. 108.  2016. Scaling laws predict global microbial diversity. PNAS 113:5970–75 [Google Scholar]
  109. Long C, Jones TF, Vugia DJ, Scheftel J, Strockbine N. 109.  et al. 2010. Yersinia pseudotuberculosis and Y. enterocolitica infections, FoodNet, 1996–2007. Emerg. Infect. Dis. 16:566–67 [Google Scholar]
  110. Louvel G, Der Sarkissian C, Hanghoj K, Orlando L. 110.  2016. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data. Mol. Ecol. Resour. 16:1415–27 [Google Scholar]
  111. Maiden MFJ, Cohee P, Tanner ACR. 111.  2003. Proposal to conserve the adjectival form of the specific epithet in the reclassification of Bacteroides forsythus Tanner et al. 1986 to the genus Tannerella Sakamoto et al. 2002 as Tannerella forsythia corrig., gen. nov., comb. nov. Request for an Opinion. Int. J. Syst. Evol. Microbiol. 53:2111–12 [Google Scholar]
  112. Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR. 112.  et al. 2016. The 5300-year-old Helicobacter pylori genome of the Iceman. Science 351:162–65 [Google Scholar]
  113. Marchesi JR, Ravel J. 113.  2015. The vocabulary of microbiome research: a proposal. Microbiome 3:31 [Google Scholar]
  114. Mardis ER. 114.  2008. Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 9:387–402 [Google Scholar]
  115. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS. 115.  et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–80 [Google Scholar]
  116. Martin MD, Cappellini E, Samaniego JA, Zepeda ML, Campos PF. 116.  et al. 2013. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nat. Commun. 4:2172 [Google Scholar]
  117. Mayr E. 117.  1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist New York: Columbia Univ. Press
  118. Medini D, Serruto D, Parkhill J, Relman DA, Donati C. 118.  et al. 2008. Microbiology in the post-genomic era. Nat. Rev. Microbiol. 6:419–30 [Google Scholar]
  119. Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W. 119.  et al. 2016. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351:158–62 [Google Scholar]
  120. Meyer M, Kircher M. 120.  2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc 2010:pdb.prot5448 [Google Scholar]
  121. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F. 121.  et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–26 [Google Scholar]
  122. Mira A, Martin-Cuadrado AB, D'Auria G, Rodriguez-Valera F. 122.  2010. The bacterial pan-genome: a new paradigm in microbiology. Int. Microbiol. 13:45–57 [Google Scholar]
  123. Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. 123.  2011. How many species are there on Earth and in the ocean?. PLOS Biol 9:e1001127 [Google Scholar]
  124. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. 124.  2008. Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–64 [Google Scholar]
  125. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O. 125.  et al. 2017. Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res 45:D446–56 [Google Scholar]
  126. Murray DC, Haile J, Dortsch J, White NE, Haouchar D. 126.  et al. 2013. Scrapheap Challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci. Rep. 3:3371 [Google Scholar]
  127. 127. Natl. Cent. Biotechnol. Inf. 2017. How to reference the NCBI taxonomy database https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=howcite
  128. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y. 128.  et al. 2013. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 531:371–444 [Google Scholar]
  129. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 129.  2016. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res 26:1612–25 [Google Scholar]
  130. Needleman SB, Wunsch CD. 130.  1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48:443–53 [Google Scholar]
  131. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D. 131.  et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–45 [Google Scholar]
  132. Ochman H, Lawrence JG, Groisman EA. 132.  2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [Google Scholar]
  133. Octavia S, Lan R. 133.  2014. The family Enterobacteriaceae. The Prokaryotes: Gammaproteobacteria E Rosenberg, EF DeLong, S Lory, E Stackebrandt, F Thompson 225–86 Berlin: Springer-Verlag, 4th ed.. [Google Scholar]
  134. Ondov BD, Bergman NH, Phillippy AM. 134.  2011. Interactive metagenomic visualization in a Web browser. BMC Bioinform 12:385 [Google Scholar]
  135. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A. 135.  et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78 [Google Scholar]
  136. Overballe-Petersen S, Harms K, Orlando LA, Mayar JV, Rasmussen S. 136.  et al. 2013. Bacterial natural transformation by highly fragmented and damaged DNA. PNAS 110:19860–65 [Google Scholar]
  137. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T. 137.  et al. 2012. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–79 [Google Scholar]
  138. Pallen MJ, Wren BW. 138.  2007. Bacterial pathogenomics. Nature 449:835–42 [Google Scholar]
  139. Palmer LJ, Chapple IL, Wright HJ, Roberts A, Cooper PR. 139.  2012. Extracellular deoxyribonuclease production by periodontal bacteria. J. Periodontal Res. 47:439–45 [Google Scholar]
  140. Parkhill J. 140.  2013. What has high-throughput sequencing ever done for us?. Nat. Rev. Microbiol. 11:664–65 [Google Scholar]
  141. Parte AC. 141.  2014. LPSN—List of Prokaryotic Names with Standing in Nomenclature. Nucleic Acids Res 42:D613–16 [Google Scholar]
  142. Peabody MA, Van Rossum T, Lo R, Brinkman FSL. 142.  2015. Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities. BMC Bioinform 16:363 [Google Scholar]
  143. Pedersen MW, Ruter A, Schweger C, Friebe H, Staff RA. 143.  et al. 2016. Postglacial viability and colonization in North America's ice-free corridor. Nature 537:45–49 [Google Scholar]
  144. Penders J, Stobberingh EE, Savelkoul PH, Wolffs P. 144.  2013. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. 4:87 [Google Scholar]
  145. Perez-Losada M, Browne EB, Madsen A, Wirth T, Viscidi RP, Crandall KA. 145.  2006. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 6:97–112 [Google Scholar]
  146. Perez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. 146.  2013. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 16:38–53 [Google Scholar]
  147. Pham VH, Kim J. 147.  2012. Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–84 [Google Scholar]
  148. Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP. 148.  et al. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8:523–29 [Google Scholar]
  149. Pignatelli M, Aparicio G, Blanquer I, Hernández V, Moya A, Tamames J. 149.  2008. Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 24:2124–25 [Google Scholar]
  150. Poinar H, Kuch M, Pääbo S. 150.  2001. Molecular analyses of oral polio vaccine samples. Science 292:743–44 [Google Scholar]
  151. Prufer K, Meyer M. 151.  2015. Comment on “Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans. .” Science 347:835 [Google Scholar]
  152. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T. 152.  et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–96 [Google Scholar]
  153. Rajilic-Stojanovic M, de Vos WM. 153.  2014. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38:996–1047 [Google Scholar]
  154. Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M. 154.  2000. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. PNAS 97:12800–3 [Google Scholar]
  155. Raoult D, Drancourt M, Fournier PE, Ogata H. 155.  2005. Yersinia pestis genotyping—response. Emerg. Infect. Dis. 11:1318–19 [Google Scholar]
  156. Rasheed Z, Rangwala H. 156.  2012. Metagenomic taxonomic classification using extreme learning machines. J. Bioinform. Comput. Biol. 10:1250015 [Google Scholar]
  157. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A. 157.  et al. 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–62 [Google Scholar]
  158. Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M. 158.  et al. 2015. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163:571–82 [Google Scholar]
  159. Reich D, Green RE, Kircher M, Krause J, Patterson N. 159.  et al. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053–60 [Google Scholar]
  160. Richter M, Rosselló-Mora R. 160.  2009. Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106:19126–31 [Google Scholar]
  161. Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. 161.  2015. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370:20130624 [Google Scholar]
  162. Rosselló-Mora R, Amann R. 162.  2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25:39–67 [Google Scholar]
  163. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. 163.  2002. Reclassification of Bacteroidesforsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52:841–49 [Google Scholar]
  164. Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. 164.  2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLOS ONE 7:e34131 [Google Scholar]
  165. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K. 165.  et al. 2009. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:D5–15 [Google Scholar]
  166. Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC. 166.  2016. Status of the archaeal and bacterial census: an update. mBio 7:e00201–16 [Google Scholar]
  167. Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK. 167.  2016. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4:e1869 [Google Scholar]
  168. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M. 168.  et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–41 [Google Scholar]
  169. Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J. 169.  et al. 2011. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. PNAS 108:E746–52 [Google Scholar]
  170. Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jager G. 170.  et al. 2013. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341:179–83 [Google Scholar]
  171. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L. 171.  et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60 [Google Scholar]
  172. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 172.  2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9:811–14 [Google Scholar]
  173. Seguin-Orlando A, Hoover CA, Vasiliev SK, Ovodov ND, Shapiro B. 173.  et al. 2015. Amplification of TruSeq ancient DNA libraries with AccuPrime Pfx: consequences on nucleotide misincorporation and methylation patterns. STAR 1:1–9 [Google Scholar]
  174. Seguin-Orlando A, Schubert M, Clary J, Stagegaard J, Alberdi MT. 174.  et al. 2013. Ligation bias in Illumina next-generation DNA libraries: implications for sequencing ancient genomes. PLOS ONE 8:e78575 [Google Scholar]
  175. Sleator RD. 175.  2010. The human superorganism—of microbes and men. Med. Hypotheses 74214–15 [Google Scholar]
  176. Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. 176.  2014. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological barley stripe mosaic virus. Sci. Rep. 4:4003 [Google Scholar]
  177. Smith TF, Waterman MS. 177.  1981. Identification of common molecular subsequences. J. Mol. Biol. 147:195–97 [Google Scholar]
  178. Spyrou MA, Tukhbatova RI, Feldman M, Drath J, Kacki S. 178.  et al. 2016. Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe 19:874–81 [Google Scholar]
  179. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P. 179.  et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52:1043–47 [Google Scholar]
  180. Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM. 180.  2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–98 [Google Scholar]
  181. Stoneking M, Krause J. 181.  2011. Learning about human population history from ancient and modern genomes. Nat. Rev. Genet. 12:603–14 [Google Scholar]
  182. Tanner ACR, Listgarten MA, Ebersole JL, Strzempko MN. 182.  1986. Bacteroides forsythus sp. nov., a slow-growing, fusiform Bacteroides sp. from the human oral cavity. Int. J. Syst. Bacteriol. 36:213–21 [Google Scholar]
  183. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP. 183.  et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–24 [Google Scholar]
  184. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D. 184.  et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”. PNAS 102:13950–55 [Google Scholar]
  185. Thomas CM, Nielsen KM. 185.  2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3:711–21 [Google Scholar]
  186. Tindall BJ, Kampfer P, Euzeby JP, Oren A. 186.  2006. Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int. J. Syst. Evol. Microbiol. 56:2715–20 [Google Scholar]
  187. Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L. 187.  et al. 2012. Insights from characterizing extinct human gut microbiomes. PLOS ONE 7:e51146 [Google Scholar]
  188. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G. 188.  et al. 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12:902–3 [Google Scholar]
  189. Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A. 189.  et al. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–80 [Google Scholar]
  190. Vetrovsky T, Baldrian P. 190.  2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLOS ONE 8:e57923 [Google Scholar]
  191. Vos M, Didelot X. 191.  2009. A comparison of homologous recombination rates in bacteria and archaea. ISME J 3:199–208 [Google Scholar]
  192. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N. 192.  et al. 2014. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect. Dis. 14:319–26 [Google Scholar]
  193. Walker AW, Duncan SH, Louis P, Flint HJ. 193.  2014. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol 22:267–74 [Google Scholar]
  194. Wang Q, Garrity GM, Tiedje JM, Cole JR. 194.  2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–67 [Google Scholar]
  195. Warinner C. 195.  2016. Dental calculus and the evolution of the human oral microbiome. J. Calif. Dent. Assoc. 44:411–20 [Google Scholar]
  196. Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N. 196.  et al. 2014. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46:336–44 [Google Scholar]
  197. Weiss CL, Dannemann M, Prüfer K, Burbano HA. 197.  2015. Contesting the presence of wheat in the British Isles 8,000 years ago by assessing ancient DNA authenticity from low-coverage data. eLife 4:e10005 [Google Scholar]
  198. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 198.  2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487 [Google Scholar]
  199. Wilbur AK, Bouwman AS, Stone AC, Roberts CA, Pfister L-A. 199.  et al. 2009. Deficiencies and challenges in the study of ancient tuberculosis DNA. J. Archaeol. Sci. 36:1990–97 [Google Scholar]
  200. Willerslev E, Cooper A. 200.  2005. Ancient DNA. Proc. Biol. Sci. 272:3–16 [Google Scholar]
  201. Wood DE, Salzberg SL. 201.  2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46 [Google Scholar]
  202. Yahara K, Didelot X, Ansari MA, Sheppard SK, Falush D. 202.  2014. Efficient inference of recombination hot regions in bacterial genomes. Mol. Biol. Evol. 31:1593–605 [Google Scholar]
  203. Yahara K, Didelot X, Jolley KA, Kobayashi I, Maiden MC. 203.  et al. 2016. The landscape of realized homologous recombination in pathogenic bacteria. Mol. Biol. Evol. 33:456–71 [Google Scholar]
  204. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E. 204.  et al. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–48 [Google Scholar]
  205. Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B. 205.  et al. 2013. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2:e00731 [Google Scholar]
  206. Zhao Y, Tang H, Ye Y. 206.  2012. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 28:125–26 [Google Scholar]
  207. Ziesemer KA, Mann AE, Sankaranarayanan K, Schroeder H, Ozga AT. 207.  et al. 2015. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci. Rep. 5:16498 [Google Scholar]
  208. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N. 208.  et al. 2003. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol. 41:359–67 [Google Scholar]
  209. Zurek L, Denning SS, Schal C, Watson DW. 209.  2001. Vector competence of Musca domestica (Diptera: Muscidae) for Yersinia pseudotuberculosis. . J. Med. Entomol 38333–35 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error