1932

Abstract

I was attracted to hematology because by combining clinical findings with the use of a microscope and simple laboratory tests, one could often make a diagnosis. I was attracted to genetics when I learned about inherited blood disorders, at a time when we had only hints that somatic mutations were also important. It seemed clear that if we understood not only what genetic changes caused what diseases but also the mechanisms through which those genetic changes contribute to cause disease, we could improve management. Thus, I investigated many aspects of the glucose-6-phosphate dehydrogenase system, including cloning of the gene, and in the study of paroxysmal nocturnal hemoglobinuria (PNH), I found that it is a clonal disorder; subsequently, we were able to explain how a nonmalignant clone can expand, and I was involved in the first trial of PNH treatment by complement inhibition. I was fortunate to do clinical and research hematology in five countries; in all of them, I learned from mentors, from colleagues, and from patients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-101022-105018
2023-08-25
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/genom/24/1/annurev-genom-101022-105018.html?itemId=/content/journals/10.1146/annurev-genom-101022-105018&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afolayan A, Luzzatto L. 1971. Genetic variants of human erythrocyte glucose 6-phosphate dehydrogenase. I. Regulation of activity by oxidized and reduced nicotinamide-adenine dinucleotide phosphate. Biochemistry 10:415–19
    [Google Scholar]
  2. 2.
    Aidoo M, Terlouw DJ, Kolczak MS, McElroy PD, ter Kuile FO et al. 2002. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359:1311–12
    [Google Scholar]
  3. 3.
    Albreht T, Kiasuwa R, Van den Bulcke M. 2017. European guide on quality improvement in comprehensive cancer control Rep. Natl. Inst. Publ. Health, Ljubljana, Slovenia, and Sci. Inst. Public Health Brussels, Belg:.
  4. 4.
    Allison AC. 1954. Protection afforded by the sickle cell trait against subtertian malarial infection. Br. Med. J. 1:4857290–94
    [Google Scholar]
  5. 5.
    Allison AC. 1960. Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature 186:531–32
    [Google Scholar]
  6. 6.
    Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L. 1999. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. PNAS 96:5209–14
    [Google Scholar]
  7. 7.
    Archer NM, Petersen N, Clark MA, Buckee CO, Childs LM, Duraisingh MT. 2018. Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition. PNAS 115:7350–55
    [Google Scholar]
  8. 8.
    Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R et al. 2017. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376:429–39
    [Google Scholar]
  9. 9.
    Ayi K, Turrini F, Piga A, Arese P. 2004. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 104:3364–71
    [Google Scholar]
  10. 10.
    Babalola AOG, Beetlestone JG, Luzzatto L. 1976. Genetic variants of human erythrocyte glucose-6-phosphate dehydrogenase. Kinetic and thermodynamic parameters of variants A, B, and A in relation to quaternary structure. J. Biol. Chem. 251:2993–3002
    [Google Scholar]
  11. 11.
    Babalola AOG, Cancedda R, Luzzatto L. 1972. Genetic variants of glucose 6-phosphate dehydrogenase from human erythrocytes: unique properties of the A variant isolated from “deficient” cells. PNAS 69:946–50
    [Google Scholar]
  12. 12.
    Bat T, Abdelhamid ON, Balasubramanian SK, Mai A, Radivoyevitch T et al. 2018. The evolution of paroxysmal nocturnal haemoglobinuria depends on intensity of immunosuppressive therapy. Br. J. Haematol. 182:730–33
    [Google Scholar]
  13. 13.
    Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC et al. 2020. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383:2628–38
    [Google Scholar]
  14. 14.
    Bensinger TA, Gillette PN. 1974. Hemolysis in sickle cell disease. Arch. Intern. Med. 133:624–31
    [Google Scholar]
  15. 15.
    Bessler M, Mason PJ, Hillmen P, Miyata T, Yamada N et al. 1994. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J. 13:110–17
    [Google Scholar]
  16. 16.
    Beutler E, Yeh M, Fairbanks VF. 1962. The normal human female as a mosaic of X-chromosome activity: studies using the gene for G6PD deficiency as a marker. PNAS 48:9–16
    [Google Scholar]
  17. 17.
    Bienzle U, Ayeni O, Lucas AO, Luzzatto L. 1972. Glucose-6-phosphate dehydrogenase deficiency and malaria. Greater resistance of females heterozygous for enzyme deficiency and of males with non-deficient variant. Lancet 299:107–10
    [Google Scholar]
  18. 18.
    Bodmer W. 2019. Ruggero Ceppellini: a perspective on his contributions to genetics and immunology. Front. Immunol. 10:1280
    [Google Scholar]
  19. 19.
    Boncinelli E, Acampora D, Pannese M, Esposito M, Somma R et al. 1989. Organization of human class I homeobox genes. Genome 31:745–56
    [Google Scholar]
  20. 20.
    Boulad F, Maggio A, Wang X, Moi P, Acuto S et al. 2022. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat. Med. 28:63–70
    [Google Scholar]
  21. 21.
    Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC et al. 2003. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9:279–86
    [Google Scholar]
  22. 22.
    Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44
    [Google Scholar]
  23. 23.
    Bunn HF. 2013. The triumph of good over evil: protection by the sickle gene against malaria. Blood 121:20–25
    [Google Scholar]
  24. 24.
    Bunn HF, Forget BG. 1986. Hemoglobin: Molecular, Genetic, and Clinical Aspects Philadelphia: Saunders
  25. 25.
    Cairns J. 1975. Mutation selection and the natural history of cancer. Nature 255:197–200
    [Google Scholar]
  26. 26.
    Cao A, Kan YW. 2013. The prevention of thalassemia. Cold Spring Harb. Perspect. Med. 3:a011775
    [Google Scholar]
  27. 27.
    Cappadoro M, Giribaldi G, O'Brien E, Turrini F, Mannu F et al. 1998. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92:2527–34
    [Google Scholar]
  28. 28.
    Carson PE, Flanagan CL, Ickes CE, Alving A. 1956. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124:484–85
    [Google Scholar]
  29. 29.
    Cavalli LL, Lederberg J, Lederberg EM. 1953. An infective factor controlling sex compatibility in Bacterium coli. J. Gen. Microbiol. 8:89–103
    [Google Scholar]
  30. 30.
    Cavalli-Sforza LL. 2008. Joshua Lederberg 1925–2008. Cell 132:724–25
    [Google Scholar]
  31. 31.
    Cavalli-Sforza LL, Bodmer WF. 1971. The Genetics of Human Populations San Francisco: Freeman
  32. 32.
    Cavalli-Sforza LL, Feldman M. 1983. Cultural Transmission and Evolution: A Quantitative Approach Princeton, NJ: Princeton Univ. Press
  33. 33.
    Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K et al. 2010. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467:318–22
    [Google Scholar]
  34. 34.
    Ceppellini R. 1967. Genetica delle immunoglobuline. Atti Assoc. Genet. Ital. 12:3–131
    [Google Scholar]
  35. 35.
    Chen Y, Rong F. 2021. Advances in the creation of animal models of paroxysmal nocturnal hemoglobinuria. Hematology 26:491–96
    [Google Scholar]
  36. 36.
    Cline MJ, Golde DW. 1979. Cellular interactions in haematopoiesis. Nature 277:177–81
    [Google Scholar]
  37. 37.
    Cohen-Haguenauer O, Boiron M, eds. Human Gene Transfer Colloque INSERM Vol. 219 Montrouge, Fr.: Libbey
  38. 38.
    Coppo A, Manzi A, Pulitzer JF, Takahashi H. 1975. Host mutant (tabD)-induced inhibition of bacteriophage T4 late transcription: II. Genetic characterization of mutants. J. Mol. Biol. 96:601–24
    [Google Scholar]
  39. 39.
    Dacie JV. 1963. Paroxysmal nocturnal haemoglobinuria. Proc. R. Soc. Med. 56:587–96
    [Google Scholar]
  40. 40.
    Danjou F, Zoledziewska M, Sidore C, Steri M, Busonero F et al. 2015. Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels. Nat. Genet. 47:1264–71
    [Google Scholar]
  41. 41.
    Davies J, Gilbert W, Gorini L. 1964. Streptomycin, suppression, and the code. PNAS 51:883–90
    [Google Scholar]
  42. 42.
    Dobzhansky T. 1962. Mankind Evolving. New Haven, CT: Yale Univ. Press
  43. 43.
    Dobzhansky T. 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35:125–29
    [Google Scholar]
  44. 44.
    Edington GM, Gilles HM. 1969. Pathology in the Tropics London: Arnold
  45. 45.
    Elguero E, Delicat-Loembet LM, Rougeron V, Arnathau C, Roche B et al. 2015. Malaria continues to select for sickle cell trait in Central Africa. PNAS 112:7051–54
    [Google Scholar]
  46. 46.
    Fialkow PJ, Gartler SM, Yoshida A. 1967. Clonal origin of chronic myelocytic leukaemia in man. PNAS 58:1468–71
    [Google Scholar]
  47. 47.
    Filosa S, Giacometti N, Wangwei C, De Mattia D, Pagnini D et al. 1996. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency. Am. J. Hum. Genet. 59:887–95
    [Google Scholar]
  48. 48.
    Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J et al. 2021. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384:252–60
    [Google Scholar]
  49. 49.
    Friedman MJ. 1978. Erythrocytic mechanism of sickle cell resistance to malaria. PNAS 75:1994–97
    [Google Scholar]
  50. 50.
    Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K et al. 1994. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:120–22
    [Google Scholar]
  51. 51.
    Gall JC, Brewer GJ, Dern RJ. 1965. Studies of glucose-6-phosphate dehydrogenase activity of individual erythrocytes: the methemoglobin-elution test for the detection of females heterozygous for G6PD deficiency. Am. J. Hum. Genet. 17:359–68
    [Google Scholar]
  52. 52.
    Gargiulo L, Papaioannou M, Sica M, Talini G, Chaidos A et al. 2013. Glycosylphosphatidylinositol-specific, CD1d-restricted T cells in paroxysmal nocturnal hemoglobinuria. Blood 121:2753–61
    [Google Scholar]
  53. 53.
    Gargiulo L, Zaimoku Y, Scappini B, Maruyama H, Ohumi R et al. 2017. Glycosylphosphatidylinositol-specific T cells, IFN-γ-producing T cells, and pathogenesis of idiopathic aplastic anemia. Blood 129:388–92
    [Google Scholar]
  54. 54.
    Goldman JM, Melo JV. 2001. Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:1084–86
    [Google Scholar]
  55. 55.
    Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Enríquez-Flores S, De la Mora-De la Mora I et al. 2015. Mutations of glucose-6-phosphate dehydrogenase Durham, Santa-Maria and A+ variants are associated with loss functional and structural stability of the protein. Int. J. Mol. Sci. 16:28657–68
    [Google Scholar]
  56. 56.
    Greaves DR, Fraser P, Vidal MA, Hedges MJ, Roper D et al. 1990. A transgenic mouse model of sickle cell disorder. Nature 343:183–85
    [Google Scholar]
  57. 57.
    Grosveld F, Blom van Assendelft M, Greaves D, Kollias G. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–85
    [Google Scholar]
  58. 58.
    Guardiola J, De Felice M, Klopotowski T, Iaccarino M. 1974. Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coli K-12. J. Bacteriol. 117:382–92
    [Google Scholar]
  59. 59.
    Gurdasani D, Carstensen T, Fatumo S, Chen G, Franklin CS et al. 2019. Uganda Genome Resource enables insights into population history and genomic discovery in Africa. Cell 179:984–1002.e36
    [Google Scholar]
  60. 60.
    H3Africa Consort 2014. Enabling the genomic revolution in Africa. Science 344:1346–48
    [Google Scholar]
  61. 61.
    Haldane JBS. 1949. Disease and evolution. Ric. Sci. 19:Suppl.68–76
    [Google Scholar]
  62. 62.
    Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA et al. 1990. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–89
    [Google Scholar]
  63. 63.
    Harris H. 1959. Human Biochemical Genetics Cambridge, UK: Cambridge Univ. Press
  64. 64.
    Harris R, Gilles HM. 1961. Glucose-6-phosphate dehydrogenase deficiency in the peoples of the Niger Delta. Ann. Hum. Genet. 25:199–206
    [Google Scholar]
  65. 65.
    Hayes W. 1964. The Genetics of Bacteria and Their Viruses: Studies in Basic Genetics and Molecular Biology Oxford, UK: Blackwell
  66. 66.
    Henry B, Roussel C, Carucci M, Brousse V, Ndour PA, Buffet P. 2020. The human spleen in malaria: filter or shelter?. Trends Parasitol. 36:435–46
    [Google Scholar]
  67. 67.
    Hillmen P, Bessler M, Bungey J, Luzzatto L. 1993. Paroxysmal nocturnal hemoglobinuria: correction of abnormal phenotype by somatic cell hybridization. Somat. Cell Mol. Genet. 19:123–29
    [Google Scholar]
  68. 68.
    Hillmen P, Bessler M, Crawford DH, Luzzatto L. 1993. Production and characterization of lymphoblastoid cell lines with the paroxysmal nocturnal haemoglobinuria (PNH) phenotype. Blood 81:193–99
    [Google Scholar]
  69. 69.
    Hillmen P, Bessler M, Mason PJ, Watkins WM, Luzzatto L. 1993. Specific defect in N-acetylglucosamine incorporation in the biosynthesis of the glycosylphosphatidylinositol anchor in cloned cell lines from patients with paroxysmal nocturnal hemoglobinuria. PNAS 90:5272–76
    [Google Scholar]
  70. 70.
    Hirono A, Beutler E. 1988. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(−). PNAS 85:3951–54
    [Google Scholar]
  71. 71.
    Horton R. 2015. Offline: the underrated value of friendship. Lancet 386:1432
    [Google Scholar]
  72. 72.
    Houldsworth J, Chaganti RSK. 1994. Comparative genomic hybridization: an overview. Am. J. Pathol. 145:1253–60
    [Google Scholar]
  73. 73.
    Ingram VM. 1956. A specific chemical difference between the globins of normal human and sickle cell anaemia haemoglobin. Nature 178:792–94
    [Google Scholar]
  74. 74.
    Ingram VM. 1963. The Hemoglobins in Genetics and Evolution New York: Columbia Univ. Press
  75. 75.
    Ist. Toscano Tumori 2010. ITT scientific report 2005–2009 Rep. Ist. Toscano Tumori Florence, Italy:
  76. 76.
    Ist. Toscano Tumori 2013. Istituto Toscano Tumori (ITT) scientific report 2010–2012 Rep. Ist. Toscano Tumori Florence, Italy:
  77. 77.
    Jacobs P, Los Angel. Times 1980. Doctor tried gene therapy on 2 humans. Washington Post Oct. 8. https://www.washingtonpost.com/archive/politics/1980/10/08/doctor-tried-gene-therapy-on-2-humans/c95d4b44-3e5c-4a48-904c-4bbefe52391b
    [Google Scholar]
  78. 78.
    Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB et al. 2017. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543:714–18
    [Google Scholar]
  79. 79.
    Kanter J, Walters MC, Krishnamurti L, Mapara MY, Kwiatkowski JL et al. 2022. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N. Engl. J. Med. 386:617–28
    [Google Scholar]
  80. 80.
    Karadimitris A, Manavalan JS, Thaler HT, Notaro R, Araten DJ et al. 2000. Abnormal T-cell repertoire is consistent with immune process underlying the pathogenesis of paroxysmal nocturnal hemoglobinuria. Blood 96:2613–20
    [Google Scholar]
  81. 81.
    Kato GJ, Gladwin MT, Steinberg MH. 2007. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 21:37–47
    [Google Scholar]
  82. 82.
    Kinoshita T, Medof ME, Silber R, Nussenzweig V. 1985. Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J. Exp. Med. 162:75–92
    [Google Scholar]
  83. 83.
    Lockard RE, Lingrel JB. 1969. The synthesis of mouse hemoglobin β-chains in a rabbit reticulocyte cell-free system programmed with mouse reticulocyte 9S RNA. Biochem. Biophys. Res. Commun. 37:204–12
    [Google Scholar]
  84. 84.
    Longo L, Vanegas OC, Patel M, Rosti V, Li H et al. 2002. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J. 21:4229–39
    [Google Scholar]
  85. 85.
    Luzzatto L. 1960. Effect of insulin on xylose transport in human leukocytes. Biochem. Biophys. Res. Commun. 2:402–6
    [Google Scholar]
  86. 86.
    Luzzatto L. 1981. Sickle cell anaemia in tropical Africa. Clin. Haematol. 10:757–84
    [Google Scholar]
  87. 87.
    Luzzatto L. 1992. Frontiers in medicine: gene transfer and gene therapy. J. Intern. Med. 231:3–6
    [Google Scholar]
  88. 88.
    Luzzatto L. 2006. Capire il cancro: conoscerlo, curarlo, guarire Milan: Rizzoli
  89. 89.
    Luzzatto L. 2011. Somatic mutations in cancer development. Environ. Health 10:S1–12
    [Google Scholar]
  90. 90.
    Luzzatto L. 2012. Sickle cell anaemia and malaria. Mediterr. J. Hematol. Infect. Dis. 4:e2012065
    [Google Scholar]
  91. 91.
    Luzzatto L, Allan NC. 1965. Different properties of glucose 6-phosphate dehydrogenase from human erythrocytes with normal and abnormal enzyme levels. Biochem. Biophys. Res. Commun. 21:547–54
    [Google Scholar]
  92. 92.
    Luzzatto L, Allan NC. 1968. Relationship between the genes for glucose-6-phosphate dehydrogenase and haemoglobin in a Nigerian population. Nature 219:1041–42
    [Google Scholar]
  93. 93.
    Luzzatto L, Ally M, Notaro R. 2020. Glucose-6-phosphate dehydrogenase deficiency. Blood 136:1225–40
    [Google Scholar]
  94. 94.
    Luzzatto L, Apirion D, Schlessinger D. 1968. Mechanism of action of streptomycin in E. coli: interruption of the ribosome cycle at the initiation of protein synthesis. PNAS 60:873–80
    [Google Scholar]
  95. 95.
    Luzzatto L, Banks J, Marks PA. 1964. Messenger RNA (mRNA) from rabbit reticulocyte ribosomes. Fed. Proc. 23:478
    [Google Scholar]
  96. 96.
    Luzzatto L, Banks J, Marks PA. 1965. Protein synthesis in erythroid cells. III. Monoribosome and polyribosome function in the cell-free system. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 108:434–46
    [Google Scholar]
  97. 97.
    Luzzatto L, Bessler M, Rotoli B. 1997. Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise?. Cell 88:1–4
    [Google Scholar]
  98. 98.
    Luzzatto L, Fasola F, Tshilolo L. 2011. Haematology in Africa. Br. J. Haematol. 154:777–82
    [Google Scholar]
  99. 99.
    Luzzatto L, Foroni L. 1986. DNA rearrangements of cell lineage specific genes in lymphoproliferative disorders. Prog. Hematol. 14:303–32
    [Google Scholar]
  100. 100.
    Luzzatto L, Gartler SM. 1983. Switching off blocks of genes. Nature 301:375–76
    [Google Scholar]
  101. 101.
    Luzzatto L, Goodfellow P. 1989. A simple disease with no cure. Nature 337:17–18
    [Google Scholar]
  102. 102.
    Luzzatto L, Karadimitris A. 2020. Paroxysmal nocturnal haemoglobinuria (PNH): novel therapies for an ancient disease. Br. J. Haematol. 191:579–86
    [Google Scholar]
  103. 103.
    Luzzatto L, Makani J. 2021. Treating rare diseases in Africa: The drugs exist but the need is unmet. Front. Pharmacol. 12:770640
    [Google Scholar]
  104. 104.
    Luzzatto L, Notaro R. 2019. The “escape” model: a versatile mechanism for clonal expansion. Br. J. Haematol. 184:465–66
    [Google Scholar]
  105. 105.
    Luzzatto L, Nwachuku-Jarrett ES, Reddy S. 1970. Increased sickling of parasitised erythrocytes as mechanism of resistance against malaria in the sickle-cell trait. Lancet 295:319–21
    [Google Scholar]
  106. 106.
    Luzzatto L, Pandolfi PP. 1993. Leukaemia: a genetic disorder of haemopoietic cells. BMJ 307:579–80
    [Google Scholar]
  107. 107.
    Luzzatto L, Pandolfi PP. 2015. Causality and chance in the development of cancer. N. Engl. J. Med. 373:84–88
    [Google Scholar]
  108. 108.
    Luzzatto L, Risitano AM. 2018. Advances in understanding the pathogenesis of acquired aplastic anaemia. Br. J. Haematol. 182:758–76
    [Google Scholar]
  109. 109.
    Luzzatto L, Usanga EA, Bienzle U, Esan GJF, Fasuan FA. 1979. Imbalance in X-chromosome expression: evidence for a human X-linked gene affecting growth of haemopoietic cells. Science 205:1418–20
    [Google Scholar]
  110. 110.
    Luzzatto L, Usanga EA, Reddy S. 1969. Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science 164:839–42
    [Google Scholar]
  111. 111.
    Lyon MF. 1961. Gene action in the X chromosome in the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  112. 112.
    Makani J, Cavazzana M, Gupta K, Nnodu O, Odame I et al. 2022. Blood diseases in Africa: redressing unjust disparities is an urgent unmet need. Am. J. Hematol. 97:1505–6
    [Google Scholar]
  113. 113.
    Makani J, Cox SE, Soka D, Komba AN, Oruo J et al. 2011. Mortality in sickle cell anemia in Africa: a prospective cohort study in Tanzania. PLOS ONE 6:e14699
    [Google Scholar]
  114. 114.
    Makani J, Luzzatto L. 2022. Of mice and men: from hematopoiesis in mouse models to curative gene therapy for sickle cell disease. Cell 185:1261–65
    [Google Scholar]
  115. 115.
    Makani J, Nkya S, Collins F, Luzzatto L. 2022. From Mendel to a Mendelian disorder: towards a cure for sickle cell disease. Nat. Rev. Genet. 23:389–90
    [Google Scholar]
  116. 116.
    Mangiarotti G, Schlessinger D. 1967. Polyribosome metabolism in Escherichia coli: II. Formation and lifetime of messenger RNA molecules, ribosomal subunit couples and polyribosomes. J. Mol. Biol. 29:395–418
    [Google Scholar]
  117. 117.
    Maniatis T, Kee SG, Efstratiadis A, Kafatos FC. 1976. Amplification and characterization of a β-globin gene synthesized in vitro. Cell 8:163–82
    [Google Scholar]
  118. 118.
    Martini G, Toniolo D, Vulliamy TJ, Luzzatto L, Dono R et al. 1986. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. EMBO J. 5:1849–55
    [Google Scholar]
  119. 119.
    Mason PJ, Stevens DJ, Luzzatto L, Brenner S, Aparicio S. 1995. Genomic structure and sequence of the Fugu rubripes glucose-6-phosphate dehydrogenase gene (G6PD). Genomics 26:587–91
    [Google Scholar]
  120. 120.
    May C, Rivella S, Callegari J, Heller G, Gaensler KM et al. 2000. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 406:82–86
    [Google Scholar]
  121. 121.
    McAuley CF, Webb C, Makani J, Macharia A, Uyoga S et al. 2010. High mortality from Plasmodium falciparum malaria in children living with sickle cell anemia on the coast of Kenya. Blood 116:1663–68
    [Google Scholar]
  122. 122.
    Menozzi P, Piazza A, Cavalli-Sforza LL. 1995. The History and Geography of Human Genes Princeton, NJ: Princeton Univ. Press
  123. 123.
    Mkombachepa M, Khamis B, Rwegasira G, Urio F, Makani J, Luzzatto L. 2022. High incidence of malaria in patients with sickle cell disease. Am. J. Hematol. 97:E380–81
    [Google Scholar]
  124. 124.
    Montalenti G. 1949. Discussion of J B S Haldane. Ric. Sci. 19:Suppl.333–34
    [Google Scholar]
  125. 125.
    Morelli A, Benatti U, Gaetani GF, De Flora A. 1978. Biochemical mechanisms of glucose-6-phosphate dehydrogenase deficiency. PNAS 75:1979–83
    [Google Scholar]
  126. 126.
    Moshi G, Sheehan VA, Makani J. 2022. Africa must participate in finding a gene therapy cure for sickle-cell disease. Nat. Med. 28:2451–52
    [Google Scholar]
  127. 127.
    Motulsky AG. 1960. Metabolic polymorphisms and the role of infectious diseases in human evolution. Hum. Biol. 32:28–62
    [Google Scholar]
  128. 128.
    Mtatiro SN, Singh T, Rooks H, Mgaya J, Mariki H et al. 2014. Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania. PLOS ONE 9:e111464
    [Google Scholar]
  129. 129.
    Naldini L, Blomer U, Gallay P, Ory D, Mulligan R et al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–67
    [Google Scholar]
  130. 130.
    Notaro R, Afolayan A, Luzzatto L. 2000. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB J. 14:485–94
    [Google Scholar]
  131. 131.
    Offit K. 1998. Clinical Cancer Genetics: Risk Counseling and Management New York: Wiley-Liss
  132. 132.
    Ofori-Acquah SF, Hazra R, Orikogbo OO, Crosby D, Flage B et al. 2020. Hemopexin deficiency promotes acute kidney injury in sickle cell disease. Blood 135:1044–48
    [Google Scholar]
  133. 133.
    Oni SB, Osunkoya BO, Luzzatto L. 1970. Paroxysmal nocturnal hemoglobinuria: evidence for monoclonal origin of abnormal red cells. Blood 36:145–52
    [Google Scholar]
  134. 134.
    Pantziarka P, Capistrano IR, De Potter A, Vandeborne L, Bouche G. 2021. An open access database of licensed cancer drugs. Front. Pharmacol. 12:627574
    [Google Scholar]
  135. 135.
    Pauling L, Itano HA, Singer SJ, Wells IC. 1949. Sickle cell anemia, a molecular disease. Science 110:543–46
    [Google Scholar]
  136. 136.
    Persico MG, Toniolo D, Nobile C, D'Urso M, Luzzatto L 1981. cDNA sequences of human glucose-6-phosphate dehydrogenase cloned in pBR322. Nature 294:778–80
    [Google Scholar]
  137. 137.
    Persico MG, Viglietto G, Martini G, Toniolo D, Paonessa G et al. 1986. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5′ non-coding region. Nucleic Acids Res. 14:2511–22
    [Google Scholar]
  138. 138.
    Piazza A, Mattiuz PL, Ceppellini R. 1969. [Combination of haplotypes of the HL-A system as a possible mechanism for gametic or zygotic selection]. Haematologica 54:703–20 ( In Italian )
    [Google Scholar]
  139. 139.
    Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW et al. 2010. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat. Commun. 1:104
    [Google Scholar]
  140. 140.
    Rabbitts TH, Stinson A, Forster A, Foroni L, Luzzatto L et al. 1985. Heterogeneity of T-cell β-chain gene rearrangements in human leukaemias and lymphomas. EMBO J. 4:2217–24
    [Google Scholar]
  141. 141.
    Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC et al. 2011. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365:1663–72
    [Google Scholar]
  142. 142.
    Ritossa F, Malva C, Boncinelli E, Graziani F, Polito L. 1971. The first steps of magnification of DNA complementary to ribosomal RNA in Drosophila malanogaster. PNAS 68:1580–84
    [Google Scholar]
  143. 143.
    Rondelli T, Berardi M, Peruzzi B, Boni L, Caporale R et al. 2013. The frequency of granulocytes with spontaneous somatic mutations: a wide distribution in a normal human population. PLOS ONE 8:e54046
    [Google Scholar]
  144. 144.
    Rotimi CN, Bentley AR, Doumatey AP, Chen G, Shriner D, Adeyemo A. 2017. The genomic landscape of African populations in health and disease. Hum. Mol. Genet. 26:R225–36
    [Google Scholar]
  145. 145.
    Rotoli B, Luzzatto L. 1989. Paroxysmal nocturnal hemoglobinuria. Semin. Hematol. 26:201–7
    [Google Scholar]
  146. 146.
    Ryan TM, Ciavatta DJ, Townes TM. 1997. Knock-out transgenic mouse model of sickle cell disease. Science 278:873–76
    [Google Scholar]
  147. 147.
    Salvatore D, Buzzetti R, Baldo E, Furnari ML, Lucidi V et al. 2012. An overview of international literature from cystic fibrosis registries. Part 4: update 2011. J. Cyst. Fibros. 11:480–93
    [Google Scholar]
  148. 148.
    Sansone G, Piga AM, Segni G. 1958. Il favismo Turin, Italy: Minerva Med.
  149. 149.
    Sansone G, Segni G. 1957. Sensitivity to broad beans. Lancet 270:295
    [Google Scholar]
  150. 150.
    Sergeyeva A, Gordeuk VR, Tokarev YN, Sokol L, Prchal JF, Prchal JT. 1997. Congenital polycythemia in Chuvashia. Blood 89:2148–54
    [Google Scholar]
  151. 151.
    Shriner D, Rotimi CN. 2018. Whole-genome-sequence-based haplotypes reveal single origin of the sickle allele during the Holocene wet phase. Am. J. Hum. Genet. 102:547–56
    [Google Scholar]
  152. 152.
    Sugiyama E, DeGasperi R, Urakaze M, Chang HM, Thomas LJ et al. 1991. Identification of defects in glycosylphosphatidylinositol anchor biosynthesis in the Thy-1 expression mutants. J. Biol. Chem. 266:12119–22
    [Google Scholar]
  153. 153.
    Takeda J, Miyata T, Kawagoe K, Kinoshita T. 1993. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–11
    [Google Scholar]
  154. 154.
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM et al. 2019. COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 47:D941–97
    [Google Scholar]
  155. 155.
    Terrenato L, Shrestha S, Dixit M, Luzzatto L, Modiano G et al. 1988. Decreased malaria morbidity in the Tharu people compared to sympatric populations in Nepal. Ann. Trop. Med. Parasitol. 82:1–11
    [Google Scholar]
  156. 156.
    Testa U, Meloni T, Lania A, Battistuzzi G, Cutillo S, Luzzatto L. 1980. Genetic heterogeneity of glucose 6-phosphate dehydrogenase deficiency in Sardinia. Hum. Genet. 56:99–105
    [Google Scholar]
  157. 157.
    Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA et al. 2018. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378:1479–93
    [Google Scholar]
  158. 158.
    Tishkoff SA, Kidd KK. 2004. Implications of biogeography of human populations for ‘race’ and medicine. Nat. Genet. 36:S21–27
    [Google Scholar]
  159. 159.
    Tshilolo L, Tomlinson G, Williams TN, Santos B, Olupot-Olupot P et al. 2019. Hydroxyurea for children with sickle cell anemia in sub-Saharan Africa. N. Engl. J. Med. 380:121–31
    [Google Scholar]
  160. 160.
    Urio F, Nkya S, Rooks H, Mgaya JA, Masamu U et al. 2020. F cell numbers are associated with an X-linked genetic polymorphism and correlate with haematological parameters in patients with sickle cell disease. Br. J. Haematol. 191:888–96
    [Google Scholar]
  161. 161.
    Usanga EA, Bienzle U, Cancedda R, Fasuan FA, Ajayi O, Luzzatto L. 1977. Genetic variants of human erythrocyte glucose 6-phosphate dehydrogenase: new variants in West Africa characterized by column chromatography. Ann. Hum. Genet. 40:279–86
    [Google Scholar]
  162. 162.
    Vermylen C, Cornu G, Ferster A, Sariban E, Pinkel D, Garfunkel JM. 1994. Bone marrow transplantation for sickle cell anaemia. J. Pediatr. 124:329–30
    [Google Scholar]
  163. 163.
    Vichinsky E, Hoppe CC, Ataga KI, Ware RE, Nduba V et al. 2019. A phase 3 randomized trial of voxelotor in sickle cell disease. N. Engl. J. Med. 381:509–19
    [Google Scholar]
  164. 164.
    Vulliamy TJ, D'Urso M, Battistuzzi G, Estrada M, Foulkes NS et al. 1988. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. PNAS 85:5171–75
    [Google Scholar]
  165. 165.
    Wang Z-G, Delva L, Gaboli M, Rivi R, Giorgio M et al. 1998. Role of PML in cell growth and the retinoic acid pathway. Science 279:1647–51
    [Google Scholar]
  166. 166.
    Ware RE, de Montalembert M, Tshilolo L, Abboud MR. 2017. Sickle cell disease. Lancet 390:311–23
    [Google Scholar]
  167. 167.
    Watts G. 2016. Julie Makani: at the cutting edge of sickle-cell disease. Lancet 388:21
    [Google Scholar]
  168. 168.
    World Health Organ. (WHO) 2022. Meeting report of the technical consultation to review the classification of glucose-6-phosphate dehydrogenase (G6PD) Rep. WHO/UCN/GMP/MPAG/2022.01 WHO Geneva: https://www.who.int/publications/m/item/WHO-UCN-GMP-MPAG-2022.01
  169. 169.
    Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D et al. 1994. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265:2088–90
    [Google Scholar]
  170. 170.
    Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A et al. 2013. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N. Engl. J. Med. 369:1502–11
    [Google Scholar]
  171. 171.
    Yoshida A, Beutler E, Motulsky AG. 1971. Human glucose-6-phosphate dehydrogenase variants. Bull. World Health Organ. 45:243–53
    [Google Scholar]
  172. 172.
    Zehner N, Adrama H, Kakuru A, Andra T, Kajubi R et al. 2021. Age-related changes in malaria clinical phenotypes during infancy are modified by sickle cell trait. Clin. Infect. Dis. 73:1887–95
    [Google Scholar]
  173. 173.
    Zoumbos NC, Gascon P, Djeu JY, Young NS. 1985. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. PNAS 82:188–92
    [Google Scholar]
/content/journals/10.1146/annurev-genom-101022-105018
Loading
/content/journals/10.1146/annurev-genom-101022-105018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error